Coherent static tune shift due to electron cloud (Draft 3)

G. Dugan

1 General tune shift formula

In lowest order approximation, the coherent tune shift due to an electric field perturbation £,
the beam is given by
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in which F is the beam energy, [ is the lattice function, and Ez(y) (Az, Ay) is the value of the electric field
produced by a cloud charge density centered at z, ., acting on a beam centered at xy, v, averaged over the
beam distibution. Here Ax = x, — x,, and Ay = y, — y.. The tricky bit is calculating Ex(y) (Az, Ay). The
calculation is outlined below.

2 Electric field

The potential of a general three-dimensional charge distribution p(z, y, z)
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For a cloud charge distribution which is uniform in z, but otherwise general, and centered at x. and y., then
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in which X is the charge per unit length in the z direction, and g(x,y) describes the transverse shape of the
density. Then the potential is
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We now make a change of integration variables to
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2.1 Electric field in the z-direction
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The electric field in the x-direction is
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Let the beam distribution be given transversely by a Gaussian, centered at x; and y3, with rms sizes o, and
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This distribution is normalized to unity. Then the average value of the field is
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We can do the x and y integrations using
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Thus, letting Az = z, — x. and Ay = y, — y., we have
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in which the weight function is
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2.1.1 Example

For example, suppose that the cloud distribution is a Gaussian:
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The v’ integration gives
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2.2 Electric field in the y-direction

The electric field in the y-direction is
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With the same assumption of a Gaussian beam, the average value of the field is
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We can do the z and y integrations using
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The linear part of this is
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in which the weight function is
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2.2.1 Example

For example, suppose that the cloud distribution is a Gaussian:

. 1 —2?/2a% —y? /20>
9(z,y) = 5—e
Then B
6Ey —)\Uy ,_22 a2 232
du’ d w202 Ja® —v"? 0" ,/b o
OAY | Ap—0.Ay=0 27T€00’x 27Tab/ u / ve Wy (', ),



The v’ integration gives
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3  Summary

The coherent tune shift is B
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in which E = mgc?v is the beam energy. The beam is assumed to be a Gaussian with rms sizes 0, ;. In
the x direction, the linear gradient of the electric field due to the cloud, averaged over the beam distribution,
is
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in which p(z,y) is the 3-dimensional cloud charge density (assumed to be uniform in the direction of the
beam), and the weight function is
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Note that the above approach can also be used to estimate the incoherent tune spread, which can be relevant
for emittance growth.




3.1 Gaussian cloud example

For the example of a Gaussian cloud density given above, we have for the horizontal tune shift
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If the size of the cloud is much bigger than the beam in both x and y, then we have
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3.2 Line charge example

Suppose that the cloud charge density is a line charge located at x = a. Then we have

p(z,y) = Ad(z — a)d(y)

and the average electric field gradient in the z-direction is
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For the case of a round beam, » = 1, we have
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This will be negative for an electron cloud.
The average electric field gradient in the y-direction is
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This will be positive for an electron cloud.

3.3 Uniform charge density example

Suppose that the cloud charge density is a uniform charge density po over a circle of radius a, and the beam
is round. Then the average electric field gradient in the x-direction is
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then
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This will be positive for an electron cloud. This be compared with the case for a Gaussian cloud, for which
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3.4 Round beam example

Suppose that the beam is round. This corresponds to » = 1, so the weight functions are
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3.5 Line charge beam

If the beam size ¢ is much smaller than the other dimensions in the problem, we need to take the limit of the
weight function when 0 — 0. The round beam weight function is
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The field gradient is then
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Suppose that the cloud density is Gaussian:

3.5.1 Gaussian cloud
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Then the field gradient for a line charge beam is
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For the y field gradient, we have
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3.6 Electric field in the z-direction-line charge beam

The electric field in the x-direction is
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Let the beam distribution be given transversely by a line charge, centered at z;, and y:
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This distribution is normalized to unity. Then the average value of the field is
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Explicitly, doing the integration over x and y,
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Letting Az = x, — x. and Ay = y, — y., we have
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in which the weight function is
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This integral diverges for z = 0,y = 0 and needs to be written in terms of a delta function-see above,
previous section.

4 Sum rule

4.1 Derivation

From the Poisson equation, we have
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in which p(x,y) is the cloud number density, and g(z,y) describes the 2D shape of a cloud centered at
Zc, Yo Averaging over the beam distribution gives
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then, since
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This shows that the sum of the coherent tune shifts is approximately proportional to the integral around
the ring of the cloud density, averaged over the beam, weighted with the local value of beta. If we use an
overbar to indicate an averaging around the ring, as well as over the transverse beam dimensions, then we
can write approximately that
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4.2 Evaluation

To compare with a simulation, we wish to evaluate

Fs 540 =Tol fas s

The ring is divided into n beamline elements, with index ¢. At each element, the radiation is characterized
by the parameter I; (photons per electron per meter, averaged over the element). The electron cloud density
is a function of this parameter, and of the type of beamline element, designated by the index £ (i.e., drift,
dipole, wiggler, etc.): so at a given element

() = fr(li)

If there are m types of beamline elements, and n; elements of each type, then the integral around the ring

can thus be written as
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If we make a simple linear approximation for the dependence of the density on the radiation parameter
(an assumption which is likely to be wrong, given the nonlinear character of the electron cloud formation
process), then we can write
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in which fo j is the density corresponding to the radiation parameter I 5, and
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We can define the radiation parameter Iy j as being equal to the weighted average of I;:
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Summarizing this with a slight change in notation, we can write
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5 Individual tune shifts

5.1 Derivation

The coherent tune shift is B
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in which E = mgc?v is the beam energy. The beam is assumed to be a Gaussian with rms sizes 0, 0. In
the x direction, the linear gradient of the electric field due to the cloud, averaged over the beam distribution,
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in which p(z, y) is the 3-dimensional cloud number density (assumed to be uniform in the direction of the
beam), and the weight function is
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5.1.1 Tune shifts in terms of electric fields

The electric field is given by
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The tune shift is
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5.2 Evaluation

To compare with a simulation, we wish to evaluate

f 45 B () = (P f ds f;

in which (), . represents the density integrated with the weight function. There is a structurally similar
expression for the y plane.

The ring is divided into n beamline elements, with index . At each element, the radiation is characterized
by the parameter I; (photons per electron per meter, averaged over the element). The electron cloud density
is a function of this parameter, and of the type of beamline element, designated by the index £ (i.e., drift,
dipole, wiggler, etc.): so at a given element

(P)we = ok (1i)

If there are m types of beamline elements, and n; elements of each type, then the integral around the ring

can be written as
m  ng

fdsﬂr wx ZZﬂzsz'pk

k=11=1

If we make a simple linear approximation for the dependence of the density on the radiation parameter
(an assumption which is likely to be wrong, given the nonlinear character of the electron cloud formation
process), then we can write

I;

ka

Sk (Li) = fao, kT

in which f; o 1 is the weighted density corresponding to the radiation parameter I, ¢ 1, and

%dsﬂ“p)m Z “Zﬁ“u

—1 zOk

We can define the radiation parameter [y j as being equal to the weighted average of I;:

I 0 k — Zl 1 x ZL I
oo Z:):kl x,zLi
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Then

m

fdsﬁx ) Emeszk E I00,k)) yp Wa k

k=1
in which the weight w,, 1 is

ng
Wy k= E ﬁm,iLz
=1

5.3 Evaluation

To compare with a simulation, we wish to evaluate

AQuty) = 15 ]{ds B Gay) = <Gw(y>>j{d8 By
in which the field gradient is
Gopy) =

dx(y)

The ring is divided into n beamline elements, with index ¢. At each element, the radiation is characterized
by the parameter I; (photons per electron per meter, averaged over the element). The electron cloud density
is a function of this parameter, and of the type of beamline element, designated by the index £ (i.e., drift,
dipole, wiggler, etc.): so at a given element

Galy) = Gu(y).k(1i)

If there are m types of beamline elements, and nj elements of each type, then the integral around the ring

can be written as
m Nk

fds ﬂm(y)Gac(y) = Z Z ﬂac(y),iLig:c(y),k'(Ii)'

k=11i=1
If we make a simple linear approximation for the dependence of the field gradient on the radiation parameter
(an assumption which is likely to be wrong, given the nonlinear character of the electron cloud formation

process), then we can write
I;

9z (y), I’L =09z(y),0k7
O W

in which g,y 0, is the field gradient corresponding to the radiation parameter I, (,) 0., and

9z k
]{ds Ba) Gay) = 3 T2 Zﬁw ()i Lil;

Im(y) 0,k

We can define the radiation parameter I, (,) o, as being equal to the weighted average of I;:

Lgop — 22z Peonilids
T > ity Bagyyili

Then

e e Ui
AQuzy) = & f ds BuGa(y) = 5 D 9o )0k Wn(y) k
k=1
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in which the weight w;, 1, is
Nk
Wa(y),k = Z Ba(y),iLi
i=1

This can also be written as

m

= AT E Z Gw(y)vk(<Iﬂﬂ(y)7k>)ww(y),k
k=1

with e
_ 2it Pailili
Wa(y),k
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