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I. INTRODUCTION

The phenomenon of secondary emission (SE) from solids was discovered
by Austin and Starke in 1902 and has since been the subject of numerous
experimental and theoretical investigations. It consists in the following
brocess: If primary electrons (P) impinge on a solid, secondary electrons
(8) are observed leaving the surface into free space.

The maximal experimental information about these S can be obtained
(neglecting spin) by measuring of the number of S emitted per second from
I em? of the surface with energy E in the direction (d,¢). This function
is the detailed current density of observed S, denoted by 7,(E,Q).

Js(E,2) can depend only on the states of the interacting systems, that
is to say, on the properties of the primary beam and on the physical and
chemical properties of the emitter, such as chemical composition, erystal
structure, surface conditions, temperature, etc.

Thus, it is clear that it must be the aim of experimental investigations
of SE to measure the function j,(E,Q) in its dependence on the parameters
mentioned. The theory of SE, on the other hand, has to derive these results
fromXﬁrst principles by means of appropriate approximations.
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Since McKay (1) published his review on SE in this journal in 1948,
a considerable number of recent experimental and theoretical studies on
this subject have appeared (summaries are given in refs. 2-5a); although
they have contributed a great deal to clarify the problems, our experi-
mental as well as theoretical knowledge of the function j,(E,Q) is still
unsatisfactory.

As to the experimental side, the reason for this fact lies in the difficul-
ties connected with the measurement of slow electrons (F < 20 ev) emitted
from carefully cleaned surfaces. Theoretical difficulties are caused by the
complexity of the SE phenomenon, the complete treatment of which neces-
sitates a detailed study of a series of single problems. This has been only
partly achieved.

In the following pages we shall first give a qualitative description of
how the different elementary processes of SE are connected with one an-
other and finally lead to the distribution function j,(E,). Then we shall
comment on the essential experimental investigations, particularly those
published in recent years. No attempt is made to give a complete list. The
following theoretical considerations are intended (within the limits of this
paper) to indicate how the observed results can be derived from funda-
mentals and at the same time to give hints for further interesting experi-
mental studies of SE.

Experimental arrangements as well as the technical application of the
phenomenon will not be included in this article. Moreover, phenomena
effected by SE only (such as fatigue phenomena, Malter effect) will not be
discussed in detail.

II. QuavrtaTive CONNECTION OF THE DIFFERENT
ELEMENTARY PROCESSES

In order to clarify the meaning of the single processes effective in SE,
we shall examine how a calculation of the function 7,(E,Q) has to proceed
in principle.

The first interaction occurring in this regard is that of the P with the
potential barrier on the surface of the solid. If this is taken into account,
the impinging primary beam will be divided into two parts, the reflected
part and the part of P penetrating into the solid. The latter part will inter-
act with the nuclei and electrons of the solid. .

Thereby the P will suffer both elastic collisions with atomic nuclel,
whereby their direction of motion is more or less changed, and loss of energy
through interaction with electrons. The first process results in splitting the
primary beam and thus partly in a reversed motion toward the surface.
The P thus moving against the incident primary beam will also produce
excited S and will partly escape from the surface into free space. The cal-
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culation of these processes will result in the distribution of the states of

P in the solid and the part of slowed-down reemitted P. !
It is necessary to know the spatial distribution of the states of P if one !

wishes to study the spatial dependence of excitation of crystal electrons

caused by P. This excitation process, which is also important for the energy

loss of P, is obviously due to the Coulomb interaction between P and crys-

tal electrons. A calculation of this process results in the number of erystal

electrons per second and cubic centimeter, S(x,Z,Q), going over into a state

(E,Q) at a point z.
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F1gc. 1. Scheme of the secondary-emission process.

The inner S thus generated will interact with the different components
of the solid, such as electrons and phonons. During their motion they will
spread over the solid in a similar manner as the P mentioned above and
will partly reach the surface where they will be reflected or emitted accord-
ing to their energy and direction of incidence.

If certain presuppositions are made with respect to the surface, the dis-

. tribution function N(0,E,Q), i.e., the number of inner S per cubic centi-
| meter in (E,Q) at £ = 0, will result in the required function j,(E,Q), which
will have to be compared with the corresponding results of measurements.

It must be pointed out that the above consideration is only concerned
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with direct excitation of S by P (which will mostly be the case, however).
But, in fact, it may happen, that, for instance, the P will first produce
excitons. The excitons will then move through the solid and may eventually
lend their energy for the excitation of 8. This will result in a part of in-
directly excited S, whose actual existence, however, could not yet be proved
for certain.

The different elementary processes, the interaction of which will finally
lead to the current density distribution of outer S which is principally cap-

able of measurement, are shown in their interrelation in the scheme
(Fig. 1).

ITI. ExpERIMENTAL RESULTS

Our knowledge of the mechanism of SE has considerably advanced in
the last years. Theoretical studies have largely contributed to this. On the
other hand, a major number of experimental results must be mentioned.
In order to discuss SE, a good deal of use must be made of single experi-
mental results. The following chapters will preferably deal with those results
of measurements which are important for enlarging our knowledge of the

SE mechanism and thus cannot be denied s certain significance for theo-
retical investigations.

A. Distribution Functions

A complete description of SE consists—as we mentioned above—in
stating the function 7,(E,©). This function of two variables can be repre-
sented by a group of curves, one of the two variables occurring as a curve
parameter. Thus, we obtain either the energy distribution of directed sec-
ondaries 7,(E,Q,) or the angular distribution of monoenergetic secondaries
Js(EoQ). Of course, each of the two groups of curves can be derived from
the other. The latter function seems to be measurable with less difficulty.
This function we shall call the energy angular distribution. Usually the
emission current is related to the unit of the primary current. But because
of the proportionality of these two currents, this specification is often
omitted.

Now integration of 7.(E,Q) over all angles of a hemisphere leads to the
pure energy distribution of secondaries Js(E), the integration over energy
to the pure angular distribution Js(Q), and the integral over energy and
angles to the yield § of SE, if j, is related to the unit of primary current.
Since the energy distribution enables us to subdivide the S in a suitable
manner, we shall first discuss this distribution function.

1. Energy Distribution. a. General considerations. If the number of elec-
trons emitted by the target in the energy interval (E, E + AE) is plotted
against the energy E, the result will be a distribution curve whose typical
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shape is shown in Fig. 2. Three groups of electrons may be distinguished in ‘
this distribution curve.

One group of electrons has the energy E,° of the primary beam. It is
evident that this group must be considered to be elastically reflected P.

o
[
N

Fr6. 2. The general shape of the energy distribution of secondary electrons.
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A second group distributed in the spectrum between E,° and ca. 50 ev
has a shape that may be compared with the spectrum of an electron beam
having passed through a thin film. By analogy with those electrons, we ags-
sume that the electrons of this group are reflected to the surface only after
having passed through a more or less thick layer of the target material. The
electrons of this group are called rediffused P.

A third group is indicated below 50 ev by a sharp maximum of the dis-
tribution curve at a few electron volts. According to the relative frequency
of this group— the number of these electrons is sometimes greater than that
of the P—we must suppose that in this case we are not faced with P, but
have to do with true S of the solid. It is mainly in this group that we shall
be interested in the following.

Although the different groups are distinctly marked in the distribution
curve, it is not possible to separate them exactly. In particular, there is no
borderline distinction between rediffused P and true S. For practical pui-
poses, the latter two groups are separated at £ ~ 50 ev. It is natural that
in such a way some true S with high energies should be included in the
number of rediffused P, while on the other hand there must be rediffused
electrons with £ < 50 ev.

b. Methods of measurement. Measuring the energy distribution of true
8 is basically a problem of electron optics. The electrons escaping from a
point of the target are distributed over all directions of a hemisphere. For
the usual methods of measurement—except the retarding field method—it
Is necessary to cut out a beam with & narrow aperture angle by means of
diaphragms. The electrons of this beam are separated according to their
energies by a dispersing field and then focused on g point. As in spectros-
copy, the quality of the arrangement is described in terms of its resolution
and depends on the dispersion of the field and the quality of the image.

Apart from the retarding field method, all arrangements that have as
yet been used are based on the above points of view.

Let us first consider the retarding field method. The electrons emitted
radially from the target move against a spherically symmetric field, and
only those reach the spheric collector which have sufficient energy to over
come the potential difference. The retarding field curve, from which the

energy distribution is obtained by differentiation, is measured at the cage.
This method is relatively simple as to the arrangement, and for this reason
it is particularly convenient for use in heatable tubes. Provided that the
spherical cage is sufficiently great relative to the target and that no tertiary
electrons are generated at the inner surface of the cage, an accuracy of 6%
of the applied retarding voltage can be reached. It is true, however, that
because of subsequent differentiation small accidental errors of measure-
ment will be likely to overshadow the fine structures of the curve.

!By private communication from G, Appelt, who undertook an electron-optical
examination of this method.




SECONDARY ELECTRON EMISSION FROM SOLIDS 419

The transverse magnetic field method was first worked out by Ram-
sauer (6) for slow electrons and has since repeatedly been used for deter-
mining the energy distribution of S. The method is based on the focusing
properties of semispherical electron paths in a homogeneous magnetic
field. Because of the aperture error of the mapping, the resolution of this
method is linked with the aperture angle of the electron beam. The resolu-
tion is dependent on F and can be increased at ca. 5 evup to 0.2 ev. In order
to avoid undesired deflection of the primary beam in the magnetic field,
the beam must be arranged parallel to the magnetic field. From this follows
that the primary beam must be orthogonal to the secondary beam.

The longitudinal magnetic field method makes use of the focusing prop-
erties of the long magnetic coil. By a fixed system of diaphragms, only
electrons of a definite energy are united in the focal plane, in which the
diaphragm of the cage is arranged. If the strength of the magnetic field is
varied, electrons of different energy are successively obtained in the col-
lector eage. The method was thoroughly investigated by Kollath (7) and
used for a series of measurements. Kollath stated 2 resolution better than
0.5 ev.

The transverse electric field has recently been used by Harrower (8)
for measuring the energy distribution of S. For the purpose of energy anal-
ysis and focusing, he used a cylindrical condenser with 127.2° deflection.
The electron beam entering the analyzer is focused on the slit after deflec-
tion. The energy distribution is obtained from the current at the cage
divided by E. The resolution varies in proportion to 1/E accordingly.

Regarding resolution, the three latter procedures are entirely sufficient
even for precision measurements. But working with slow electrons gives
rise to a number of additional difficulties which may exert a strong influence
on the measured results. The most important points to be observed in meas-
urements are the following: The space in front of the emitter must be free
of any fields ; low space charge must be avoided and the influence of external
fields, particularly perturbing magnetic fields, must be excluded as well.

The contact potentials of the electrodes should be known. Lastly, the
surface conditions of the target material are of prime importance. Thin
adsorbed surface layers—even in monomolecular form—may falsify the
result through variation of the work function and may influence the posi-
tion of the frequency maximum. Particular attention should therefore be

paid to highest vacua and clean surfaces,

It must be attributed to the influence of the various sources of error that
Measurements taken from the same materials by different authors agree
only in outline. The data concerning the position of the frequency maximum
often differ by several volts.

¢. Meials. Observing the necessary piecautions, several authors carried
out measurements for different metals. Let us take as an example the meas-
Urements made by Kollath (9), who studied a series of metals by the same
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method of measurements. For all metals examined, the distribution curve

of true S has a marked maximum between 1.3 and 2.5 ev. At greater ener-
gies, the curve drops monotonically to very small values already beyond
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Fia. 3. Range of energy spectra measured for 10 different metals according to R-
Kollath [Ann. Physik [6] 1, 357 (1947)].
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20 ev. If Kollath’s distribution curves for various metals are compared
with one another, it is obvious that they are very similar. All distribution
curves lie in a narrow range. The spreading is marked in Fig. 3 by the
section lined.

The energy distribution for £,° in 20 ev < E,° < 1,000 ev is observed
as independent of E,°. Changes in the distribution function appear only
below E,° = 20 ev (Fig. 4). The distribution curves then get more shallow,
the maximum shifts upward, and the half-width increases in the case of Mo
as was found by Harrower (10).
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Fia. 4. Energy distribution of secondary and reflected primary electrons from a Mo

target for five different values of E,° between 0 and 20 ev according to G. A. Harrower
[Phys. Rev. 104, 52 (1956)].

An investigation of angular dependence of the energy distribution was
earried out for Mo and Ag by Kuschnir and Frumin (11), who found a shift-
ing of the maximum from 2.5 ev at & = 40° to 25 ev at & = 80° (¢ exit
angle). Recently, R. Winkler [Ann. Physik, to be published] was able to
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show that this surprisingly great shift was caused by uncorrected fields in
front of the emitter. Regarding the necessary corrections Winkler obtaing
for Ni a very small shift of the maximum in the cited direction.

d. Subsidiary mazima. Though normally the energy distribution curves
of metals are fairly smooth, they show slight subsidiary maxima if the target
is extensively heated before measurement. They were first discovered by
Haworth for Mo and later on for Cb (12). Similar subsidiary maxima have
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Ij‘m. 5. Energy distribution of secondary electrons from a W target with subsidiary
maxima at 13.0, 21.8, and 37.8 ev (the normally larger low-¢nergy maximum has been
attenuated) according to G. A. Harrower [Phys. Rev. 102, 340 (1956)].

been found for Be Iayers and Mo sheets by Kollath (9). Recently, Harrower
(8) has carried out exact measurements for W and Mo. He was able to con-
firm the SE maxima, (Fig. 5) and in addition found a whole series of sub-
sidiary maxima above 50 ey up to 300 ev—i.e., in the range of rediffused P.
At last O. H. Zinke (Phys. Rey. 106, 1163 (1957)] has found a series of sub-
sidiary maxima of Mg,

We consider the existence of the subsidiary maxima in the energy dis-
tribution curves as proved, although the conditions under which they were
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obtained seem somewhat unusual, in particular with respect to the exten-
sive heat treatment of the targets.

Harrower (following an idea of Lander, (13)) tried to interpret the sub-
sidiary maxima by means of Auger processes. Such a process would be as
follows (cf. Fig. 6): An electron is excited from a deep level D by a primary
collision. The created empty level is filled with an electron of the next higher
band C. The energy Ep — Eg released by this process does not appear as a
radiation quantum outside the solid; it is at once used for exciting an elec-
tron from the band C or even from the upper band A. The electron then
appears outside the solid with an energy (Ep — E¢) — Ea. If the S comes

i_—_ _:-(ED-EC)“EA

F1a. 6. Schematic representation of the emergy band structure of a metal target
material with Auger process.

from band C, its energy would be Ep — 2Ec. Now for W as well as for I\'Io,
the position of the energy levels is known from X-ray spectra. Calculating
the possible Auger processes by means of these levels, ‘Harrowe'r was able
to interpret the maxima he had found. The resul-t for W is shown in T:?b!e 1.
The calculated energies agree reasonably well with the measured suPsxdlary
maxima. It must not be overlooked,\however, that Table I contains 9nly
part of the possible processes. For the time being, it cannot be explained
why the other transitions were not found as Well..

For theoretical considerations it is necessary ?o judge how frequer‘nt thes?
Auger processes are. Electrons in deep levels are important for energy loss 10
P as well as for the excitation process of S. It seems to follow from the only




424 0. HACHENBERG AND W. BRAUER

TasLe I. Comparison oF CALCULATED AUGER ENERGIES WiTH OBSERVED SUBSIDIARY
Maxmva oF W AccorpiNng To HARROWER®

Auger transition Calculated value Observed value

Both electrons originally in same band

5d — 6sp 51 —2X19 = 13 13
5p — Gsp 63 —2X19= 25 25
4d — Bsp 245 — 2 X 19 = 207 212
4p — 5d 450 — 2 X 51 = 348 340
4p — 5s 450 — 2 X 93 = 264 264
Electrons originally in different bands
(4s — 4p) — 5s (590 — 450) — 93 = 47 46
(4p — 4d) — 5d (450 — 245) — 51 = 154 160
4p — 4d) — 4&f (450 — 245) — 31 =174 173
(4d — 4f) — 5d (245 — 31) — 51 = 163 164
(4d — 4f) — 6Bsp (245 — 31) — 19 = 195 199
(5s — 4f) — 6sp (93— 31) —19 = 43 38

« G. A. Harrower, Phys. Rev. 102, 340 (1956).
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Fig. 7. Energy distribution of secondary electrons emitted by SbCs; layers and Cs
(a) SbCs; according to R. Kollath [Ann. Physik. [6] 1, 357 (1947)]. (b) SbCs; according

to G. Appelt and O. Hachenberg [Ann. Physik. to be published]. (¢) Cs according to
R Kollath [loc. cit.].
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slightly indicated subsidiary maxima that such processes are less frequent,
but it cannot be overlooked that the subsidiary maxima may be smeared
out by the transport process of the S toward the surface. Evidently, a valid
conclusion cannot be drawn without an exact investigation of the transport
process.

e. Semiconductors and insulators. Though charge phenomena at the sur-
face and in the layer make it extremely difficult to measure the energy dis-
tribution of S emitted by insulators, there are recent measurements from
which reliable conclusions can be drawn, for it seems possible to overcome
the technical difficulties of measurement by means of the single-pulse
method.

Typical semiconductors like Ge, Se, or PbS behave in their energy dis-
tribution of S like metals. This does no longer hold for substances with a
high SE yield. Compared with metals, Kollath (9) found for Cs:Sh an
increased emission of slow electrons in the range 0—4 ev, while the maximum
of the distribution remained at the same position (Fig. 7). Measurements
carried out by Appelt and Hachenberg (14) for Cs;Sb and CssBi eonfirmed
this result.

Emission of a relatively greater number of slow electrons is not confined
to intermetallic compounds. Also alkali halides as well as alkali earth oxides
behave similarly, though perhaps less markedly. After Vudinsky had found
enhanced emission of slow S in heated layers, also Shulman and Dementyev
(15), who used the pulse method, found an increased emission of slow elec-
trons for NaCl and KBr, and more recently Whetten and Laponsky (16)
for MgO single crystals. So it seems obvious that intensified emission of slow
electrons as well as low position of the frequency maxima may be regarded
as a phenomenon common to insulators with high SE yields.

The shapes of distribution curves of alkali halides and alkali earth oxides
depend on primary energy. Shulman and Dementyev (15) pointed out that
in the case of NaCl the relative number of slow electrons increases with
increasing primary energy for E,° < E,,°.2 Whetten and Laponsky (I6)
confirmed the same behavior for MgO (Fig. 8).

The existence of subsidiary maxima in the case of insulators has not
yet been proved with certainty. Their presence was indicated earlier by
Geyer (17), yet a confirmation obtained with modern apparatus is still
lacking. According to the interpretation of subsidiary maxima by Auger
Processes in the case of metals, it would be natural to expect similar maxima
for the result of later measurements.

f. Qualitative interpretation. The general trend of the energy distribu-
tion curves ig very similar to a Maxwell distribution (Fig. 3), but there is
Do physical connection at all between them. Occasional considerations
made in this regard are unfounded.

All distributions measured for metals have their maxima near 2 ev,

? Epm® defines the primary energy corresponding to the vield maximum (B, 3).
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that is to say, at a fairly equal distance above vacuum level. It seems that
the existence of this maximum may rather be connected with the escape
mechanism than with the inner properties of the solid.

The transport of S towards the surface will contribute to a certain extent
to smooth discrete peaks in the distribution function because of inelastic
collisions and will lead to an increase of the density of electrons in the vicin-
ity of the Fermi level.

P=
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FI(%. 8. Energy distribution of secondary electrons from a MgO single crystal targeb
according to N. R. Whetten and A. B. Laponsky [Phys. Rev. 107, 1521 (1957)] at different
values of B,° O, Ep° = 100 ev; I, E;° = 800 ev; [, Ep° = 2400 ev.

The slope of the distribution is strongly influenced by the surface barrier,
in particular the maximum of the distribution curve is produeced by the
latter. Despite the fact that the density of occupied levels in metals increases
towards low energies, the strong influence of the surface barrier o slow
electrons—eclosely above vacuum level—results in such a decrease in the
numberoflemitted electrons that a maximum is produced at a nearly con-
stant distance above vacuum level, )

The position of the maximum is dependent oa the energy angular dis-
tribution of the internal excited electrons and on the potential parrier. If
there is a low potential barrier, the maximum is generally to be expeC
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Fia. 9. Energy distribution of secondary electrons emitted by a CsGe target at differ-
ent forming conditions according to G. Appelt [Thesis, Dresden (1958)]. Curves 1 to 4
correspond to subsequent formation states with decreasing work-function.
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at low energies. The energy (F =~ 1 ev) at which the maximum occurs in
the case of alkali halides points to this direction.

A series of measurements by Appelt (18) for GeCs layers represents a
striking indication of the influence of the potential barrier on energy distri-
bution. During the formation process, the work function of GeCs layers
decreases, as can be inferred from the increase of the photo yield. Distribu-
tion curves 1 to 4 shown in Fig. 9 correspond to subsequent formation states
with decreasing work function causing a shift of the maximum to lower
energies. The yield rises at the same time.

Only above the maximum (at & > 10 ev) will the influence of the poten-
tial barrier diminish, and here we can relate the particularities of the distri-
bution curve—i.e., especially the subsidiary maxima—with the occupation
density of the excited states in the solid itself.

2. Energy Angular Distribution. As stated above, the energy angular
distribution is the function which completely describes SE, but measure-
ments of this kind have only? been carried out by Jonker (19, 20). The main
reason for this may be seen in the difficulties regarding the technical appara-
tus required for these measurements. On the one hand, the cage must be
moved around the target in high vacuum; on the other hand, the apparatus
must admit a separation of S by their different energies. Jonker solved this
difficult problem by using for energy analysis an electric retarding field
between two spherically concentric shells. The cage, which is rigidly fixed
to the outer shell, can be turned along a slit in the inner shell in opposite
direction to the inner shell and to the target connected with it.

a. True secondary electrons. Measurements were carried out for a Ni
target at 500-ev primary energy within the range of true S. The authorsepa-
rated the Swith £ = 1.5 ev, 10 evand 20 ev from the emitted electrons and
studied their angular distribution. The result is shown in Fig. 10. It can be
seen that the true S leave the surface distributed in first approximation to 8
cosine law. For the 20-ev electrons, the cosine law is satisfied in an almost
ideal manner, as illustrated by the circle inscribed for comparison into Fig.
10. Slower electrons show certain deviations. The distribution i somewhat
flattened in the polar diagram. If these deviations are regarded to be valid
for the general behavior, and if one takes into consideration that for elec-
tron optical reasons the distributions of the electrons with E =~ 0 ev must
again be a cosine distribution, then the following picture will result: For
E = 0 ev, a pure cosine law is to be expected; with rising secondary elec-
tron energy E in Jonker’s normalization of the curves, a certain broadening

* As was stated above, R. Winkler recently measured angular energy distribution from

Ni at E;° = 2.10° ev. He found by recaleulation that his results are in full agreement
with those of Jonker.
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of the cosine distribution will be observed, which, however, will have dis-
appeared again at £ = 20 ev.

The distribution curves are independent of the crystal structure of the
target, and no fine structure was to be found in the distribution. The dis-
tribution is practically independent of the angle of incidence of the P.

From the cosine distribution of the “true” S follows that the internal
S hit the inner surface with a cosine distribution of current density. The
distribution of the directions of S within the solid must therefore be iso-
tropic. Thus, we have obtained an important statement which will be used
later in the theoretical part. Lastly, the group of curves measured by Jonker

ag°

F1a. 10. The energy angular distribution of secondary electrons, with normal inci-
dence of the primary beam according to J. L. H. Jonker [Phslips Research Rept. 12, 249
(19571

shows that, strictly speaking, the energy distribution of S depends on the
angle of eseape.® For this reason, the method of measuring the energy dis-
tribution of & directed beam of S gives only an approximate result for the
correct pure energy distribution.

b. Rediffused primaries. An angular distribution which is approximately
a cosine distribution was also found for the rediffused primaries (£ > 50 ev)
by Jonker, who examined a Ni target. The angular distribution remains
unchanged for all energies within the range 50 ev < E < 450 ev. With
oblique incidence of the primary beam, the distribution curves also change
very little; the curves are only slightly dented in the direction of the inci-
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dent beam. This result is important for the interpretation of the transport
process of P in the solid. Hence, the part of primaries appearing in the redif-
fusion current is distributed isotropically over all directions.

The elastically reflected P behave in a different way. They have a dis-
tinet maximum in the direction of the incident beam. Moreover, with ob-
lique incidence of P there will occur distinet peaks in the direction of the
“optically” reflected primary beam. A detailed discussion of this seems
unnecessary within the scope of this article.

8. Angular Distribution. The pure angular distribution is to be derived
from energy angular distribution by integration over the whole energy
range of S. For the range of true S of 0 < E < 50 ev, the pure angular dis-
tribution is very closely a cosine distribution, as can immediately be seen
from the above discussion on energy angular distribution.

Measurements by Jonker (19) for Ni targets confirm the result to be ex-
pected. The small deviations in the energy range 1 ev < £ < 10 ev that
may have appeared in the preceding discussion on energy angular distribu-
tion will nearly disappear in measurements of the total emission of electrons.

There is a similar result for rediffused P of the range 50 ev < F < E,°.
Their angular distribution is practically a cosine distribution. In the case
of rediffused electrons, distribution depends slightly on the angle of inci-
dence of P, but this fact is only of minor importance, considering the present
state of the discussion on that process.

It must be stated that the cosine distribution is nearly independent of
the primary energy in the range 100 ev < E,° < 450 ev and has been
measured for single crystals as well ag polycrystals.

B. Secondary Electron Yield

1. Definition. The number of external 8 produced by one P in the target
is called the “yield”. It is an important quantity of SE and has accordingly
been measured for numerous substances and under various experimental
conditions. Because of the proportionality of primary and secondary cur-
rents, the yield is usually defined as the quotient of the electron current
1; emitted by the target divided by the impinging primary electron current

1p:
5=k @

On the other hand, § is dependent on the primary electron energy Ey-
The dependence on E,° supplies the yield curve 8(E,") representing a char-
acteristic curve for each sample. Its general trend has been similar for all
substances examined. Beginning at low energies, the yield will increase with
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increasing primary energy, pass through a flat maximum 6m, and then fall
off monotonically. Figure 11 shows the typical shape of a yield curve,
recording in addition a few characteristic quantities that will be used in a
later chapter. On principle it would be possible, as we pointed out above, to
calculate the yield & defined in (1) in a complete theory of SE. Current
theories, however, always calculate a “yield” by considering the quotient
of the current 4, of true S and the current of penetrating P. If one wishes to
compare this theoretical yield with yield measurements, the latter have to
be “corrected”. As is shown by the energy distribution of the S emitted
by the target, three groups of S are to be distinguished: true S, rediffused
P, and elastically reflected P. That is to say, 1, = i, + nip + rip, if redif-
fused () and reflected (r) P are indicated as fractions of ip- When neglect-
ing the excitation of S by rediffused P, we shall obtain the following defini-
tion for yield

_5~(77+7‘) (2)

600]‘1‘ - 1 _

f
/

m
0
[ ]
m
Yo
3

0
N\

o e e b
I e o e e e

0 1000 2000
—= €5 [e]

Fia. 11. The general shape of the yield curve § (£,°).

2. Method of Measurement. In general, the measurement of the yield is
simple, particularly for metals. The P coming from one of the usual elec-
tron guns hit a plate surrounded as completely as possible by a spheriecal
collector (Fig. 12). For positive voltage at the collector, 7, can be measured
directly on the latter. With a second instrument applied to target and col-
lector combined, we can at the same time obtain ¢,, that is, the total
amount of electrons entering into the collector sphere through the dia-
phragm. Thus, we have determined the yield 6. Notwithstanding a properly
chosen geometry of the electrodes, a source of error in measurement caused
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by the occurrence of tertiary electrons has to be taken into account. These
electrons are generated by reflected and rediffused P at the inner surface
of the collector and can partly return to the target. Tertiary electrons can
effectively be suppressed by arranging a grid with a slightly negative poten-
tial (= —10 ev) before the inner surface of the collector. Besides that, such
an arrangement enables us, by properly choosing the potentials at the elec-
trodes, to separate the true S from the rediffused and reflected P, and thus
to determine the “true yield” by (2).

F1a. 12. Device to determine the yield and rediffusion coefficient of metals and
semiconductors,

In yield measurements, the targets must be prepared most carefully.
Adsorbed layers can have a strong influence on the measurements even if
they are only monomolecular layers because they alter the work function.
In order to obtain accurate yield values, one should preferably evaporate
polyerystalline layers in highest vacuum (< 10~ Torr) and use them for
measurements without delay. This procedure must certainly be given
preference to the practice of the extremely prolonged heating of the samples
that has hitherto been in use.

In the case of semiconductors and insulators, yield measurements are
made much more difficult by the existence of surface and inner charges of
the solid. These difficulties are overcome by the dynamic methods with
periodic pulses introduced by Salow (21). This procedure certainly avoids
surface charges, but it does not guarantee that inner charges are fully com-
pensated. A solution of the latter problem was attained by Johnson (22)
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by means of pulsing methods with single pulses of low current intensity.
After each measuring pulse, full compensation of the charges is effected
through a heat treatment of the sample. The technical details of the differ-
ent procedures have been described in the preceding surveys (7, 2, ), so
that we need not discuss them here any further.

8. Metals. a. Mazimum yields. During the last few years yield measure-
ments of metals have not given remarkable new results. The yield data for
metals compiled by Kollath (5) are shown in Table II.

Tasre II. Maxmvmum Yierps ¥RoM DIFrERENT METALS

Atomic  Element

number  symbol - Epn® Ey° Eoir® References
3 i 0.5 85 — — Kollathe
4 Be 0.5 200 — — Kollathe
11 Na 0.82 300 — —_ Woods?
12 Mg 0.95 300 —_— — Kollathe
13 Al 0.95 300 — — Kollaths
19 K 0.7 200 — — Kollath®
22 Ti 0.9 280 —_ — Kollathe :
26 Fe 1.3 (400) 120 1,400 Kollathe f
27 Co 1.2 (500) 200 —_ Kollaths
28 Ni 1.35 550 150 1,750 Kollathe
29 Cu 1.3 600 200 1,500 Kollathe
37 Rb 0.9 350 — — Kollaths
40 Zr 1.1 350 175 (600) Kollaths
41 Chb 1.2 375 175 1,100 Kollathe
42 Mo 1.25 375 150 1,300 Kollathe
46 Pd >1.3 >250 120 —_ Kollathe
47 Ag 1.47 800 150 >2,000 Kollathe
48 Cd 1.14 450 300 700 Kollath®
50 Sn 1.85 500 — — Kollath,* Woods®
51 Sh 1.3 600 250 2000  Kollath,® Appelts
55 Cs 0.72 400 — — Kollath,*
56 Ba 0.82 400 - — Kollath,®
73 Ta 1.3 600 250 >2,000 Kollath,s
74 W 1.35 650 250 1,500 Kollath®
78 Pt 1.5 750 350 3,000 Kollath,* Appelt?
79 Au 1.45 800 150 >2,000 Kollath,*
80 Hg 1.3 600 350 >1,200 Kollath,»
81 Tl 1.7 650 70 >1,500 Kollath,*
82 Pb 1.1 500 250 1,000 Kollath,*
83 Bi 1.5 900 80  >2,006  Kollath Appelte
90 Ta 1.1 800 — — Kollathe

¢ R. Kollath, Handbuch d. Physik 21, 232 (1956).

b J. Woods, Proc. Phys. Soc. (London) B67, 843 (1954).

©G. Appelt and O. Hachenberg, Ann. Physik, to be published.
4 G. Appelt, unpublished (1955).
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The differences between the data, given by different authors for the
respective metals (4-79,) are relatively large, considering that measure-
ments can be obtained by means of comparatively simple methods of meas-
urement. In the first line, the differences will be due to different surface
structure of the samples examined and to adsorbed surface layers. In com-
paring the yields with other properties of metals, one has to take into ac-
count the disagreement between the measured data.

Maximum yields from metals are between 0.6 and 1.7. The differences
as from metal to metal are remarkably small compared with other charac-
teristic data of metals, such as density, conductivity, or the number of
electrons per cubic centimeter, which vary over a much wider range.

Nevertheless, Table II enables us to ascertain two different groups of
metals. One group is formed by the alkalis and earth alkalis along with a
few other light elements, whose maximum yields range between 0.6 and 1.
The metals of that group are characterized at the same time by a relatively
low work function. A second group is formed by the heavy metals, whose
yields range between 1.1 and 1.7. This group includes the bulk of the other
_ metals.

l o Numerous attempts were made in the past to correlate the variation of

; yield as from metal to metal with other characteristic data of the metals
in order to obtain a clue as to which properties of metals have the predom-
inant influence on the yield. Thus, McKay (1) tried to correlate the maxi-
mum yield with the work function of metals, He found that high yields are
connected with high work functions and vice versa. This qualitative rela-
tion between work function and yield seems somewhat surprising. Obvi-
ously, one has to suppose that a complicated relation is hidden behind this
connection.

Bruining (2) compared the maximum yields with the density of metals
and found a loose connection such that the yield will increase with density.
Finally, Sternglass (23) correlated the maximum yield with the position of
the metals within the periodic system of elements. The yield rises in each
horizontal line from the alkalis to the multivalent metals. Certainly a
greater importance must be attributed to this remarkable relation.

b. Shape of yield curves. The dependence of the vield on primary energy
is similar for all metals. Baroody (24) made this similarity particularly
conspicuous by normalizing the curves for different metals in such a way
that he plotted 3/, against Eo°/Em’ as abscissa. Presented in this form,
the curves for the different metals lie in a narrow range, so that the presen-
tation might be called a universal yield curve for metals (Fig. 13). Together
with Table II, it permits a sufficient characterization of the yield curve of
metals,

A few remarks have still to be made concerning the shape of the curve
for low and very high primary energy. With respect to low primary energy,
investigations made by Shulman and Myakinin (25) and those by Harrower
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Fia. 13. Normalized yield for different metals according to R, Kollath [Handbuch d.
Physik 21, 232 (1956)]. Open circles mean corrected yields with respect to rediffused P.
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C (10) must be mentioned. In both studies true S are separated from reflected

! P by means of the energy distribution curve. True S are shown to oceur only
above FE,° ~ 4-7 ev. From then on their number rises monotonically
‘ with E,°. Above E,° = 20 ev, the form of the spectrum of true S remains
invariant.
L For high primary energies (,° > 10,000 ev) the electrons released from
g the sample increasingly contain rediffused P. The share of true S is rather
small. According to Trump and van de Graaff (26), it decreases to 0.12 for
W and to 0.025 for C at 300 kev. As was shown by Palluel (27) and Holliday
and Sternglass (28) the number of rediffused P depends on the atomic
number of the sample. As rediffused P passing through the surface layer

; will also excite S, the true S, at high primary energy, & will contain a part
‘ which is equally dependent on the atomic number,

4. Semiconductors and Insulators. a. Mazimum yields. If we exclude

: the extremely high yields occasionally found which are possibly caused by
; field-enchanced emission, we can define the range of maximum yields as
approximately

1<6,<20

i 5 At the lower limit of this range we have the well-known semiconductive
' o elements Ge, Si, Se, and also the typical semiconductors Cu,O and PbS;
quartz, mica, or CdS have a somewhat higher yield, and the same can be
‘ Lk said of glasses. Substances with high yields include intermetallic com-
g 5 pounds of the types A;By and A;Byy. The highest yields are found for alkali
prid halides, alkali oxides, and alkali earth oxides. Because of their high yield
and their resistivity against electron bombardment, the latter have become
especially important for technical purposes. In the forming process, various
alloys such as AlMg, AgMg, CuBe, NiBe, and others apparently produce
MgO or BeO spots or layers at the surface, which are responsible for the
high yields (5). A survey of the values §,, and E,° measured for the mosb
important substances is given in Table IIT.

The differences between the data shown in Table III for the same sub-
stances are extraordinarily great. On the one hand, you can find diver-
gences caused by the use of different methods of measurement. So meas-
urements made on insulators can be strongly influenced by fields existing
within the substances (29), and the data, obtained with the new method of
single pulses of low current intensity doubtlessly must be preferred to those
obtained with earlier methods. On the other hand, the yield of substances
with a high yield depends in a remarkable degree on the individual proper-
ties of the sample examined, such as crystal state, lattice imperfections, or
surface structure. According to Bruining and de Boer (80) and to Knoll,
Hachenberg, and Randmer (81), slight electron bombardment during the
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measurements is sufficient to decrease the yield of KCl permanently,
Studying NaCl crystals, Shulman (82) found that a crystal polished with
water has a maximum yield of &, = 8, while immediately after splitting
the yield is 13 — 16. From previous experience with crystalline insulators
one is tempted to regard the higher values as representative for pure
crystals.

b. Shape of yield curves. The shape of 8(E,°) from semiconductors and
insulators is roughly similar to that of metals. The yield first increases
with increasing primary energy, then passes through a flat maximum, and
decreases again with high primary energy. Generally, it can be stated that
E.»° is high for substances with high maximum yields. The maximum can
move up to 1,500 ev. If one tries, however, to represent all the curves that
have been obtained from insulators by a universal curve, one finds for
Ey* > E,n° a stronger divergence for the curves of different substances
than it was the case with metals. (14).

¢. Qualitative interpretation. Measurements by the pulse method with a
very low current intensity generally show the same high yields as earlier
measurements with static methods. The results can be regarded as a further
confirmation that high yields must be attributed to the substances them-
selves and that they are not caused by field-enhanced emission within the
layer.

Which of the fundamental properties of semiconductors and insulators
are responsible for the greater variation range of the yield cannot be made
out with certainty for all cases. At least we have certain ideas based on the
energy band model of the solids, and they proved to be useful.

The basic feature characterizing a semiconductor is the position of
optical lattice absorption within the spectrum. From it we find the amount
of energy necessary to raise an electron from the highest occupied level into
the next higher excited state. Since, with rare exceptions, the first excited
level lies in the conduction band, we are used to identify this energy with
the distance of the conduction band from the valence band in the band
model of semiconductors.

This energy plus the energy difference between vacuum level and t}.le
bottom of the conduction band is therefore necessary to produce one S in
the solid. Now the observed high yields of substances with great energy
8ap are probably not caused by an increased source density of the S pro-
duced, since it may be assumed that because of the increased energy gap
the excitation rate of S will decrease.

The high yields therefore must be due to an increase of the depth ?f
escape. The following mechanism for energy loss of § may play a role in
insulators: (1) electron-phonon interaction, (2) interaction with valence
electrons, if the excitation energy of 8 in the upper band is greater than the
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‘ TaeLe ITI. Maxivom YIELDS FROM SEMICONDUCTORS AND INsULATORS
Group Substance 8 Epm® References
Semiconductive  Ge (single erystal) 1.2-1.4 400 a,b,c,d
CE elements Si (single crystal) 1.1 250 a
f Se (amorphous) 1.3 400 ce
" Se (crystal) 1.35-1.40 400 c,e
C (diamond) 2.8 750 b
C (graphite) 1 250 g,h
B 1.2 150 a
; Semiconduetive Cu0 1.19-1.25 400 %]
j compounds Pbs 1.2 500 k
] MoS: 1.10 i
MoO, 1.09-1.33 1
; WS 0.96-1.04 7
x Ag0 0.98-1.18 l
ZnS 1.8 350 m
Intermetallic SbCss 5-6.4 700 7,0,p
compounds SbCs 1.9 550 n
BiCs: 6-7 1,000 n
Bi;,Cs 1.9 1,000 n
GeCs 7 700 d
Rb:Sb 7.1 450 q
Insulators LiF (evaporated layer) 5.6 i
NaF (layer) 5.7 i
NaCl (layer) 6-6.8 600 %78
NaCl (single crystal) 14 1,200 o,z
NaBr (layer) 6.2-6.5 z
NaBr (single crystal) 24 1,800 Y
NaJ (layer) 5.5 i
KClI (layer) 7.5 1,200 1,2
KClI (single erystal) 12 v’
KJ (layer) 5.5 i
KJ (single erystal) 10.5 1,600 w
RbCI (layer) 5.8 i
KBr (single crystal) 12-14.7 1,800 w,a’
BeO 3.4 2,000 v
MgO (layer) 4 400 i’
MgO (single crystal) 23 1,200 d'e’
BaO (layer) 4.8 400 bl
BaO—S8rO (layer) 5-12 1,400 g
ALO; (layer) 1.5-9 350-1,300 &b,
8i0; (quartz) 2.4 400 h'se

Mica 2.4 300-384 L4
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Glasses Technical glasses 2-3 300420 s
Pyrex 2.3 340400 8,8’
Quartz-glass 2.9 420 s,h’

(193¢).
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energy gap, and finally (3) interaction with lattice defects. In the case of

insulators with great energy gap, mechanism (2) is of no importance. In f
the case of metals, mechanisms (1) and (3) are less effective than the inter- "
action with free electrons, which is responsible for the relatively low yields

of metals.

5. Temperature Dependence. a. General considerations. The above con-
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clusions can be proved by the examination of the temperature~-dependence
of the yield. Of course, we must confine ourselves to phenomena connected
with reversible variations of the yield. Those variations which evidently
originate from variations of adsorbed surface layers or are connected with
permanent changes of the crystal are not taken into consideration. Since
interaction processes between excited S and the various components of the
solid have a direct effect on the range of S and hence on the yield, a certain
classification of the phenomena in the case of semiconductors and insulators
could be made (cf. Hachenberg, 33). Obviously, solids can be classified by
the following groups:

L. In crystalline solids with great energy gap and relatively few lattice
defects, interaction of S with lattice vibrations is predominant. The range
of S, and hence the yield, becomes temperature-dependent. They must
decrease with rising temperature.

2. If in solids the number of free electrons in the conduction band is
sufficiently high, the interaction of S with lattice vibrations is overshadowed
by interaction with free electrons.

3. In the case of a small energy gap, interactions of S with electrons of
the valence band become most important; semiconductors of this group
will behave in a similar manner as metals.

4. Finally, in a solid with considerable disorder, in extreme cases in an
amorphous solid, the range of S will no longer depend on interaction with
lattice vibrations; solids of this kind should not show any dependence of
the yield on temperature.

b. Experimental results. For metals, where measurements can be carried
out with some ease, the result of recent investigations is rather unequivocal.
The yield is constant in the whole temperature range measured. Morotsov
(84) and Wooldridge (35, 36) found that the temperature coefficient of the
yield is smaller than the temperature coefficient of linear extension. Blank-
enfeld (87) too, found no variations > 1% for Ni in the temperature range
from 20° to 400° C. Only Sternglass (38) found a temperature dependence,
Wwhich, however, may be due to adsorption layers at the surface in particu-
lar, since he did not use a tube that could be subjected to heat treatment.

Of greater interest for our discussion are the results obtained from
semiconductors and insulators. For Ge, Johnson and McKay (39) found a
continuous decrease by 5% in a temperature range of 20° to 600° C. In
spite of different donations with activators, the decrease remained the same
for all samples.

Ge has diamond structure; the energy gap between valence band and
conduction band is 0.78 ev, the electron affinity is nearly 4.4 ev. A rise in
temperature mentioned above is combined with an increase in the number
of conduction electrons for pure Ge samples, e.g., from 6 X 10" per cm?
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to 7 X 10" electrons per cm?; since, on the other hand, for samples doped
with Ga and Sb the density of conduction electrons rises from 3.4 X 10
to 3.5 X 108 electrons per cm?, the very different changes in the density
of conduction electrons could not have effected the observed change in the
yield that is the same in all cases. It is to be supposed, therefore, that the
yield is largely independent of the density of conduction electrons in the
conduction band for electron densities < 10 per em®. The diffusion of S is
mainly determined by interaction with valence electrons and partly by
interaction with lattice vibrations, as is proved by the small temperature
effect. Thus Ge belongs to those solids which are characterized by group 3.

Arranging intermetallic compounds of types A;jBy and AyBry into the
above groups presents more difficulties. Cs,Sbh layers were examined by
Appelt and Hachenberg (14) and CsGe layers by Appelt (18) as to the
dependence of the yield on temperature. As both types of layers are very
unstable compounds that are subject to changes under the influence of
temperature, measurements can be made only under great precautions.
Nevertheless, it was possible also in these cases to prove a real dependence
of the yield on temperature in a range of —30° to ++70° C. The energy
gap in the case of Cs;Sb amounts to 1.2 ev. The layers apparently take up
a surplus of Cs atoms into the lattice. Thus, the diffusion of S will largely
depend on interaction with valence electrons and lattice imperfections and
only to a lesser degree on interaction with lattice vibrations.

Glasslike insulators must be regarded as solids with a high degree of dis-
order. As these absorb only in the far ultraviolet, interaction with valence
electrons is rather improbable. Thus, the mobility of S is predominantly
determined by the degree of disorder. Measurements on Pyrex glass by
Mueller (40), on technical glasses by Blankenfeld (37) and by Shulman,
Makedonsky, and Yaroshetsky (47), and on quartz glass by Kriiger (42)
agree in showing no dependence of the yield on temperature, so that this
group of substances has obviously to be arranged under group 4.

A marked dependence of the yield on temperature is to be expected for
alkali halide single crystals as well as alkaline earth oxide crystals. Result-
ing from the great energy gap (=10 ev) and the relatively small amount of
lattice imperfections in such crystals, excited electrons can spread in the
conduction band over relatively wide ranges; the latter are predominantly
limited by interaction with lattice vibrations. With rising temperature, the
number of lattice vibrations increases nearly proportional to T, and the
range decreases correspondingly. Now if the range of P is smaller than or
similar to that of 8, variation of the depth of escape has no remarkable
influence on the yield. On the other hand, the yield must decrease in pro-
portion with the depth of escape for primary energies E,° > Eopm’-

A first estimation of the range of the S was attempted by Hachenberg
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(83); he found a dependence of the depth of escape as proportional to 1/T'.
An improved investigation of the diffusion process was carried out by
Dekker (43, 44) who found a dependence of the depth of escape d, that can
be approximately described by

dy ~ T

Thus, it has become highly important in yield measurements to deter-
mine exactly the dependence of the yield on temperature in the range
E° > E,.°.

Knoll, Hachenberg, and Randmer (31) determined the temperature-
dependence of the yield by a static method for evaporated layers of KCl
and found & ~ T Today it is clear that such measurements should be
carried out only with good single crystals having a perfect surface and only
by means of a pulse method with the lowest possible current intensity. A
surface altered by polishing or corrosion is capable to blot out the whole
temperature effect of the yield, as was shown by Shulman (32). Measure-
ments satisfying the above demands were carried out by Johnson and
MecKay (45) for MgO crystals. For E,° = 2000 ev, they found &,/8, = 0.78
for Ty = 1013° K and T. = 298° K, which approaches the law § ~ T,
For KCl, KI, and KBr, Shulman and Dementyev (15) found a tempera-
ture dependence of the yield between 0° and 300° C, which can also be
described by the relation proposed by Dekker. Strikingly high yields and
also marked temperature dependence was found by Matskevich (46) for
4 special NaBr sample. For T, = 300° K and 77 = 600° K, he obtained
81/8; = 0.4, while 0.72 would have to be expected according to the relation
broposed by Dekker. The observed variation approximately corresponds
Wwith a law § ~ T-12, Finally, Petzel (47) made a series of measurements on
KCl and KBr; Fig. 15 gives the yield curves for KBr and Fig. 16 shows In
8 for six different values of E,° plotted against In 7' in the case of KCI. For
E,° > 4 kev, the measurements satisfy the T™% law. While the stronger
dependence on temperature found by some authors may be attributed to
& secondary effect—possibly to field-enhanced emission, which decreases
when temperature rises—there are, on the other hand, samples with sur-
face imperfections showing too little influence of temperature. Neverthe-
less, the experimental results obtained up to date may be regarded as a
confirmation of the ideas developed.

To conclude with, let us point out that the shape of yield curves also
shows a dependence on temperature. Particularly the position of the maxi-
mum shifts to lower values with rising temperature. As shown in Fig. 15
for KBr, the maximum shifts from 1,600 to 1,300 ev at a temperature
variation from 35° to 300° C, which indicates a decrease of depth of escape
of S,
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6. Influence of Work Function on Yield. The influence of the potential
barrier at the surface on yield is fully ascertainable. From measurements
by Jonker we know that the angular distribution of internal S in a solid is
isotropic; the electron current density impinging on the surface from the
inside, therefore, has a cosine distribution. If, in addition, the energy dis-
tribution of the internal electrons is known the influence of the potential
barrier can be stated explicitly (cf. Sec. IV,E).

| | ] | |
300 400 500 600 700
—= T(°K)

w

Fia. 18. Variation®of yield of a KCl single crystal target with temperature at different
values of E,°. Curve A ~ 7%, Curve B: ~{2exp.(hv/kT) — 1}-1 + 1} =63
X 102 eps). [B. Petzel, Thesis, Dresden (1958)].

For an experimental examination of the influence of work funection, a
metallic target whose work function is known is covered with a very thin—
Say, monomolecular—layer of another metal. This layer is supposed to
have 5 negligibly small part in the produetion of S, but it will alter the work
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function of the target to & measurable extent. An alteration of SE yield
will then have to be attributed to the alteration of work function.

Sixtus (48) was the first to carry out such yield measurements for 5 W
target covered with Th layers of different thickness. The Th layers reduced
work-function from 4.52 t0 3.3 ev and 2.6 ev; at the same time, maximum
yield increased from 1.8 to 2.0 and 2.2. Thus, lower work function results
in higher yield.

A number of other authors studied the dependence of yield on work-
function in a similar manner. We confine ourselves to mentioning the meas-
urements of Treloar (49), who found a decrease in yield for an oxidized W
layer as against the pure W target from &, = 1.31 to 8; = 1.06 while the
work function increased from 4.52 ev to 6.3 ev.

The influence of the work function on secondary emission is obviously
very small if compared with its extraordinary effect on thermal and photo-
electric emission.

With use of the yield formula, (67) (Sec. IV,E2), we can calculate the
influence of variation of work function on the yield. As result, one obtainsg
(Er = 5 ev) for d3/8; the value 0.72, whereas we find from Treloar’s experi-
mental values 8,/8, = 0.81. This result is nearly the same as that obtained
by Baroody (24).

The influence of work function on the yield measurements is certainly
manifold, though it has not always been possible to distinguish it clearly
from other factors.

It is known that yields from different crystal faces of a solid are marked
by small differences. Knoll and Theile (60) succeeded in making these dif-
ferences visible by depicting crystalline layers by means of 8. The differ-
ences in work function of different crystal planes are sufficient to account
for the observed differences in yield,

In the majority of yield measurements, the surface of the targets to be
measured is affected with adsorbed layers that are more or less unknown.
These exert a certain influence on the measurements by altering the work
function. Part of the disagreement between the yield values stated by dif-
ferent authors has certainly been caused in this way.

7. Miscellaneous Problems. q. Oblique incidence of primaries. So far per-
pendicular incidence has been considered exclusively. Oblique incidence
of the primary beam results in an increase of the yield with increasing angle
of incidence. This derendence on the angle of incidence, however, becomes
noticeable for primary energies ES° > E..° only. Bruining (cf. ref. 2) was

able to represent the dependence of the yield on the angle of incidence by
the relation

In (%9) = const (1 — ecos O)
0,
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In order to understand this effect, it must be taken into account, that
according to Jonker (20) the distribution of § is nearly isotropic and inde-
pendent of the angle of incidence of the primary beam. It therefore seems
improbable that an anisotropy of excitation, which might exist, should be
responsible for the increase of the yield.

It is a change in the spatial distribution of P i the solid resulting in an
increased source density of S which is effected by oblique incidence.

Since the spatial distribution of P is strongly dependent on the diffusion
process of the primary beam, there must be different effects of its straggling.
For weak diffusion, that is in the ease of the primary beam taking a nearly
Iinear path, the range perpendicular to the surface of the target decreases
with cos ©; the source density of S in the layer near the surface increases
accordingly. For strong diffusion, the influence of the direction of incidence
on the distribution of P decreases. A corresponding decrease of the depend-
ence of the yield on the angle of incidence from the light elements to the
heavy elements can be observed in the measurements that have as yet
been made.

b. Depth of origin of secondaries. Because of their interactions with the
electrons and phonons in the solid, the S released within the target have
only a limited range d,. Only those electrons can contribute to the yield
which on arrival at the surface still have sufficient energy to overcome the
surface barrier. Only the electrons excited in a certain surface layer of thick-
ness d, are able to escape.

Experiments on the dependence of the yield on the thickness of layers
resulted in distinet saturation values above a certain thickness. These
values of the thickness of the layers are to be regarded as the maximum
depths of origin of S. The depth of origin obtained in this way is independ-
ent of the primary energy—as was first proved by Djatlowitskaja (51)—
and depends only on the respective material of the target.

Values of about 100 A were found for metals, KClI rendered a value of
about 500 A (62), in qualitative accordance with the above ideas on the
transport, process in SE.

¢. Tme constant. So far we have exclusively considered the stationary
Process of SE. If a target is exposed to a rectangular pulse of P, the yield
of SE reaches its full value only after a certain length of time from the
beginning of the pulse. This building-up process can be described by the : !
time constant of SE. f f

The time constant is extraordinarily small. Therefore, it has not yet
been possible to determine it by way of experimental measurements. The
experiments that have so far been made result only in an upper limit for
its value,

On the one hand, various indirect methods have been used to determine ¢
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the time constant. Attempts have been made to conclude its value from
measurements with dynatrons, or to determine its value by means of the
upper limit of the working range of clystrons the reflector of which had
been replaced by an SE electrode. Also high-frequency multiplyers have
been used for this purpose. The obtained result is that the time constant
must have a value smaller than 1 X 10~ sec.

The only direct method to determine its value was used by Greenblatt
(68). By deflecting back and forth an electron beam across a narrow slit
with a frequency of 400 me, he produced primary pulses of a duration of
6 X 107" sec. The S pulses released by these pulses he analyzed as to their
deformation. The measured broadening of the S pulse of 7 X 10~ sec has
to be attributed to the time the electrons pass through the deflecting
mechanism, so that the time constant of SE itself must certainly be smaller
than 7 X 10~ gec.

For the time being, an evaluation of this quantity must be left to
theoretical discussion (cf. 1v,G2).

C. The Interaction of Primary Electrons with Solids

Though P are more or less only carriers of the energy needed for the
excitation of S, their behavior within the solid is nevertheless of funda-
mental importance for the whole proeess, even decisive with regard to
some particular problems; therefore, the behavior of P in solids will be dis-
cussed in more detail than is usual in most special studies on SE.

1. The Paths of Primaries. We can get a first idea about the paths of
P from the investigation of electrons passing through thin films. When a
parallel electron beam strikes a thin layer perpendicularly, it is both stopped
and scattered. First let us consider the scattering process. Except the few
cases when electron waves are refracted at the lattice of the layer, the direc-
tions of motion of the electrons after passing through appear in a continu-
ous distribution around the direction of incidence. This distribution
depends on the thickness, the substance of the layer, and the velocity of
the electrons.

We obtain a good insight into the Scattering process by comparison
with observations made on the paths of electrons in the Wilson chamber.
On entrance into the layer, the electron beam is dispersed in the same or
even a higher degree than on entrance into the gas of the Wilson chamber
(Fig. 17). The electron beam transmits jis energy into an almost semi-
spherical range around the point of incidence. Part of the P runs counter
to the original beam. This is due to scattering events with scattering angles
> 90° and coupling of several moderate angle scatterings adding up to
deflections of the electron beam paths > 90°,

The excitation in every layer consists of two components, one being
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effected by the direct beam, the other by the rediffused beam. It is neces-
sary to know both components if one wishes to obtain accurate information
on the souree function of S. ,

2. Rediffusion. The eurrent of rediffused P cannot be measured in the
solid itself. As we stated above, it is possible outside the solid to separate
true S with sufficient accuracy from reflected and rediffused P by means
of & retarding potential of about 50 ev.

For thin layers, the part of rediffused electrons was determined by its
dependence on the thickness of the layer. This part increases with the thick-
ness of the layer and arrives at a maximum. The thickness at which the
maximum is reached is called “rediffusion range.”

i

FIG. 17. Path of 40-key electrons in the Wilson chamber at normal pressure.

Rediffusion range and rediffusion coefficient 5 still depend on the angle
of incidence of the P, and, of course, on their energy.

For the energy range of P with normal ineidénce that we are only eon-
cerned with here, 5 has recently been measured by Palluel (27) and by
Holliday and Sternglass (28). Figure 18 indicates 4 plotted against primary
energy for a number of metals. 4 approaches an upper limit between 0.05
and 0.5 with increasing primary energy. For all metals, the curves rise
starting from low énergies up to about 15 kev.

For a number of insulators, Matskevich (54) earried out measurements
by a pulse method and found similar results.

The relation between the upper limit of n, say at 8 primary energy of
20 kev, and the atomic number of metals becomes apparent from Fig. 16,

o
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Fig. 19. Upper limit of rediffusion coeffcient n of different metals plotted against the
atomie number.

First the rediffusion coefficient rises linearly with Z; for Z > 30, however,
one finds a minor increase of the coefficient. In the case of the heaviest
metals, it approaches the limit 0.5. The deviation of the single dots from
the curve is remarkably small, so that rediffusion is mainly dependent on
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the atomic number, while the other characteristic quantities of atoms are
of minor importance for rediffusion. The value of 4 = 0.5 for the heaviest
metals indicates that in this case the electrons of the beam are distributed
isotropically before they are absorbed to any relevant degree. If a normally
incident electron beam is totally diffused without considerable absorption,
half the incident electrons should eventually be re-emitted.

For light elements, on the other hand, diffusion of the beam seems to
play a minor role in comparison with absorption. The beam is weakened,
and the P have lost a great amount of their energy before any diffusion
worth mentioning takes place. The energy distribution curve of rediffused
eleetrons runs nearly horizontal. Just below primary energy, the continuum
is superposed by single sharp peaks indicating that a P on penetration into
the solid undergoes single discrete losses of energy. In these cases, electrons
have either raised crystal electrons from deeper levels into the conduction
band or have eventually excited plasma oscillations.

Moreover, Harrower (8) found slight maxima in the range 50 ev < E
< 250 ev; they could be interpreted as Auger electrons.

3. Energy Loss of Primaries. a. Elementary processes. It is obvious that
it must be of great use for a theoretical treatment of the subject to know
the elementary processes effecting the loss of energy of P. We found evi-
dence of the elementary processes in the energy distribution of a primary
beam after passing through a thin film.

The energy distribution of the P on the exit side indicates three different
processes:

1. An electron beam after passing through a thin film has mainly a
continuous energy distribution, which practically begins shortly below the
primary energy. It originates apparently from the excitation of electrons
of the outer shells of the atoms, which in the case of metals are raised to
the unoccupied levels closely above the Fermi surface. As the excited elec-
trons are probably distributed in an energy range of = 15 ev above the
Fermi level, the spectrum is smeared out, so that it is not possible to dis-
tinguish single transitions between energy bands with an energy difference
< 10 ev. In particular, we cannot distinguish the transitions occurring
within the conduction band from transitions from the next occupied band.
However, the energy distribution is continuous in a much wider range,
80 that it must be concluded that the excitation of outer electrons must
overshadow the excitations from deeper levels.

Excitations from deeper atomic shells are slightly indicated in the spec-
trum by Auger electrons. Obviously we may suppose that the number of
these transitions is small.

2. A further mechanism of energy loss is to be attributed to the excita-
tion of plasma oscillations. These transitions are observed as a series of
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sharp maxima shortly below the primary energy with the same energetic
distance (55).

The corresponding loss of energy per centimeter, too, seems obviously
small in most cases as compared with the excitation of single electrons.

b. The stopping-power law. The excitation processes by the P taken
together determine the average loss of energy —dE,/dz per unit path length
and define the range R of the electrons in the solid.
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F1a. 20. Practical range R for electrons in aluminum [J. R. Young, J. Appl. Phys. 2T,
1 (1956)]. (a) B = 0.042E,°13, (b) R = 0.0093E,°2,

In earlier studies, the range R was preferably measured by means of
fast electrons, and a quadratic dependence on E,°~—+the Whiddington law—
was found. This was oceasionally adopted also for electrons with 100 ev
< E;° < 10,000 ev and was introduced into semiempirical theories of SE.

In more recent experimental investigations, the stopping-power law
was measured for the range of primary energy mentioned above. Young
(66) studied the penetration of P in Al for 0.5 kev < E,° < 11 kev. His
results are represented in Fig. 20. For E,° > 8.5 kev, he confirmed the

Whiddington law; for E,° < 8.5 kev, he found
R~ E,S 18
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and thus clearly proved that the Whiddington law is not valid in the range
we are primarily concerned with.

Analogous measurements on AlQ; films carried out by Young (67)
brought very similar results. The law of the rate of energy loss was here
for 0.3 kev < E,° < 7.25 kev .

R = 0.0115E,°%% (R in mg/em?, E,° in kev)

Lane and Zaffarano (68) also investigating Al:O; found an exponent
1.66.

Therefore, the Whiddington law must be replaced by another law with
a smaller exponent of about 1.5 for the range that we are interested in.

¢. The energy loss of the prémary electron beam. As a result of the diffusion
of the electron beam, the differential energy loss to be derived from the

stopping power law is not identical with the energy (%) dx dissipated

in the layer of thickness dz. This quantity is important for the derivation of
the source function of 8 in the solid. In order to obtain knowledge of this
quantity, we need the energy distribution and the number of electrons that
have passed through thin films of different thickness. Young (59) carried
out such measurements on Al,O; films and determined the respective energy
losses of the electron beam dependent on the thickness of the layers. The
average energy loss dW/dz remains practically constant over the entire
penetration depth.

4. Spatial Source Distribution of Secondary Electrons. The spatial dis-
tribution of the sources of S in a solid during continuous bombardment with
P has not yet been paid special attention, as far as we know, though it is
of utmost importance for the problem of SE.

An experimental determination of the source funetion cannot, however,
be achieved directly, for it is impossible to measure directly the electrons
excited per second in a volume element of the solid. It is only possible to
determine the loss of energy of the primary beam in a layer at the depth =
and then to assume that a constant fraction of this amount of energy is
employed for the production of S.

Perhaps one can proceed in the following way: We imagine the solid as
cut at a plane denoted by the coordinate . First one has to measure the
primary beam flowing at the separation surface towards points T > o,
then the current of rediffused electrons coming from the range x > o has
to be defined. Both currents combined make up the flow of energy at the
point z,. Then the same procedure has to be repeated for a point z; the
difference of both numbers denotes the amount of energy absorbed in the
layer z; — z,.

Exact measurements of both fractions (fraction of incident P and
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rediffused fraction) at separation surfaces of the sample have not yet been
made. On the other hand, the electron beam as well as the energy loss of
electrons has often been measured for beams passing through thin films.
More recent measurements with electrons of E,° = 2.5 — 10 kev, carried
out by Young (59) for AL,O, films, determine the fraction of energy of the
primary beam absorbed in films of different thickness. Now AlLO; has a
relatively small fraction of re-diffused electrons, the rediffusion coefficient
being 5 =~ 0.12, so that the fraction of rediffused electrons can be regarded
as & correction. If one differentiates the curve measured by Young and
adds the fraction resulting from rediffusion, we obtain the energy absorbed

in a layer of definite thickness which may be regarded as a measure for the
source density of the S.
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Fia. 21. Dissipated energy in dependence of the space coordinate.

The source functions for three different primary energies are plotted in
Fig. 21. At about one-third of the maximum range of the electron beam,
the curves have a flat maximum, which moves toward the surface if rediffu-
sion becomes more important. The curves end at the limit range of the elec-
tron beam; the surface enclosed is proportional to the energy of the primary
beam.

A similar result had been obtained earlier by Hachenberg (60) from
KC1 single erystals. If one supposes that the production of color centers
in erystals under electron bombardment takes place proportional to the
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energy dissipated per volume element by the electron beam, one can obtain
the source function directly by photometrization. KCI single crystals were
bombarded with 60 and 90 kev electrons ; then the crystals were sliced per-
pendicularly to the bombarded surface and photometrized photographi-
cally. The resulting coloration curves (Fig. 22) were much the same as those
shown in Fig. 21. In this way it was possible to obtain the approximate
dependence of the source function on the depth in the solid; yet a question
that is important for the theory, namely how much of the energy absorbed
is used for the excitation of 8§, has still to be answered.

H I L I i
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F1e. 22. Coloration of KCI single erystals after bombarding with 60-kev and 90-kev
electrons [0, Hachenberg, unpublished).

IV. Tueory or SEcONDARY EMissiox

A. Interaction between a Free Electron and a Bloch Eleciron

1. General Formulas. All calculations on the phenomena resulting from
interaction between a relatively fast electron and an electron of the solid
(energy loss of P, excitation of S) start from the quantum-mechanical
formula for the transition probability per second into the interval da:

Py oo (e, .. e ... = 2%[(01, v JHlao . V(B - . .
—Eep .. Yda . .. (3)

where the quantum numbers ag . . . , respectively, a« . . . denote the sta-
tionary initial and final states of the unperturbed system, which is charac-
terized by a Hamiltonian H, . H,, denotes the perturbation operator induc-
ing the transitions. Let us orthonormalize all oceurring wave functions to
a periodicity volume V. Then
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1 e'E,R)

are the wave functions of the free particle with energy
B, =L g
2 2m
For the corresponding functions of the Bloch electron we have
1 A
Ya(r) = Wi ux(T)e'®™", F = E(k) (4)
with
ﬂ e [T = 1, k(x4 @) = un(r)
where G is an arbitrary lattice vector. The vector k is regarded as a wave

vector in the extended zone scheme. Thus, we can write for the matrix
element in (3):

2
(&' K'|H,[kK) = 71—2 /Viﬁk'*xbkI—RLO_?[e"‘ln—r‘e"("—x"md“’rda*R

where the screened Coulomb potential is taken for the interaction operator
H.,. If necessary, we may use the pure Coulomb potential with A = 0.
Integration over R can be carried out without difficulty, so that

O RVLIGE) = s | wneonang = K - &

If we further define (61)
I= [ herpeiandr
then the transition probability per second becomes

4
Pig (k' K’) = W,% T26(Bex — Eiemr) ®)

. Because of the boundary conditions used, all occurring wave vectors range

over discrete values. From (4) it may be seen (62) that the integral I can
be written as :

[ = Z SE-K+aG) . ] ] - e A gor
o olo unit cellil’kl L

If N is the number of atoms in V, then it follows from the periodic
boundary condition that
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2, FEK+q,G) NE v kgt E
aQ(7) H

H denotes the vectors in the reciprocal lattice derived from the crystal
Iattice vectors G by the relation

(G, H) = integer.

So we see (68) that a finite transition probability for the process kK — k'K’
exists only in the case of conservation of quasi momentum, i.e., if

k' =k+ q+ 2:H (6)

Then the integral I can be written:
I'=N E Ok t+q+2.810
H

If we define the “form factor” F as

F = [lnit cell U * Uiy e’ E TAT) gap )
then
. N
I=n E Ox k+qt2-mF with n = v (8)
H

An evaluation of F requires the explicit form of the Bloch wave functions
Yx(r), which is not known in general. Generally, however, we can state that
n any case |F| < [lul?d’r = 1/n, that is to say, 1/n represents an upper
limit for 7.

2. H = 0 processes. If we first consider the transitions corresponding
H = 0 according to (6), we see that for ¢ — 0 the form factor F tends
toward

/ | = : ©)
unit

Le., toward its upper limit. Because of the ¢~* in (5), the processes with
small g play a particularly important role. By (7) F possesses the same value
(9) in H = 0 processes for all q, if we make the additional assumption that
the crystal electron is entirely free, i.e., that ux(r) = 1. The reader will
observe that H = 0 follows necessarily from this assumption, but not vice
versa. Of course, H = 0 processes do not necessarily correspond to an inter-
action with free crystal electrons. In H = 0 processes we shall later replace
F by the approximation (9).

3. H = 0 processes. A corresponding discussion of the form factor for
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H > 0 processes is far more difficult. As we mentioned above, the function
ux(T) is by no means a constant. Moreover, for H 5 0 processes, F' differs
essentially at the limit of very small q from its corresponding behavior
for H = 0 processes. In that case, the integral (7) tends to

*, i(k—k’,r) 33 7 __
A it oen i UkE drk’ =k 4 2:H

Because of the orthogonality of eigenfunctions belonging to different eigen-
values, this becomes equal to zero (64).

In order to examine the behavior of 7 in the neighborhood of g = 0, it
is convenient to expand it into a Taylor series about this point:

) 1 2
@ =0+ ) Xy 1Y 6%;( 0w+ .
1 0 ]

Ly

=FOLFOLFO 4 | = FO L FO L .. (10)

In order to obtain F®, F can exactly be transformed into the following
expression (65):

_m (e, AH k' k) a1
mi Abien: — (h2/2m)(q,q + 2k)
where (62)
AMEKK) = [ u* grad uge—2m B0 gy (12)
and
AByx = Ek') — E(k)
Taking

ek, H) = ABx omx
we obtain from (11) without difficulty (62)

h2

FO = (0,Ak + 27HK)) (13)
Since e(k,0) = 0, it is evident that an expansion of F by (11) is essentially
based on the assumption H 0. Of course, the “linear approximation”
F = FO for the form factor F is only valid for sufficiently small q, i.e.,
only as long as, say, |[F®| < [F®|. Tn order to realize the meaning of this
relation, we must express A(H;k’ k) in terms of certain explicit functions.
If, for instance, we choose the “nearly free approximation”

1
e = of(kT) __m L : A i (BT, )}
Yilr) = 7 el {1 s EZO &H) Fame
FE
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with the energy
2
BK) = {;—1 =

we find by an easy calculation 65):

0 ©

— 1)H 27rk2 o 1 [ J— n
F‘“(k,H)+7rH22<‘ m) o @B ‘EF” (14)
1

= n=1

For estimating in what cases F® may be neglected with respect to Fo
we must remember that (5) depends quadratically on F. It can be seen to
be necessary for this purpose that

2|IF®| < |FO|
or using (14)

hz
4 |@H,Q)| < e (15)

This inequality for the loss of momentum d suffered by the P (66) can be
transformed by means of the specialization q|[H, q = Qo into a condition
necessary for (15):

2
4 % TH gin << € (16)

where Qui, is the minimum d vector for a given initial state (k,K) and
fixed H < 0 It is easy to prove (Fig. 23) that

27 . (Kk + 27H)
doin = T 10 H) + k)1 — (kA 2ED | an)

neglecting terms of higher order in 1 /K. As long as
[(K.k + 27H)| « K2 (18)

the last factor in (17) may be neglected; thus (using the approximation
E(k) = (h2/2m)k2), we obtain

m

2 L
Gmin = er [(k,H) + »HY] = (’2) CE% (19)
It is easy to see that (18) is satisfed if

Ep2102%(kp+21112z3><10“ev

In the same way we obtain from (16) and (19)
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2
E,>10°-8 % (rHY? (20)

For the smallest H #£ 0, we can take wH = 1A-1 approximately. Then it
follows from (20)

E, 25 X 10 ev

as a necessary condition for the linear approximation (13) to hold in the
case of nearly free electrons. According to Butcher (67), this approximation
holds fairly well for the alkali metals Na, K, Rb.

Fre. 23. Energy momentum sphere.

Another way to obtain an approximation of F consists in regarding the
excited electrons ag free, such that ux(r) = 1. Then

F = fund® ¥4y _ [y, o200y 21)

i.e., independent of the final state. Since the plane wave is not an eigenfunc-
tion of the Hamiltonian with periodic potential, it is natural that F(0) # 0
holds for this approximation. Apparently the form factor for small g—in
classical language, for great impact parameters—becomes too great. But
the overestimation of these collisions is not so serious if one chooses A # 0
limiting the interaction to distances < X~L Finally the linear and the free
approximation for F ean be combined, and we obtain at once

- _ _ m(qgH) 99
F= (i, H) - ~H7 @)




SECONDARY ELECTRON EMISSION FROM SOLIDS 461

The meaning of this expression differs from the F® resulting from (14) in
so far as it may be used even at the Brillouin zone boundaries because of
the assumption ¢ (r) = (1/ VT)EED, We may therefore integrate over
the final states in (22).

B. Energy Loss of Primary Electrons

1. General Formulas. For the energy loss of a P per unit path length
we obtain at once, regarding (5) and (8):

dE
- dxp = - % 2 AEK'Kka(k’,K’)
klel
32x%meqtn? gk
) _ﬁz—KI}]T— kkz’xl AEK,K W 6k',k+q+2rH§<EkK — Eklxl)

32nmey*n? F?
- R ), s o 6 — )
HEK’

k running over all occupied initial states of the crystal electrons in V. Con-
verting to integrals by

2V s Y K

dE, meytn? |F|2 ,
@ = K Z / / Al g 1y S(Ehx — Eiex)dPkd'K
H

we obtain

(¢* +

Integrating over K’, one uses the s-function. The remaining two integra-
tions over the final states turn out to run over the so-called “energy momen-
tum sphere” because of the equation (Fig. 23):

m 1
§(Bxx — Evx:) = W3R, 8B — Ry)
The energy momentum sphere has its center at 0’ , where
00’ = LCx = £ (K + k + 278
its radius R, being given by

2 1
R¢t = %[K + 57 Bk — 5%]

where for the excited electrons, the assumption
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E@) = 12 pn
2m
is used. Further we have R = K’ — 14Cg. If dQ means the element of
solid angle on the sphere, we finally obtain

dE. 20 4772 Fp?
H

2. H = 0 Processes. Let us first examine the term H = 0 in (23).
According to our earlier consideration we can write ¥ = 1/n. If we further
observe that

R 7
ABwrs = 5 (K2 — K”) = 5= [2(E,Q) — o

we obtain the loss of energy caused by H = 0 processes by the foliowing

formula:*
_ _meg 5 2(K,q) — ¢*
o hZdekR"/d" e

While the integration over the sphere (neglecting the Pauli principle for
the final states) can be carried out exactly (68), the integration over the
initial states of the Fermi sphere can be carried out expanding the integrand
with respect to 1/K. After a few somewhat complicated integrations, we
find for E, 2, 100 ev

ai, _ ks eo E, 7
“’g; E;E'— (E—l-l),Ex =§;L)\2 (24)
Formula (24) was derived earlier by van der Ziel (69), who proceeded in an-
other manner supposing k << &'.

3. H £ 0 Processes. In order to calculate the loss of energy resulting
from the terms with H 5% 0 in (23), we may proceed as follows(68): We
choose the approximation (22) for F and compensate the overestimated
contributions of great ¢ by replacing

AFgx = AExx in (23) by «(k,H).°

Now we choose A = 0 and, integrating over final and initial states, we
obtain a stopping-power law of the following form:

__dE,
dz |m

* Here we must choose X 5 0 because of Qumin = 0 for H = 0 processes, in order to
avoid divergences,

3 Using instead the true loss of energy AExx, we obtain —dE,/dz = A’, with a con-
stant 4’, which, at about 5,000 ev, leads to a loss of energy greater than that measured.
The integration over ranges with large values of ¢ violates the condition F( > F@&.
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— %2 o E%, In % for B, > 5 X 10® ev (25)
where A ~ |vgl? and C is an energy of the order of a few electron volts.

Though the approximations leading to (25) are very likely to change the
quantitative character of this formula, it is possible, for information, only
to estimate the ratio of energy loss in H = 0 and H 5 0 processes, e.g.,
in the case of Na. Taking |vg|? = 1{¢ for the minimal vectors H 5 0, all
others can be neglected in the used approximation (67), and we find a pre-
ponderance in stopping power of H = 0 processes with respect to H < 0
processes by about a factor 10. If we further calculate the theoretical range
for H = 0 processes in the case of Na and E,° = 5 X 10° ev according to
(24), we find Rypeor. 7=2 ~ 20 Resp., that is to say, H = 0 processes alone
do not seem to play the principal role for energy loss of P.

Let us point out once more, however, that these considerations are by
no means to be regarded as exact, and that they are restricted to alkali
metals.

4. Loss of Energy in Bethe Processes. After all that has been said, it may
be taken for granted that even for metals the energy loss by interaction
with weakly bound electrons is not sufficient to describe the experimental
facts.

Thus it seems desirable to consider the loss of energy caused by the
relatively tightly bound crystal electrons. Since it is possible to describe
the eigenfunctions of these electrons in deeper levels fairly well by appro-
priately combined atomic wave functions, we may suppose that the loss of
energy ~—dE,/de = f(Epa) (@ symbolizing atomic parameters) can be
represented by a relation as already given by Bethe (70) in 1930:

(26)

N denotes the number of electrons per cubic centimeter, E; a suitably
averaged ionization energy. It can be seen that the three stopping power
laws (24), (25), (26) have the same functional dependence on E, but differ
as to the meaning of the constants. While the influence of N is limited to
the absolute value of the loss of energy, the average ionization energy E;
determines, in a not too large range of E,, the exponent n of that power law
which approximately describes the true stopping-power law within this

range.
For if we calculate from
dE, _ _ AL
~ iz = f(Epa) = E, In E;

the range R(E,°) by
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Ep® 2 [(E:°/E; 2 o 2
RS = | a, _ B} [) @Ji’n(E ) @)

- =t
JBpa) A y 4 \E

it can be seen from the slope of the function Ii (z), by which power law
R ~ E,°® as an approximation of (27) can be attained.
So we find, e.g., that in the range between y = 3 and 30

I () ~ y™®

This means, if applied to an ionization energy of the order of 100 ev: For
E,° values between 300 and 3000 ev the energy loss takes place in accord-
ance with a law of approximate validity

R ~ Epol,39

This, however, confirms almost exactly the energy-range relation found
by Young in experiments with Al,Os. Making the further assumption that
all 50 electrons of ALO; take part in the stopping process (E; = 100 ev
being their mean ionization energy), we obtain the quantitative loss of
energy measured. Therefore, Young as well as Lane and Zaffarano found a
remarkable accordance between the results of their measurements and
Bethe’s formula in the case of AL,Os.® The results on the energy loss of P
in the energy range about 1 kev can be summarized as follows: In addition
to a certain qualitative accordance between theory and experiments, even
a quantitative accordance has been found in some cases. The decision,
however, as to which special mechanism is the most efficient one (it is also
necessary to take into aceount the loss of energy caused by excitation of
plasma oscillations) will be different with different substances.

For the purpose of a better survey, a number of different substances
should be examined in a wide energy range as to their energy-range rela-
tions. Until this will be done, we shall have to content ourselves with using
the above-mentioned semiquantitative considerations combined with phe-

nomenological theories (G. 3) and empirical data for the formulation of a
theory of SE.

C. Excitation of Secondary Electrons

1. General Formulas. The number of S excited into the state kK’ in the
volume 1~ per second by one P is given by (5) and (8) as

a-Ji __860‘;71'2 IFP "

8 The special calculation of the average ionization energy E; seems somewhat arbi-
trary, however. Hardly anything else than an approximate aecordance between range
measurements in ALO; and formula (26) has been found as yet.,
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This rate of excitation is related to the primary current density AK/mV.
If instead we choose the primary current density unity and calculate the
excitation function per cubic centimeter, we obtain

egtmn? |F|? _
7L2KV 2 / PR ( O 3(Exx — Evxx’) (28)

Now if we ask for the number of excitations per second and cubic centi-
meters into the interval d®k’ related to the primary current density unity,
it follows from (28)

2
S(k")dk' = ’:fi;;‘{ &k’ E [ &k 2@ 77 O — Bxem)  (29)

In order to obtain the mere energy dependence of the exeitation function,
i.e., S(E"), we take into account the expression for 6(Eyx — Ewx:) already
used in the theory of energy loss. Hence, (d®k’ = &"%dk'dQy):

S(B)dE = ;":fgi}’{ K dE z / Pk - / ashes(R — o) ¢ 2@)\2)2 (30)

From Fig. 23 it can be seen that
R =Fk2+ ?41; Cg® — ¥'|Ca| cos v

and therefore

2RdR = —F'|Cg!d cos v

Hence

A = k’Tg 1 dRde  (p azimuth resp. to Cm)

If this is introduced into (30), the required function becomes

2x
n _|FE
S(ENE' = mg‘;K dE E f &k g / do mrwp GV

2. H = 0 Processes. a. Energy angular dependence. If in (28') we take
A = 0 and use 1/n for F, the calculation of the function S(k’) will amount
to the following integration over the Fermi sphere:

§(Exx — Fvx')
/ k=

From this integration follows without neglect
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S(kry = et K2 — (1K) — (B2 — k) (K — k')
H=0

K K — WP = )7 82)
if the following condition is fulfilled:
|&" K — k)| < ksK — K/| (33)

in all other cases Sg_o(k’) becomes zero. This condition yields a nonzero
transition probability for excitation only into the states of the shadowed
area in Fig. 24. Further it can be seen from (32) that excitations become the
more probable, the more B’ approaches Ey ; in classical analogy this means
an increase in the number of collisions with increasing collision parameter.

Fia. 24. Shadowed area gives the range for excitation function Sg—q(k’) » 0 [H. W.
Streitwolf, Ann. Physik, [7] 3, 183 (1959)].

For fixed B’ Fig. 25 shows graphically the variation of excitation prob-
ability with the angle for two values of E’. As we might expect we can see
that the most frequent excitations with small loss of energy produce S
moving practically perpendicularly to K, that is, parallel to the surface if
the inecidence is normal.

b. Energy dependence. (3) Moetals. In order to calculate the function
Su~o(E’) we have to proceed from (31). With X = 0and F = 1/n, we have
first to calculate the integral over ¢. This results in ’
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2mieyt Ik K2 k"™ 4 1) — 2(Bk)? — k2(k'2 — k2)
mhSK £ — BPK — kP

The remaining integration over the Fermi sphere can also be earried out
exactly and gives (68):

S(E") =

604]6 F3

3wl (B — Ep)? (34)

S(E) =

Eq

E2>E1

Fic. 25. Angular dependence of the excitation function Sg=o(k’) for two energies
[H. W. Streitwolf, Ann. Physik, (7) 8, 183 (1959)].

Formula (34) as shown in Fig. 26 was earlier derived by Baroody (24), who
proceeded from classieal considerations based on the Sommerfeld model of

a free electron gas. The singularity at E' = Ep in (34) is irrelevant for the

outer S, because of the finite work function of all metals, the secondaries
with E' ~ Er cannot appear outside the solid.

(#3) Insulators. We shall calculate the excitation function for the fol-
lowing simplified insulator model: The width of the valence band be neg-
ligibly small, so that all its electrons can be described by a wave function
¥o(r) = (1/7/V)u(r) with the wave vector k = 0, and —AE is the energy
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Fre. 26. Energy dependence of excitation functions Su=0(E) and Sgx=o(E). Er =5

ev, By = 10 ev, rg!? = 0.1 [ev]? and A = 108 em™, [H. W. Streitwolf, Ann. Physik, {7]
3, 183 (1959)].

of these valence electrons. The electrons excited in the conduction band
shall be regarded as free. Then for H = 0 processes

F = Uy () d3r

unit cell

i.e., independent of initial and final states. If we take A = 0, we can easily
find from (31) regarding the dielectric constant e in the denominator of H,:
7!'8041’&2}!F i2D

SE) = =g g

where Dy is the density of the valence electrons. From Fig. (23) it can be

seen that (35) describes the excitation only if &' 2 |14/Co| — Ry|. Thus, the
excitation function of our insulator model has the form

(35)

2
50 E’<%?—yE’>E,,—AE
xegtn?|F 2D, (AE;2
SE,E” r s (AE
. »E B>

»

S(E") = (36)
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Thus the simplifying supposition “k = 0 for all valence electrons” causes
a gap in the excitation function.

8. H # 0 Processes. a. Energy angular dependence. Contrary to H = 0
processes, only qualitative investigations could be carried out here. At first
one can find a condition for Sgo(k’) #£ 0 in analogy to (32) by eliminating
K’ from the laws of conservation of energy and momentum:

(k' — 27HK — (k — 2H)) + 2022 — 2r(HK')| < kelK — (K’ — 27H)|

Fiq. 27. Shadowed ares gives the range for excitation function Sm<o(k’) » 0 [H. W.
Streitwolf, Ann. Physik [7] 8, 183 (1959)].

or for sufficiently large K:
| — 22HK — (k' — 27H))| < kr|K — (k' — 2«H)]|

It is obvious that this is the same relation for k' — 2xH as was found for
k’ in H = 0 processes. Thus for each H the allowed range for k’ results
from that of H = 0 processes by a translation by 2«H (Fig. 27).

In a cubic space-centered crystal there are 12 minimal vectors H > 0
with magnitude H = v/2/a (a lattice constant). As in the theory of
stopping power, we confine ourselves to these vectors of the reciprocal
Iattice for B summation. In the case of a polycrystal whose elementary
orientations are distributed at random, one has further to average over
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them. This results in an allowed range for k/ — vectors for H s 0 processes
as shown in Fig. 27.

Because of ¢* in the denominator of (29), it may be supposed that
processes with &’ = |k + 27H| will be particularly frequent. It can further
be seen that electrons with energies up to about (72/2m)(2xH + kp)? ~ 35
ev will be excited nearly isotropically, in contrast to H = 0 excitation
processes. Here the influence of the rigid lattice in the H < 0 processes
becomes clearly visible. With increasing excitation energy, however, the
S are more and more thrown into the K direction.

It is remarkable that in H £ 0 processes there are excitations anti-
parallel to the direction of K increasing the probability of escape of these
S with respect to those thrown into the solid or parallel to the surface. Of
course, quantitative results regarding the relative importance of H 5 0
o processes for SE can only be obtained if the energy-angular dependence of
the excitation function is known quantitatively. For various reasons, this is
not yet the case.

b. Energy dependence. Proceeding from (29) we obtain at once

n _ Wen? ., |F|?
S(E) - K k Z/dgk/dﬂk’ m—z 5(EkK - Ek’K’)

This has to be averaged over crystal orientation as required in the case of a
polycrystal. Since only the angle between H and K is involved, the averag-
ing procedure can be replaced by an averaging over K which leads to (68)

n _ miedtn? 1 Fl2
S(E) = K 125/d3k/dﬂkr—/dﬂx’(q2lTixz)—26(Ekx —Eer,)

e AR S 5 P T

37)

In order to carry out the integrations in (37) we have to take the explicit
form of F. If we choose the free electron approximation (21) for Y (T)
and further substitute for u(r) the nearly free electron approximation,
all integrations in (37) can be carried out, the last one over k, however,
only numerically. The result of this caleulation (68) for Na is shown in
Fig. 26. It can be seen that in this case the excitation by H = 0 processes
is clearly predominant for all energies of S and that the function Sa,0(E)
resulting as ~ 1/F, has a maximum at an energy near (h2/2m)(2xH)%. But
it must be pointed out again that the result of the calculation of H # 0
processes shown in Fig. 26 has rather an illustrative charaeter, since it is
essentially based on approximation (21) for F, the applicability of which is
doubtful. Certainly, it will only be possible to obtain reliable results on the
funetion Sg.o(E") for a definite substance after the wave functions of the
electrons contained in the substance will have been worked out explicitly




SECONDARY ELECTRON EMISSION FROM SOLIDS 471

and after the necessary integrations will have been made with the term
then obtained for F. Until then we shall have to content ourselves with
qualitative and semiquantitative statements.

D. Transport of Secondary Electrons

1. Boltzmann Equation. The transport of S from their origin to the sur-
face of the emifter is, Iike all transport problems, described by the Boltz-
mann equation, which has the general form

AN (r,E,Q,1)
at
a denoting the number per second and cubic centimeter of particles thrown
out of the state E,Q by collisions:

+ (r, grad N, ,Q.0)) = S@EQ!) +b—a  (38)

o= Nt,EQ) m = N@EQ0
where #(E,Q) means the time between two collisions of the particles in
the state E,Q, and [ = vf, their free path. b denotes the respective number
of electrons thrown into the state (E,Q) by collisions.

In the case of metals, to which we shall confine our attention here, these
quantities can be caleulated in the following manner: Let us suppose that
the motion of an electron excited to a few electron volts is predominantly
determined by interaction with the electrons of the Fermi sea. Then the
transition probability per sec and for the process in which the S passes from
E,Q into the state E'1Q"1, and the Fermi electron into E'»Q’» can be written
as

Ppa(E',Q"1;E,Q%)
Then obviously

/PED(E'1,Q'1; "0, Q")AE" dQdE Qs = 1“2

and we can write
a = [N@I,EQ)Pra(E1,Q";E 2,Q")dE 1 d¥ dE ,dQ,
When calculating the corresponding expression for b, we have to take into
account that both particles from E’,Q’ and such from the Fermi sphere can
be thrown into the state E,Q. Therefore, the number of S is doubled with
each collision. This fact was first pointed out by Wolff (?7). By the above
definition for Pgg(E’;,Q'1;E",Q";), b has to be written thus:
b = [N(,E,Q ) Pral(E,Q;EQ)dEdQE AR
+ [N(r,E' Q" 1) Ppo(E,Q;E,Q)dEIQIE'dY
= [N(,E' Q) PpadE'dQ
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If, in addition, we define a function pgo (E,Q) by the relation
Pra(FQ) = praB2) Y

we can prove at once that

IPra(E,Q)dEIQ = 2 (39)

It is evident that prqo(E,Q) means the probability that being given a S
in the state £’,Q’, after a collision there will be an E,Q electron, which need
not necessarily be the original one.

/
A f((
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N

F1a. 28. Escape of a secondary electron. Shadowed area denotes the eseape cone of
a secondary of energy E.

' If the expressions derived for a and b are introduced into (38), taking
into account the stationary condition and the special geometry of the
emitter (Fig. 28), then the Boltzmann equation will take the form

ON(z,E,Q ’
—veos B ._Q%.x__) = S(z,E,Q) — I-ZIN(SC,E,Q) + fN(x,E”,Q’)%—,

pew(EQ)dE'dQ (40)
Since in our case the scattering potential is spherically symmetric, we have
pra(EQ) = plE,E', cos (2,Q")] = p(E,E', cos 0)

Let us further suppose that the primary beam is impinging normally on the
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surface. Then the source function S(z,E,Q) in (40) will not depend on the
azimuth. The same will be true for the distribution function N(x,E,Q).
Then

ON (z,E,8)
ax

—~v cos 8 = 8@Ep) — S N@,Ep)

+ / N(:U,E’,ﬁ’)% p(E,E’, cos ©) dE'dQ  (41)

N@ES) = [;" N E@)de = 22N (@,5,0)

and so for S(z,E,8). In order to solve (41), it is usual to expand the functions
N(z,E,8),8(x,E,8),p(E,E’, cos ©) into Legendre polynomials:

)

NGBS =5 ) @+ DN.eBPieos )

=0

S(,E,8) = %E (2L + 1)Sy(z,E)Pi(cos B)
=0

@

p(E,E’, cos 6) = —;—z (2L + 1)pi(E,E")Py( cos ©)
1=0
For the functions

V(e B) = JT) Ni(z,E)

this yields the following system of equations:

— I &h-1 | 141 6y
UE) [2l+1 dx +2Z-|—1 ox ]

= —y;+ 8 + 27FL iz, E")p(E,E")dE (43)

For a further treatment of (43), it is necessary to define the function
p(E,E’, cos ©) explicitly. According to Wolff (71), this can be done by the
following two suppositions: The scattering of the two interacting electrons
is spherically symmetric in the center of mass system, and the metal elec-
trons are to be regarded as being at rest before the collision.

While the first supposition could be proved to be true by means of a
numerical integration of the Schroedinger equation for this scattering prob-
lem in the range 0 < E < 100 ev (71) (the phase 8 in the well-known
scattering formula
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U=%E (@1 + 1) sin? 5,
=0

exceeding all other &; in this energy range), the second supposition must
be made in order not to overcomplicate the calculation. This involves a
certain neglection of the Pauli principle for metal electrons; yet it seems
that the second supposition can be avoided only with great difficulty. Com-
bined with (39) these suppositions determine the function p(&,E’, cos ©)
uniquely as

p(E,E’, cos 6) = %cos O4(E — E’' cos® ©)
Then it follows from (42) that

n_ L B
pl(E;E) it - Pl <\/E,/)

If introduced into (43)

I o1, 141 apis
Z(E)[Zl—l—l o TATI ow }

=—¢+ 8+ 2_/1«: Yi(x,B')P; <\/E£”> dE’  (44)

This equation can be solved uniquely only under certain boundary condi-
tions. One can assume

NOEB =Oforr — Bz < B< (45)

and reflection in all other cases. Here

w
cos fg = i (46)
where W potential step at the surface, and (45) signifies that the S of energy
E falling to the surface from inside the metal in the angular range 0 < 8
< Br will escape without exception and not be reflected. As a matter of
course, N (z,E,8) must remain finite for z — o,

This problem, which has not yet been solved explicitly in its general
form, will now be simplified in the following manner: We shall suppose that
the excitation of S is practically independent of space coordinates, and we
shall further neglect the influence of the surface and thus also the boundary
condition (45). Then the function N (z,E,8) will become independent of z,
50 that (44) will take the form (71):

_ RPN | E\ .
Wi(E) = SKE) + 2 fE ") P, (\/i) {E (7)
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Obviously our supposition of an excitation independent of z can only be
valid for primary energies E,° > E,.°, so that from a theory based on (47)
one cannot, e.g., obtain the yield maximum.

The solution of the equations (47) is obtained by first providing for the
appropriate Green’s functions. They are defined by

® 1
GyE,Ey) = 8(E — Eo) + 2 /E Gu(B",Ey) 77 Py (@ dE'  (48)
The required functions ¢;(¥) will then result from
Eﬂl
W(E) = [ GBS L, (49)

E,, denoting a maximum energy of the S, such that the suppositions made
on deriving (47) will hold just for E € E.. Aceording to what has been said
above E,, =~ 100 ev,

2. Py Approximation. By (48) we can calculate the funetion

2E./E? + 8(E — E) E 2 E
0

Goll2, By) = { Ey<E

Because of
So(E) = [S(E,B) sin dB = S(E)

we require only the energy dependence of the excitation funetion S(F) in
order to obtain the distribution function in the P, approximation by (47).
For H = 0 processes in metals, we can take this function from (34).

Then (72)

IE) [, E s

_ 2m)i(E)etks* § 2 [ E. — Er ( 11 )}
= T 6rE%E, {E'_Z W% Y \e =% ~ E =&
1
TE= Ep)’} (50)

While the last term in (50) describes those S which did not suffer any colli-
sion after their excitation, the preceding terms denote the influence of
energy-diminishing collisions on the distribution function. A diagram of the
inner distribution (50) (Fig. 29) will differ from Fig. 26 only in so far as there
is now a somewhat greater number of slow S generated out of faster S by
means of energy-diminishing collisions. The shape of the curves is very .
similar.

3. P, Approximation. In order to calculate higher P, approximations,
the functions 8;(E) for I =1, 2, . . . have to be defined by (32). This
can approximately be carried out in the following way (72): We see from
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(32) that for small ¥'(Z kr) and large K the angular dependence of the
excitation function can approximately be written as

Su_o(X)k’ = Q(E") sin *BdE'dQ (51)
Q(E) is defined by the requirement that
JQ(E) sin? 8dQ = Sg_o(E) (52)

SH-o(E) being given by (34).
By (51) and (52) we obtain an approximate excitation function
eo4k FS

WEE =T sin® B (53)

Se-o(E,8) =

\ i From (53) follows

L | Su(E) = 0,5,(E) = I;E“(e—_,;i_’“}—p)g SuE) = SiE) = ... =0 (54

k-N(E)

! ] 1 H i ) i
0 16 20_ 25 30 35 40 &5 50

— F [ev]
Fie. 29, Energy dependence of distribution function corresponding to Sm-o(E) in
Fig. 26 [H. Stolz, Ann. Physik [71 8, 197 (1959)].

6 X 10%2E, 4
S it % Br = 5ev, Bn = 10%ev.

17 —_ e s o i e e ot o o o et e s s e e e e}
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and from (48)

2 2 )
Go(E,Eq) = {(EEO)% cos [V/3 In (Ho/E)¥] 4 6(E — Ey) for Ey 2 E (55)
0 Ey< E
If (54) and (55) are introduced into (49), we obtain a rather complicated
expression for Ny(E), which will not be stated explicitly here (72).
From the functions No(E) and N,(E), one receives the inner energy-
angular distribution N(E,8)/N(E,0). The evaluation is shown in Fig. 30.

|
|

i
l

F1e. 30. Angular dependence of the distribution function for different energies in P,
approximation [H. Stolz, Ann. Plysik [7] 8, 197 (1959)].

It can be seen that the marked asymmetry of the excitation function has
been lessened, but by not means eliminated, by the collisions of S. It can
therefore be stated that collisions of S in metals are not capable of changing
an anisotropic excitation funetion such as (53), approximately correspond-
ing to (32), into such an isotropic distribution as there seems to exist in
reality.
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E. Escape of Secondary Electrons

1. General Formulas. Let us now turn to the question of how the func-
tions measurable in free space have to be calculated from the solution of
the Boltzmann equation at z = 0, N(0,E,B).

For this purpose we start from the connection between N (x,E,Q) and
the current density J:?(z,E,Q) at an arbitrary point in the emitter (Fig.
28):

7, EQ)dEIQ = N (z,E,Q)v cos BdEIQ (56)

In order to derive the relation between Js?(0,E,Q) and j,(E',Q"), -i.e.
the current density measurable outside, we must consider the conservation

laws for energy and momentum of S on their escape from the surface
(Fig. 28):

E=F +W,vsinf = sin ¢ (87)
Then we have at ¢ = 0
3:D(E,Q)dEdQ = j,(B' Q"dE'dY (58)

From (57) and (58) follows

H(E'Q) = j0(EQ) % v cos & (59)
If we introduce (56) into (59), we obtain

5(E',Q") = N(0,E,Q) % v cos &

If particularly N (z,E,Q) is independent of the azimuth o it follows that

7

(B ) = NO,E8) % v cos & (60)

Relation (60) connects the boundary value of the solution of the Boltz-
mann equation with the outer current density. The (E,8) values belonging
to (E"9) can be calculated by (57). Equation (60) gives the relative energy-
angular distribution referred to J+(E’,0) as

WES)  N(Eg)
WE0) = NEo) ° P (61

From (61) can be inferred that

J(E' )
J(E70) 50

is valid independent of the particular shape of the function N(Z,8).

cos
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Very slow 8, therefore, must always be distributed in current density
according to the cosine law. This statement has not yet been proved be-
cause of immense difficulties in experimenting with extremely slow electrons
(below 1 ev). The above-mentioned measurements by Jonker for Ni (20)
down to B’ = 1.5 ev deviate rather clearly from the cosine law. As, how-
ever, with W = 10 ev for such S the angle 8z (46) of the escape cone ig
about 21°, we are still far from the limit 8 ~ 0 in the case of such energies,

An exact cosine distribution of S with energy ’ is found if and only if
N(E,8) = N(E,0) for 0 < B < By, ie., if there is an isotropic distribution
of inner S at least within the escape cone. Strictly speaking, no conclusions
on the inner S outside the escape cone can be drawn from measurements
of outer S.

Hence, it is clear that the supposition of an isotropic distribution of S
of all energies in the emitter cannot be correct (73, 74). On the contrary,
slow S seem to possess a preferred direction of velocity parallel to the
surface.

The absolute energy distribution of outer current density is given by the
formula,

J(E) = [j(E",Q"dg’
that is to say, by means of (60) and (57),
JB) = v [ N(B,6) cos 6 sin g8 (62)

Since by (57) it is always true that g8 — 0 for £ — 0, it can be seen from
(62) that in general Js(E") — 0 in this limiting case. Thus the outer energy
distribution curve will always start from the origin of the E’ — j,(E')
coordinate system, a direct consequence of the potential barrier at the
surface.

In the special case of isotropic distribution of the inner 8, it follows
from (62) that

B = 2 N@E) (1 - %V) N(E) = ﬁ "NEHsinpds  (63)

The relative energy distribution oceurring in most experimental investiga-
tions is defined by

L = B

Jt,fel(E) = f],(E')dE’
such that

[Fsret(BVdE = 1

If the caleulation of the excitation function is based on unit primary cur-
rent density, as we did, then
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Ji:(E")dE" = & (64)

and the relation between absolute and relative energy distribution can be
written as

. 1.
J:,rel(E,) = —6 ],(E’)
The pure angular distribution is obtained as

7@ = v cos 3IN(E,B) %dE’,E B +W,8 = 8,5

It can be seen again that irrespective of the energy dependence of N(E,8)
each inner isotropic distribution in free space results in a cosine distribution
of current density.

2. Py Approzimation. According to (42) and (61), the relative energy-
angular distribution has the general form

3 B) _ 2@+ DN(B)Pycos §)
B(E0) T 22 +11)N,(IE) cos & (65)

From this follows in the P, approximation

7O )
T = 08 &
JOE Q) ~ °

i.e., the angular distribution curves of S of all energies are circles. Apart
from Jonker’s weak breathing effect these curves are in accordance with
experience. It follows that the pure angular distribution (integrated over
energies) is exactly a cosine distribution here, while aceording to measure-
ments it appears as a slightly flattened circle.

Energy distribution is caleulated by (62) and (42):

Br
J(EB) = 5"2 @ + DHN(E) L Py(cos B) cos 8 sin BdB

In the P, approximation this becomes

) = 2 e (1 - Ly (66)

This function is plotted in F ig. 31. The general form is obtained correctly,
as was to be expected, but the half-width with 12 ev i8 too large.
If we finally caleulate the yield by (64) and (66), we find that

8§ — MEF% 1 Em - EF Em _ W)

Ep _ 67
12:0°E, W \"W = &, " E, - E» (67)
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In order to obtain numerical values, it is necessary to know the mean free

path . If we use the expression derived by the Goldberger method (71,
3rh E

4(2m)%EF% sin? BoE bt %EF

we obtain for typical energies of S, 1 =52 X107 ¢m for Agand ] = 84
X 1077 ¢m for K.

UE) =

fis (E)

10

IO NS RN O NN S S N N
0 5 10 15 20 25 30 35 40O 45 50

Efev]

Fie. 31. Energy distribution of outer secondaries in Py and P, approximation [H.
Stolz, Ann. Physik [7] 8, 197 (1959)].

/= 12 - 10 #E,
T @m)MeMESS

For Ag we obtain a theoretical yield 6@ ~ 0.228.s, for.E, = 1,000 ev,
for K we find §@ ~ 0.76 dexp- Because of the uncertainty in caleulating mean
free paths, the yields obtained do not seem to be very reliable.

Since 8@ is obviously a function of the two parameters Ey and W
= Er + ¢, which are independent of each other, it seems hardly possible
to assume a simple relation between 5@ and one of these two parameters
when considering various metals.
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Baroody (24) attempted to show by means of a yield formula derived
by himself that the rule § ~ ¢ found by McKay (1) can be understood
theoretically. It would be in accordance with his considerations to write
(67) in the following manner:

(2m) et l [1 Ep—Ep B, — W] y
1258, (W/Br — DAW/Er | "W = Br B, — By ®
and then to suppose that ! and W/Ep have little influence on §@ as com-

pared with the influence of ¢4, Unfortunately, it seems somewhat difficult
to confirm this supposition.

o0 =

z

) Fiq. 32. Energy angular distribution of outer secondaries corresponding to the excita-
tion function (53) [H. Stolz, Ann. Physik [7] 8, 197 (1959)].

3. P. Approximation. If we ealeulate the relative energy angular dis-
tribution j,(E',8)/5,(E'0) by (65) using N, o(E) and N,(E), we obtain a
result given in Fig. 32. As was shown in our discussion of the inner-energy
angular distribution, the calculated distribution curves, contrarily to those
measured by Jonker, turn out to be too flat, and the greater the energy of
S the flatter they are. While there is a similar diserepancy also for the pure
angular distribution of outer current density, the pure energy distribution,
as compared with that following from the P, approximation, proves to be
practically unchanged (Fig. 31).

As a result of these ealculations and after comparing them with meas-
urements, we can state that at least one of the suppositions finally leading
to a strongly anisotropic distribution function cannot be correet.
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Now it seems implausible to assume that the cause of this discrepancy
might be found in the surface being neglected in the transport process.
It is hard to see how the surface should be capable of changing the markedly
anisotropic initial distribution of inner S into an isotropic one for suffi-
ciently high energies.

It seems more probable to assume that the excitation itself is essentially
more isotropic than was supposed in the calculations referred to above.
The reason may be found in either excitation processes other than those
with H = 0 playing an essential role, or else in the primary beam having
no distinguished direction in the solid because of its possible straggling. In
the latter case, excitation would already be nearly isotropic in H = 0
processes, and the marked discrepancies between theory and experiments
would be largely eliminated.

Of course, also in H 5= 0 processes additional S are excited in forward
and backward direction by cooperation of the lattice, but it will not be pos-
sible to obtain valid information on the quantitative influence of these
processes unless we should succeed in calculating the detailed energy
angular distribution of excitation. Even then, the result of such ealculations
will be likely to depend to a large extent on the respective substance of the
solid.

It still seems impossible to obtain with certainty a statement on the
detailed excitation function by means of the experiments that have as yet
been made. It would be very useful to measure the outer-energy angular
distribution in a wide range of primary energy with different angles of
incidence, since, if there is a change in primary energy, the behavior of the
primary beam within the solid, at least within the layer of thickness d,,
will undergo a qualitative change.

It is possible that also the rediffused P play a certain role, but their
influence on the excitation of S could be eliminated by measurements on
thin foils or layers with high yield (Ag) evaporated on materials with a low
rediffusion coefficient (Be).

F. Yield Dependence

1. Energy Dependence. As in D1, it was necessary to make the assump-
tion E,°> E,.°; hence, we no longer have the possibility to determine the
dependence on primary energy of the different distribution funetions out-
side this range. Within it, however, we could conclude from the theory that
the relative distribution functions are independent of E,°.

Since there is no detailed theory for E,° < E.»°, the phenomenon of
SE is considered in a rather simplified manner in the so-called semiempirical
theory. Nevertheless, this enables us to obtain a fairly satisfactory repre-
sentation of the dependence of the yield on E,°. Obviously, the semi-
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empirical theory must be regarded as a quasi-heuristic expedient which
will eventually have to be replaced by a detailed theory.

Let S(z,E,°;E,Q) denote the number of S per centimeter excited into
the state (E,Q) at the point = by a P with initial energy E,°.
Then

0B, = [," du [ aBaes( B, E)p@ 0)
= [" dep(z,B,°) [ aBaes@,E,°;E Q)

Provided that the mean probability of escape p(z,E,°) does not depend con-
siderably on E,°, which will just be the case if the excitation function con-
tains E,° only as a factor, this can be written

8(E,) = [” dp(@)S(w, ) (68)

S(z,E,°) representing the total number of S excited per cm at the
point z. Beside the assumption on p(z,E,°) which led to (68), the semiem-
pirical theory is characterized by two further assumptions (2):

p(x) = p(0)ee= (69)
and

0 dE
8(z,H,") = —K -2 (70)

Relation (69) results from the following simplified treatment of the trans-
port process of S: If we first consider, say, all S in the state (E,Q) and then
separate from these S especially those which in this state had already been
at a certain point o, we may ask for the spatial distribution of those S in
the emitter. We are thereby obviously concerned with those S which, pro-
ceeding from x, in the state (¥,Q), have not yet suffered any collision. Their
spatial distribution is expressed by the reduced Boltzmann equation:
aN(@,EB)
oz -

vcos B %N (z,E.8)

with the solution
T —Zo
N(z,E,B) = N(x0,E,B)el cos 8

Because of cos 8 2 0 for z — 2, S 0, the density of the S in question will
drop exponentially on both sides of z,. Thus neglect of the collision term
b of the Boltzmann equation describing the scattering into (F,Q) leads to
an exponential dependence of electron density as assumed in (69).

In accordance with Lye and Dekker (75) whose procedure we shall
follow here, we write for —dE,/dz in a somewhat general form
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dE, N
Tz = AE () (71)
This is likely to represent & simplification of actual conditions, since exci-
tation in the whole range of primary energy would obey the same law.
Further, (71) implies the neglect of straggling of the primary beam, since
it establishes a correspondence between every x and an energy F,(z):

B, @) = B2 — (14 1)da (72)
Hence (71) implies the range-energy relation
7oy Epon-l-l

M = oot ia ™

By inserting (69) to (73) into (68), we obtain
OE,") = KAFO) [ 1, — (3 4 1) 4gp/oD (74)
With the substitutions

P = D = (1 e

and
1
= —2 Fagoe g _ ms
r [(n+ 1)A] o' K = Kp(0)
(74) takes the following form:

1 T i
5(7") = K’ [(’ﬂ, tl)A]me‘.ﬂu‘A ey,.ﬂdy (75)

@8/dr = 0 defines that universal r value Tm at which the yield reaches its
maximum:

_ , (n+ I)A ;fl“ —rmntl - e =[ @ ]::—T g ©
5’"‘K[T‘ e o W= | G A Epm
(76)
From (75) and (76) we find that

Ep°®
5 "\ B\ (5
= (e o) e [ (B o

(77)

From (77) it can be seen that in this theory the quotient 8/, is a function
of E°/Epm® independent of the specific substance of the emitter. The rea-
son for this strange property of the theory, which was discovered by
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Baroody, is to be found in the fact that the theory includes only two sub-
stantial constants, 4 and «, which are eliminated on reduction to the
maximum value of § and the appropriate E,.°. It seems, however, very
improbable that there exists a universal curve in a strict sense, since a de-
tailed theory of SE will certainly include more than two material constants.
But, as we stated above, the relatively small divergence of measurements
obtained for metals shows that the universal yield curve may be taken as a
good approximation.

10

a8

06

0%

0z

i 1 | I

0 1 2 3 T —
Es /ERm
) F1g. 33. Universal yield curves for n = 0.85and n = 1; for comparison experimental
points. [R. G. Lye and A, J. Dekker, Phys. Rev. 107, 977 (1957)1.

The shape of the universal curve (77) depends on n, which has still
to be chosen. Lye and Dekker take n = 0.35, that is, the same value as
resulting from Young’s experiments on the stopping-power law. Figure 33
shows the result of the evaluation in comparison with the values measured,
which will be even closer to the caleulated curve if the back scattering of
P is taken into account.

Thus, it can be stated that the semiempirieal theory of yield renders
good service for a first insight into the theory of the SE phenomenon in
the case of metals.

Certainly one has to be very careful when concluding from yield curves
on excitation functions and escape probabilities, since the yield & is the
result of a series of highly complicated processes. Thus, it is not possible to
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conclude from a theoretical universal curve being in good accordance with
measurements that the theoretical ideas on which it was based are neces-
sarily correct.

It is therefore no wonder that Sternglass (76), proceeding from essen-
tially different ideas, obtained a universal curve

_3_ ., Epo [_ Ep() be
Fa € . exp 2 B0
which is also a good representation of the values measured for metals.
Which of the formulations is the more correct one can therefore only be
decided by a detailed theory of SE, which has still to be worked out 7).
A few general statements, however, can be made concerning the depend-

ence of yield on energy (44). In the case of such small primary energies
E,° that R(E,%) < 1/a = d,, we can write (68) as, using (69) and (70),

B
8(5,) = 50) [)" deS@B,) = K'Ey?

that is to say, § increases linearly with primary energy for small E,°. In
the case of great primary energies, R(E,°) > d,, we obtain by (68)

8(E,) = 80.5,°) [ p2)dz = 80,8,5(0)d, (78)

Equation (78) means that in this range the yield dependence on primary
energy is the same as that of the excitation function and that with a given
excitation function yield is proportional to the depth of escape d, of S.

Let us finally remark that above E,° ~ 3Em° the experimental values
of /8, may rather be represented by an exponent n near 1 , Which corre-
sponds to the validity of the Whiddington law.

2. Temperature Dependence. In order to derive the dependence of SE
on temperature, one would have to solve a Boltzmann equation whose colli-
sion terms are temperature-dependent because of the temperature-depend-
ent Planck distribution of phonons.

In order to avoid the resulting difficulties, Dekker (43) suggested a
simplified theory of this phenomenon. The starting point is relation (78),
which is based on the assumption E,° > Em°.

Since neither S(0,E,°) nor 5(0) seem to depend on temperature 7' to
any noticeable extent, we may suppose that the temperature dependence
of 8 is given by that of d,. Thus we have to derive from transport theory a
length corresponding to d, and find out its temperature dependence. This
can be done by means of the well-known age equation:

x(z,r)  Ix(zr)

+ g(@)d(x) = 0 79)

ax? or
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where

Eo 7
[P g

E 3

7 = mean energy loss per collision of S, B, = initial energy of S immedi-
ately after excitation,

X(xﬂ') = ﬂp(x;E(T))r p(xlE) = 12 ATN($;E;6) sin ﬁdﬁ

g(z) defining the spatial dependence of the excitation function. The age
equation (79) can be derived from the Boltzmann equation (43) by using
certain simplifying assumptions which are approximately satisfied for elec-
tron-photon interaction. Therefore, the following considerations will hold
only on condition that this interaction is the most important for the trans-
port process of S in the emitter under investigation. This is certainly not
the case for metals. Here the temperature-independent interaction with
conduction electrons will overshadow that with phonons and therefore does
not lead to any temperature effect of SE.

The function x(z,r), the so-called “slowing-down density” states how
many S per cubic centimeter and per second reach the age 7 at the point z.
One can gain insight into this transport process by considering the special
case g(z) = 6(x). Then

x(er) = —_ o %
2V/7r
From this follows for the mean squared displacement of the r-electrons
N xz%dzx
(@¥r)) = _————[’ po = 2r (80)
_/‘; xdzx

Now the square root of (x%(7)) may be regarded as a measure for that dis-
tance by which the r-electrons have moved from their point of origin.
Therefore Dekker writes

Eo 19
V@G ~ d, 7(F) = ﬂ e aw (81)

where W = electron affinity, (W) denoting the age at which S will
Jjust be able to escape.

Using (80) and (81), we can now conclude that the temperature depend-
ence of § is given by that of

Ea ] 14
W) = [/ — dE’] (82)
w 37
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As can be seen from (82), we need the energy and temperature dependence
of land 9. In the case of ionic crystals, in which the S mainly interact with
the longitudinal optical lattice vibrations, one obtains the following approxi-
mations by perturbation theory:

K fiw 1
Z=C——ﬁ——,n=—ﬁ—,nm=—m——.7bw=k0 (83)
W I T T

C is a constant including the coupling constant for interacting electron and
phonon fields. w denotes the angular frequency of longitudinal optical
lattice vibrations, and (83) holds only if E > hw. Thus we obtain by (82)

As was mentioned above, for polar crystals (84) fits satisfactorily recent
experiments.
For high temperatures, T > 6, (84) can be replaced approximately by

b~ T (85)

Concerning the temperature dependence of energy distribution it fol-
lows from (82) and (83) that if T changes, 7(E) will change by a factor inde-
pendent of E, so that the relative energy distribution is temperature-
independent in this theory. This corresponds to experimental results ob-
tained by Shulman and Dementyev (15).

If the same considerations are made for nonpolar crystals a function
8(T) is obtained which can also be approximated by (85) for high tem-
peratures. Measurements of the temperature dependence for nonpolar crys-
tals with predominating electron-phonon interaction do not yet exist.

G. Miscellaneous Problems

1. Surface Effect. The calculations of the excitation function given in
Sec. IV,C are all based on the application of Bloch electron wave functions,
the real existence of the emitter surface in the excitation process being en-
tirely neglected. As, however, the surface plays a very important role in
the external photoeffect of metals (78), since in a wide frequency range the
photo yield can be described in a quantitative manner by a potential model
referring only to the surface, it seems desirable also in the ease of SE to
study the influence of the surface on the excitation of S.

Contrary to earlier ealculations (79, 80), resulting in a considerable
contribution of the surface effect of SE to the total yield, more recent
caleulations (81, 82) seem to prove that the surface effect of SE is negligibly
small,




490 0. HACHENBERG AND W. BRAUER

"The latter investigation quoted is based on Bethe’s method of calculat-
ing the surface photo effect (83), where a metal disk of thickness 2a >> 10-8
cm with a surface F' is examined, and its potential defined by Fig. 34, using
in addition a periodic boundary condition in directions y and z. Then the
yield is obtained by 8 = j,/4, with 7, = EK/2rm and

o= f 7 / / E E Pux (KKK K, (86)
k'K KWK,

where k; > 0,k’, > 0 also have to be taken into account, the final states
(k') being given by the free states of the metal electrons.

v(x)

- —— — —_—— e ———— X

-W
Fr16. 34. Potential model for the surface effect [W. Brauer and W. Klose, Ann. Phystk
16] 19, 116 (1956)].

After several calculations one first obtains the transition probability

2wed'or, Kyt iy -’y - OK". ¥,
ka(k'K') — WY 0K, K, -l-khl:zq4 K’ K. 1k, —k 5(0',)5(Ekx_' Ek’K’)

X v= 1’2
with

V1=kz"k,z+q:ty 0‘2=kx_klz"“gz

The integrations required by (86) ecan be earried out in an exact manner,
the combined law of conservation of energy and momentum leading to an
integration over the part of an energy momentum sphere of the final states
that may contribute to the escape of secondaries k', > [(2m/A2)W]%.

The numerical evaluation of the highly complicated yield formula for
the surface effect is shown in Fig. 35 for two metals. It can be seen that the
contribution to yield is practically negligible. It must be pointed out, how-
ever, that the theoretical statements for E,° < E,»° are unreliable inas-
much as there will be two counteracting factors which have been neglected
here; on the one hand, the P will not move over the whole distance d,, thus
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generating less S, while, on the other hand, the energy loss of the P will
produce more S per unit path length than with fixed E, = E,°. An addi-
tional introduction of these facts would supply the yield maximum lacking
in Fig. 35.

Irrespective of these complications, it can be stated that contrary to
the photo effect of metals, the influence of the surface on the excitation of
S may be neglected in satisfactory approximation.
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Fia. 35. Comparison of theoretical surface effect (—— — — — ) and experimental
( ) yield curves - d;, = 10 em [W. Brauer and W, Klose, Ann. Physik {6] 19,

116 (1956)].

2. Time Constant of Secondary Emission. So far only the stationary state
of the emitter has been considered. As a matter of course, however, when
the primary beam is switched on, a finite time 7* will pass between its inci-
dence on the solid and the formation of a stationary distribution at the inner
surface, giving rise to the problem how to caleulate the magnitude r*, the
time constant of SE.

The general solution of this problem would lead to the nonstationary
Boltzmann equation (38). By means of a properly chosen excitation func-
tion, one would obviously have to calculate the length of time within
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which N(z,E,8) becomes stationary in the interval 0 < z £ d,. This eal-
culation has not yet been carried out.

On the other hand, van der Ziel (84) gave a simple estimation of 7*
based on the following consideration: Up to the time r* the emitter receives
the energy j,E,°r* per cm? from the primary beam. If ¥ denotes the number
of excited S per em? of the surface and E, their mean excitation energy, then

BoBy'r = % Bfr* = oW,y < 1 (81)

The more completely the energy taken up is directly transformed into
excitation energy of S, the more v will approximate 1. Since the station-
ary state is required only in the layer 0 < z < d,, estimation (87) for +*
refers to primary energies E,° ~ E,,°. With N as the density of S near the
surface, we have N = Nd,. Hence we obtain

« ~ NEd,
T 2 j.Epo
In order to make use of this estimation for the time constant, it is
necessary to know the inner distribution function N (z,E,B). Instead of
choosing a formal Maxwell distribution for N (z,E,B) as was done by van
der Ziel, we shall first recur to the excitation functions stated above and
confine ourselves to H = 0 processes (85).

For insulators we shall use function (86) and treat the transport process

by the age equation for the function p(z,E), which reads
12d%
3 9a?

5 (88)

9p -
+ 1 3E + S(z,E) = 0 (89)
If we neglect the dependence on space coordinates and the interaction

of S with electrons of the valence band by taking N(AE) = 0, we obtain
by (89) and (36)

c 1(AENE] . AE 1(AEY*
r= % — = — —_
N =g 48 {1 2(Epo) ]E = [1+2(Ep°) ]—}-AE (90)

If we further suppose that N(E,8) be isotropie, we find

: 3CAE W. AE (W)
J'—smz,,o[l‘zﬁlnv"(ﬁﬂ &

By introducing (90) and (91) into (88) we obtain for MgO with W = 0.25
ev, AE = 5.77 ev, Epm® = 1,200 ev, 6 = 24, d, = 2 X 10~* c¢m, the time
constant 7* > 3 X 10! see.

Because for metals the excitation function (34) diverges for £ = E»
and thus also ¥ and £,, we have to calculate the excitation funetion with
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A # 0. As the function S,(E) will then become very complicated, the fol-
lowing approximation seems convenient (85): We define an energy B, by
the equation

Si=o(E1) = Sy\(Er)
and take (Fig. 36)

P )AS')\(EF) .[’JF < ' S ]51
S(L) IS)\=()(_1’J) I 2 ]’11
One obtains
1) = 034 0k 1
SA(I’/F) = 0734 Er_EpEF?
s(e)
1
]
I
|
|
Er Eq £ ——

F1c. 36. Energy dependence of the excitation funetion in order to estimate the time
constant for metals [H. W. Streitwolf and W. Brauer, Z. Naturforsch. 13a, 700 (1958)].

Since we earlier recognize the fact that for metals source function and inner
distribution function are very similar, Figs. 26 and 29, one can feel justified
in taking N (E) in approximation:

D

N(E) = const. S(E) = {(Ex 'D—EFP

(B — Ep)?

E < E,
E > E

Then it follows that
2D 7 FEi+3Er  Ei—Fp, E,—Er 3
4 [ = = l i y
Vem—m b e R =y At
and with an isotropic distribution of the inner S
D [—W¥% W+ He Wi+ Ep%}
2E 4E % W — e

(93)

Je = (2m)*
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With (92) and (93) we obtain by (88) the time constant for Ag (Er = 5.5
ev, W = 10.2 ev, E,».° = 800 ev, 8, = 1.5) asr* > 0.6 X 108 sec.

Van der Ziel obtained for +* the same order of magnitude by using the
formal Maxwell distribution. Experimental values of 107 sec, which were
found earlier, represent upper limits for 7* and still exceed by far the lengths
of time obtained by calculation.

8. Relation to Photoeffect. Both the excitation of S and that of photo-
electrons is due to the interaction of crystal electrons with external electric
fields: in the case of SE, the Coulomb field of the P, in the case of photo-
effect, the Maxwell field of an electromagnetic wave. Thus, there seems to
exist a certain inner relation between SE and photoeffect, at least from the
macroscopic point of view. According to Frohlich (86), this relation can be
formulated quantitatively in the special case of thin layers and thus be
subjected to experimental examination. We shall describe Frohlich’s con-
sideration in a somewhat modified and simplified manner.

Let the substance be described by a complex dielectric constant
e = (n + ¢k)2. The intensity of a monochromatic electromagnetic wave
in this substance will then be damped according to

k(o)

—

I(zw) = I(w)e " o
For

4
T 20k (w)

this gives
I@e) = I(w) (1 —3 “’—’“c(i"l x)

In a disk of thickness d < ¢/2wk(w), the energy

21(w) ) 4 94)

will then be absorbed behind 1 em?/sec. If we now consider a monochro-
matic light wave existing of quanta hw, then for the number of quanta
absorbed in the volume under consideration it follows from (94) that

2, 1 20 n@k)] )
o @) ;w[ @) } n(@) L@ %)

If we further assume that each quantum absorbed results in the excitation
of one inner photoelectron, then (95) will also represent the number of
photoelectrons per cm? and sec excited by I(w) in the disk. This number
we shall denote by Si{w).
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Let ji(E,9;w) define the current density of external photoelectrons in
the state (E,#), the incident radiation intensity being I(w), then in any case

Ed30) = B9355(e) = 52 13(0,0:0) €L 1
9 = ha(l930) P (96)

will define a function kz, or fz, which is capable of being determined on prin-
ciple by measuring the photo effect, provided that the optical constants
n(w) and k(w) are known.

The number of S excited by the electric field of one electron can be found
by an analogous consideration, proceeding from the formula given by Fermi
in his theory for the energy loss of an electron moving with velocity », in
the substance under consideration:

_ 4By _ 4o A o %‘2% Ko@) Ki(@)doye = 82 (07)

2
dx Ty Up

Tmin denote a length of the order 10—* em, Ko(x) and Ki(z) are modified
Bessel functions, and (97) holds only under the additional condition that
B K 1. If (97) is interpreted as the sum of the energy losses of the electron
caused by emission of monochromatic waves, then again we obtain the

number of quanta Aw absorbed by the substance per cm path length of the
electron in the interval dow:

4eg? n(w)k(w)
;2—7!‘1)_1,2 W :vKo(:v)Kl(a:)dw

Over a length d one incident electron per ¢cm? and sec will then emit
4eg’d n(w)k(w)
frvy®  Je(w)]?

quanta fiw per em? and sec.

Expression (98) is in direct analogy with (95). If again we assume that
each absorbed quantum results in the excitation of one electron, then (98)
is directly the number of excited electrons S z(w). Now the essential assump-
tion in Frohlich’s study seems to consist in the following relation:

Jo(B,8w) = h (B9 50)Sg(w) 99)

hi(E,9;0) denotes the function empirically introduced into (96). With
(99) and (98) we obtain the total external current density of 8 as

;%lwa(E,ﬁ;w)zKo(x)Kl(x)dw (100)

If the function f.(E,8;») has thus been determined with sufficient accuracy

2Ko(z)Ki(x)dw (98)

ja(E;t}) =
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by measuring the photo effect, it is possible to find the current density of
the external S by (100).

Since formula (97) holds only for a P of fixed velocity v, we have to
choose at least d < R(E,°); i.e., relation (100) is valid only for thin layers
in which the P will practically move at their initial velocity.

An experimental control of (100) by measuring photoeffect, SE, and
optical constants for the same thin layer has not been carried out. Yet
it would be highly interesting to do o, since in this way it would be possible
to obtain information on the correctness of assumption (99), which obvi-
ously neglects the influence of the detailed form of the excitation function
on the probability of escape of electrons.

4. Influence of Occupied Donor Levels and Indirect Excitation. Though
it has not yet been possible to state any distinet relations between the den-
sity of donor atoms in a given substance and the SE yield, some prelim-
inary qualitative theoretical considerations have been made on this prob-
lem (43, 87). Definite conclusions on the importance of impurities for SE
could not be drawn.

Obviously, in such considerations a distinction has again to be made be-
tween the influence of occupied donor levels on the excitation process and
their influence on the transport process.

According to Dekker, a noticeable influence on the transport process
(ionization of donors by S) is not to be expected for concentrations of the
donors below N = 102 em=2. Owing to the interaction of S with phonons
leading to an energy loss of iw =~ 0.05 ev per collision, the total path length
of a 8is L ~ 105 cm. With an ionization cross section of the donor levels
o = 10~% em?, taking N = 1/Le, this leads to the above concentration of
impurity atoms.

The excitation process of S can be influenced by the presence of donor
levels in two ways. Firstly there is the possibility of direct excitation of
electrons from occupied donor levels by their interaction with P. An
explicit caleulation of this excitation has not yet been carried out. It would
have to be based amongst others on the wave functions of such states (85),
which are already fairly well known. If, on the other hand, one assumes that
direct excitation from donor levels could be neglected, then there will re-
main only indirect excitation of S by excitons which are produced by P
(89). On collision with an electron from a donor level, these excitons ean
liberate this electron and make it enter the conduction band. Thus, an addi-
tional part of the total excitation function of S will be produced.

For a more quantitative consideration, the transport equation can
approximately be replaced by the following diffusion equation:

dzzvexc

Nexelx)
D’“&F -+ Sexc(x) - T =0 (101)
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where

vl,
D=3
There 1, is the lifetime and #, = I,/» the time between two collisions of an

exciton. If we further suppose that

where ¢, is the lifetime for recombination and t; the lifetime of the exciton
for ionization of a donor, then, according to Dekker, i; = ¢; already at
donor concentrations of > 108 cm~3. If we further suppose the excitation
of excitons to be independent of space coordinates, then it is easy to find
the following solution of (101) for the stationary distribution of excitons:

i;

Nexc(x) = Sexc § [2 - (1 - a)e“x/L], L= (Dt;)% (102)

The parameter o takes the value +1 for ideal reflection of excitons at the
surface of the emitter, and — 1 for total destruction of excitons [N ex.(0) = O].
The indirect part of the electron excitation funection follows from (102) as

Lﬂtj—@ - ‘%Sexc[z — (1 = a)e*/t]

and the appropriate part of yield by (68) and (69):

_ * Nexol®) .0 . 1 [ o Ld, ]
5exc = CL T [ dr = 3 CSexe 2d3 (1 a) —“—“"‘L + d,

If we further take into account (78) for direct yield
8asr = CSand,
then we obtain for @ = 1

6exc —— Sexc
dair S

and fora = —1

B e 2 g e Y

In order to decide on the importance of indirect excitation at occupied
donor levels, we must therefore have an exact knowledge of the excitation
function of excitons and their behavior near the surface. Concerning the
latter problem, according to a discussion by Hebb (90) on the experiments
by Apker and Taft regarding the external photoeffect for alkali halides, we
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must suppose that there exists a dead layer for excitons of 100 — 150 A
under the surface. Thus, for alkali halides a noticeable contribution Sexe 18
hardly to be expected.

i ™~
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