

... for a brighter future

Findings vs. open issues

Katherine Harkay Advanced Photon Source

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 2009 Nov 13

Cesr-TA electron cloud simulation WebEx meeting

APS EC study origins: circa 1997

Transverse multibunch instabilities at CESR discovered to be due to trapped electrons in DIP leakage field [T. Holmquist, J.T. Rogers, PRL 79, 3186 (1997)]

- SLAC PEP-II and KEKB B-factories both under development; became concerned about ECEs:
- Separate, first-generation codes developed to model EC generation and instabilities (M. Furman, K. Ohmi, F. Zimmermann, and colleagues)
- LHC: Calculated predictions of a BIM resonance resulted in a crash program at CERN to study ECEs.
- We were asked: why don't we observe EC effects at the APS with Aluminum chambers (high δ) and positron beams? Started experimental program in 1997-98 first with e+ beam, then 1998-2004 with e- beam. Collaborator: R. Rosenberg.

Retarding field analyzer (RFA) distribution

FIG. 1. Modified vacuum chamber (top view) showing locations of RFA detectors 1-10 and BPMs *a*, *b*, and *c*. The top numbers and letters indicate those detectors or BPMs mounted above the chamber midplane; the bottom numbers indicate those mounted below. The end absorber EA intercepts high-energy photons.

K. Harkay, R. Rosenberg, PRSTAB 6, 034402 (2003)

Mounting on 5-m-long APS chamber, top view, showing radiation fan from downstream bending magnet. Pressure measured locally (3.5 m upstream of EA).

Retarding field analyzer (RFA) [†]

RFA measures distribution of EC colliding with walls, transmission efficiency ~50%

Mounting on APS Al chamber **behind vacuum penetration** (42 × 21 mm half-dim.)

† Designed by Richard Rosenberg

FIG. 3. Schematic of APS planar retarding field analyzer (RFA). The collector is graphite coated to lower δ and biased at +45 V to enhance the collection efficiency. The grounded, outer grid is mounted behind a slotted vacuum penetration to shield the RFA from beam-induced rf noise. The penetration slot area is approximately 1.25 cm², and approximate distances between the chamber wall (1.6 mm thick), grids, and collector are indicated.

K. Harkay

APS RFA studies and modeling

Machine parameters for APS

Beam energy	GeV	7
Circumference	m	1104
RF frequency	MHz	351.9
Minimum bunch spacing	ns	2.84
Harmonic number	_	1296
Chamber semi-axes (<i>a</i> , <i>b</i>)	mm	42.5, 21
Antechamber height	mm	10
Chamber material	_	AI
Distance from dipole magnet end to RFA (#6)	m	9.25 (e+/e-)
Dipole bend angle	rad	0.07854
Dipole length (80) (fill fraction ~0.2)	m	3.06
Bunch length (rms)	cm	1

Posinst modeling, SE input params (v8)

			Copper (CERN)	Stainless steel (LBNL)	Aluminum (APS msrd/fit)	Aluminum (APS model)
Total SEY	E_tot_pk	eV	271	292	330	300
	δ_tot_pk		2.1	2.05	2.8 ±10%	2.2-3.1
True secondary	δ_ts_pk		1.88	1.22		1.26-2.16
	E0_ts_pk	eV	276.8	310		300
	S		1.54	1.813	1.86	1.44
	t1,t2,t3,t4		0.66,0.8,0.1,1	0.66,0.8,0.1,1		0.26,2,0.7,1
Rediffused	P1r	8	0.2	0.74		0.9
	Er	eV	0.041	40		35
	r		0.104	1		2
	q		0.5	0.4		0.1
	r1,r2		0.26,2	0.26,2		0.26,2
Elastic	P1e	8	0.02	0.07		0.04
	P1e_pk	δ(0)	0.496	0.5		0.1
	E0e_pk	eV	0	0		5
	W	eV	60.86	100		5
	р		1	0.9		2
	σ_e		2	1.9		2
	e1, e2		0.26,2	0.26,2		0.26,2
rgonne – k L	Jorkov		DEA studios and	modeling	CoorTA Mohow	Nov 12 2009

Secondary electron emission

Incident electron energy (eV)

 E_2

800

[1] M. Furman, M. Pivi, PRSTAB 5, 124404 (2002).

[2] K. Harkay, R. Rosenberg, L. Loiacono, Proc 2003 PAC, 3183 (2003).

Secondary electron distribution function

- True SE peaks at 1-3 eV, surface independent $p_n=2, \epsilon_n=1$ $f_{ts} \propto E^{p_n-1}e^{-E/\epsilon_n}$
- Rediffused varies/sensitive to surface
- Elastic depends on prim. energy

True secondary and rediffused components [1] using APS parameters (p. 6)

RFA distribution fitted to a Lorenztian func: <E> 2.5eV, width 5 eV (10 bunches, 128 λ rf bunch spacing, 2 mA/bunch) [K. Harkay et al, Proc. 2003 PAC, 3183].

K. Harkay

Photoemission params

- Effective photoelectron yield: 0.1
- Number photons per e+: 0.07
- Photoelectron σ_{v} : 5 mm (for det 6)
- Reflectivity ≠ 0
- Dilution: 1 (reflectivity % ?)

Positron beam: dependence on bunch spacing

Measured (RFA 6) electron wall current (Ic) as a function of bunch spacing, normalized to the total beam current (Ib) (10 bunches; total current shown).

The inset shows a conditioning effect of more than a factor of two reduction after 60 Ah of beam operation.

Multipacting resonance (RFA vs. bunch spacing)

Comparison (RFA det 6) with simulated normalized electron wall current as a function of bunch spacing (10 bunches).

Modeled effect of space charge, 20 ns bunch spacing

Surface conditioning: Wall flux at APS reduced 2x after 60 Ah of surface conditioning (inset, left), equivalent to 10^{-3} C/mm² dose, consistent with CERN data (Cu). Conditioned Aluminum chamber RFA data consistent with δ_{max} 2.2.

K. Harkay

APS RFA studies and modeling

Cloud build-up and saturation

Coupled-bunch instability

EC saturates after 20-30 bunches (middle of straight)

Level varies nonlinearly with bunch current $(7\lambda_{rf}$ bunch spacing)

Associated pressure rise (shown later)

number of bunches in train, N_b

Calculated EC density at saturation (e+ beam) • KEKB 6e11 m⁻³ (no solenoid) (H. Fukuma, ECLOUD02)
• APS 10e10 m⁻³ (")
• PEPII 10e10 m⁻³ (between solenoids) (A. Kulikov)

K. Harkay

Buildup over bunch train

Measured (RFA det 1,6) and simulated (dashed line, δ_{max} =3.0) electron wall current as a function of bunch train length, 20 ns bunch spacing, comparing RFAs 65 cm apart. Anomalous pressure rise P is also shown.

Energy distribution

- Energy distributions from differentiated RFA (det6) signals as a function of bunch spacing (units of λ) (10 bunches, 2 mA/bunch)
- Low-energy part is well fit by a Lorentzian with <E> 2.5 eV and width 4 eV
- Long exponential tail on all but 128 λ
- Energy bumps observed for 2 λ and 4 λ, but not on longest tail for 7 λ
- Avg energy ~100 eV for e+ beam at 20 ns spacing; ~10 eV for ebeam at 30 ns spacing

Energy distributions

- Simulated energy distributions similar to RFA data
- Simulation results may show similar energy bumps but not explored in detail
- Computed histograms up to 300 eV also

APS RFA studies and modeling

Open issues

K. Harkay

APS RFA studies and modeling

CesrTA Webex, Nov 13 2008 17

Dramatic Z-dependence

Measured peak RFA current as function of bunch number, spacing, and distance from photon absorber (2 mA/bunch) (after conditioning).

Dependence on RFA position and bunch spacing

19

APS electron-cloud driven instability, e+

Acquired near end (9/28/1998) of positron beam operation: max e-cloud amplification with 7 λ_{rf} bunch spacing (head of bunch trains at left)

	NEW MARKEN WERE THE CONTRACT OF A CONTRACT OF
	An and the second s
	sublimiting and an and the second
100	and and a second s
St.	
	Construction of the second
924	
98.2	Contraction Station of an international Articles and the Station and A

60 bunches, 96 mA, streak camera, x-t

50 bunches, 90 mA, stripline Δx

K. Harkay

APS RFA studies and modeling

Electron beam: weak multipacting effect

Measured (RFA 3,6) and simulated (dashed line) wall current vs. bunch spacing. The peak appears at 30-ns bunch spacing (11 λ). There is additional conditioning of 100 Ah for these data compared to positron data, main plot.

Electron beam: weak cloud buildup

- Measured wall current as a function of bunch train length, 30 ns spacing.
 The signal near EA (RFA 1) is always higher than RFA 6.
- No anomalous pressure rise is observed for these uniformly-spaced bunch trains.
- Pressure rise and beam lifetime degradation was observed for certain 100-mA fill patterns, but quickly conditioned away

Electron beam: energy distributions

To be plotted...

Summary: RFA data vs. simulations

		Positrons RFA (det6)	Positrons posinst8	Electrons RFA	Electrons posinst8
Bunch spacing at max current	λ_{rf}	7	7	11-12	9
Max normalized collector current	nA/mA	3.0 (broad) 5.1 (sharp)	2.9 (broad) (no sharp)	0.17 (det6) 0.4 (det3)	0.44
Width broad peak (vs. bunch spacing)	$\lambda_{ m rf}$	10	10	100	30
Ave. collision energy	eV	88	111	8	151

Used posinst params for conditioned chamber (matched to positrons) to model electron beam. Electron beam operation 4-6 wks after shutdown to switch modes (no chambers vented).

Impulse kick not valid near beam; but nkick =1 vs. 21 similar ave wall collision rate

For 40-ps-long (12-mm) positron APS bunches, cloud electrons that are within about 500 μ m of the beam center oscillate several times in the bunch potential (calculations are for vertical plane). The transverse rms beam size is 350 μ m (horizontal) and 50 μ m (vertical).

[Courtesy L. Loiacono, from K. Harkay, R. Rosenberg, L. Loiacono, ICFA BD Newsletter 33, Apr 2004]

Summary

- Measured electron cloud distribution in APS for bunch trains vs current; positron and electron beam
- Modeling benchmark focused on positron data, det6: near center of drift, far from end absorber
- EC generation depends strongly on true secondary distribution $f_{ts}(E)$ and rediffused components
- Solution Wall conditioning effect: δ_{max} started at 3.1, conditioned to 2.2
- Wall current, collision energy distributions, broad multipacting resonance peak match model well at det6, reasonable surface parameters for Aluminum

Open issues

- Never able to explain (model) sharp resonance peak
- Detector position-dependence rich in physics, not yet modeled to satisfaction (tried case w/o antechamber, inconclusive)
- What predicts CB instability threshold? (more than EC density)
- Weak multipacting effect for electron beam reproduced qualitatively, but details not understood
- Energy distribution different for positrons vs electron beams, confirms expected beam-cloud dynamics. Modeling results not yet understood (photoelectron component? nkicks?)

