Electron cloud instability measurement at CesrTA

K. Ohmi (KEK) CesrTA meeting 5 August 2009

Contents

- Strong head-tail instability
- Incoherent emittance growth
- Coupled bunch instability

Coherent strong head-tail instability

- Coherent motion between inner bunch and electron cloud.
- Electrons oscillate electric force inner bunch along z, $\omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_v (\sigma_x + \sigma_y)}}$
- The instability is characterized by $\omega_e \sigma_z/c$, number of electron oscillation along the bunch.

Threshold of the strong head-tail instability (Balance of growth and Landau damping)

• Stability condition for
$$\omega_e \sigma_z/c > 1$$

$$\omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_y (\sigma_x + \sigma_y)}}$$

$$U = \frac{\sqrt{3}\lambda_p r_0 \beta}{v_s \gamma \omega_e \sigma_z/c} \frac{|Z_{\perp}(\omega_e)|}{Z_0} = \frac{\sqrt{3}\lambda_p r_0 \beta}{v_s \gamma \omega_e \sigma_z/c} \frac{KQ}{4\pi} \frac{\lambda_e}{\lambda_p} \frac{L}{\sigma_y (\sigma_x + \sigma_y)} = 1$$

• Since
$$\rho_e = \lambda_e / 2\pi \sigma_x \sigma_y$$
,

$$O_{e,th} = \frac{2\gamma v_s \,\omega_e \sigma_z / c}{\sqrt{3} K Q r_0 \beta L}$$

Origin of Landau damping is momentum compaction

$$v_s \sigma_z = \alpha \sigma_\delta L$$

• Q=min(Q_{nl}, $\omega_e \sigma_z/c$)

 Q_{nl} =5-10?, depending on the nonlinear interaction.

- K characterizes cloud size effect and pinching.
- $\omega_e \sigma_z/c^22-20$ for damping rings.
- We use $K=\omega_e\sigma_z/c$ and $Q_{nl}=7$ for analytical estimation.

Parameters for the instabilityThreshold

		KEKB	PEP-II	Cesr-TA/5	Cesr-TA/2	ILC-DR
Circumference	L(m)	3,016	2,200	768	768	6,414
Energy	E	3.5	3.1	5.0	2.1	5.0
Bunch population	$N_+(10^{10})$	8	8	2	2	2
Beam current	I_+ (A)	1.7	3.0	-	-	0.4
Emittance	$\varepsilon_x(\mathrm{nm})$	18	48	40	2.6	0.5
Momentum compaction	$\alpha(10^{-4})$	3.4		62.0	67.6	4.2
Bunch length	$\sigma_z(\mathrm{mm})$	6	12	15.7	12.2	6
RMS energy spread	$\sigma_E / E(10^{-3})$	0.73		0.94	0.80	1.28
Synchrotron tune	ν_s	0.025	0.025	0.0454	0.055	0.067
Damping time	$ au_x$	40	40		56.4	26

		$KEKB^{1}$	$KEKB^2$	PEP-II	Cesr-TA/5	Cesr-TA/2	ILC-DR
Bunch population	$N_+(10^{10})$	3	8	8	2	2	2
Beam current	I_{+} (A)	0.5	1.7	3.0	-	-	0.4
Bunch spacing	$\ell_{sp}(ns)$	8	7	4	4	4	6
Electron frequency	$\omega_e/2\pi(\mathrm{GHz})$	28	40	15	9.6	43	100
Phase angle	$\omega_e \sigma_z/c$	3.6	5.9	3.7	3.2	11.0	12.6
Threshold	$\rho_e \ (10^{12} \ {\rm m}^{-3})$	0.63	0.38	0.77	7.40	1.70	0.19
Tune shift at ρ_e	$\Delta \nu_{x+y}$	0.0078	0.0047	0.0078	0.016	0.009	0.011

Simulation of the strong head-tail instability

• Uniform beta model, integration step is L/8.

2 GeV

Measurements

- Measure the beam size as a function of the beam current.
- Measure the beam size along the bunch train.
- Fourier spectra of the position monitor and beam size monitor.

The spectra depend on choice of the cloud size, different between cloud size σ_y or $>>\sigma_y$. Right solution should be given for cloud size $>\sigma_y$.

Incoherent emittance growth

- Electron cloud is located in bending magnets.
- β , phase and η are taken into account.

Emittance growth due to nonlinear diffusion

• Nonlinearity in one turn map

 $H_n \sim \oint a_n(s)x(s)^n \big|_{x(s) = \sqrt{\beta/\beta_0} \cos \varphi(s)x_0 + \dots} ds = \oint a_n(s)\frac{\beta(s)^{n/2}}{\beta_0^{n/2}} \cos n\varphi(s)ds \times x_0^n + \dots$

- Electron cloud density ~a(s) β, phase are integrated.
- Uniform β model cancels phase dependence, therefore no emittance growth, H(J).
- β and phase variations are essential for the emittance growth.

Simulation of the Incoherent emittance growth

- Bending magnet section 475/768 m
- The electron density ρ is the averaged one, $\rho_{bend} \times 475/768$

Measurement of the incoherent emittance growth

- The same beam size measurement as is done for coherent strong head-tail.
 - ★ Beam size measurement as a function of the beam current.
 - \star Measure the beam size along the bunch train.
 - ★ Fourier spectra (check no coherent signal).
- Beam size measurement in tune space, V_x - V_y .

No signal in the measurement on June 27-29, 2008. 5.3 GeV chess mode

¹⁰2.7²⁰A x³⁰10 ⁴⁰bunches, 14ns

Measurement of electron cloud induced Coupled bunch instability

- Np=1x10¹⁰, 4 ns spacing uniformly for example. Number of bunch is 640. It is possible to do 14 ns, 90 bunches.
- The analysis is easy for uniform filling, but is possible for partial filling.
- Cut off the feed back power and measure the positions of all bunches turn by turn.
- Growth time ~25 turn, 64 μ sec for this condition.

