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The sextupole magnet is needed to correct for the chromatic effect of a

quadrupole. Consider a quadrupole that focuses a beam of electrons in the x

direction to a focal point. If some of the electrons have higher energies, they

would be bent less by the quadrupole field, and their focal points would be

further away, as illustrated in fig. 1. The result of this is that a bunch of

electrons would get spread out or defocused in the longitudinal direction.

In order to correct for this chromatic effect, a sextupole magnet may

be used. The job of a sextupole is illustrated in fig. 2. Compared with a

quadrupole, a sextupole must have a larger focusing effect for particles that

are displaced further from the axis. This happens with the sextupole because

it is designed to have a magnetic field that varies as x2, rather than the x1

in the quadrupole.
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Figure 1: Chromatic effect.

Figure 2: How a sextupole magnet works.
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Figure 3: A sextupole magnet in Australian Synchrotron [1].

A photo of a real sextupole is shown in fig. 3. The field is shown schemat-

ically in fig. 4.

Here, I shall go into how the sextupole works in detail, but only explain

how the sextupole field leads to the elements in the transfer matrix. The

sextupole field is a bit more complex than the dipole and quadrupole fields.

So it is convenient that there is one formula that can be used to derive all

these fields. This is the multipole expansion.

We start with the magnetic scalar potential ψ, given by [2]:

B = −µ0∇ψ (1)

where B is the magnetic field. For convenience, µ0ψ will be replaced with φ.

A multipole field expansion for the scalar field can be written as [6]:

φ =
∞∑
m=0

rm{Am cosmθ +Bm sinmθ} (2)
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Figure 4: The field in a sectupole magnet [3].

where r is the distance from the axis, θ the azimuthal angle, and θ = 0 is the

positive x direction. Am and Bm are constant coefficients. Lets look at the

magnetic field arising from each term.

When m = 0, it is a constant term:

φ = A0 (3)

so the field is zero:

B = −∇φ = 0i + 0j (4)

When m = 1,

φ = A1r cos θ +B1r sin θ (5)

In Cartesian co-ordinates, it is:

φ = A1x+B1y (6)
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So we get the dipole field:

B = −∇φ = −A1i−B1j (7)

When m = 2:

φ = A2r
2 cos 2θ +B2r

2 sin 2θ (8)

which is the same as:

φ = A2(x
2 − y2) +B22xy (9)

This gives the quadrupole field:

B = −∇φ = A2(−2xi + 2yj) +B2(−2yi− 2xj) (10)

A2 = 0 gives the normal quadrupole, and B2 = 0 gives the skew quadrupole.

When m = 3:

φ = A3r
3 cos 3θ +B3r

3 sin 3θ (11)

Rewriting this in Cartesian co-ordinates, the sextupole can be derived:

B = −∇φ = A3(−3(x2 − y2)i + 6xyj) +B3(−6xyi− 3(x2 − y2)j) (12)

For the normal sextupole, A3 = 0, and the x and y magnetic field com-

ponents are:

Bx = −6B3xy (13)

By = −3B3(x
2 − y2) (14)
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The transfer matrix elements in [4] is written in terms of the second

derivative of the field, so I shall do this now. Differentiating:

∂2By

∂x2
= −6B3 (15)

In terms of this:

Bx =
∂2By

∂x2
xy (16)

By =
1

2

∂2By

∂x2
(x2 − y2) (17)

We are now ready to derive the elements for the sextupole. The sextupole

is simply treated as a kicker. Thus, By produces a horizontal force and is

modelled as a horizontal kicker. Likewise, the effect from Bx is modelled as

a vertical kicker.

Then the elements for a kicker can be used directly, and the expressions

for the sextupole field substituted.

The horizontal kicker elements are [5]:

m26 = −m51 = −m27 =
(
l

Bρ

)
By (18)

m67 = −CγE3
0

[(
l

Bρ

)
By

]2( 1

2πl

)
(19)

m27 =
1

2

[(
l

Bρ

)
By

]
m67 (20)

Substituting the expressions for By in eq. (17), we get:

m26 = −m51 = −m27 =
(
l

Bρ

)
1

2

∂2By

∂x2
(x2 − y2) (21)
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m67 = −CγE3
0

[(
l

Bρ

)
1

2

∂2By

∂x2
(x2 − y2)

]2( 1

2πl

)
(22)

m27 =
1

2

[(
l

Bρ

)
1

2

∂2By

∂x2
(x2 − y2)

]
m67 (23)

Using the symbol defined in [4]:

λ =
l

Bρ

∂2By

∂x2
(24)

we obtain the required sextupole transfer matrix elements:

m26 = −m51 = −m27 =
1

2
λ(x2 − y2) (25)

m67 = −CγE3
0

[
1

2
λ(x2 − y2)

]2( 1

2πl

)
(26)

m27 =
1

2

[
1

2
λ(x2 − y2)

]
m67 (27)

The element m27 is not given in [4], possibly because it is small.

The values of x and y just before the sextupole are x0 and y0, so:

m26 = −m51 = −m27 =
1

2
λ(x2

0 − y2
0) (28)

m67 = −CγE3
0

[
1

2
λ(x2

0 − y2
0)
]2( 1

2πl

)
(29)

So far, we have derived the matrix elements for the effects of By using

the formulae for the horizontal kicker. The matrix elements for the effects

of Bx can be derived similarly, using the formulae for the vertical kicker [4],

and the expression for Bx in eq. (17). The first few elements, for example,

are given by:

−m46 = m53 = m47 = λx0y0 (30)
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m67 = −CγE3
0

[
λx0y0

]2( 1

2πl

)
(31)

Note that there is a common term m67 in eqs. (29) and (31). They are

separate contributions from By and Bx respectively. So the combined effect

would be the sum. Adding, we get:

m67 = −CγE3
0λ

2(x2
0 + y2

0)2
(

1

8πl

)
(32)
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