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The Cornell Electron Storage Ring Test Accelerator (CESRTA) program includes investigations into the mitigation of electron cloud buildup using a variety of
techniques in custom vacuum chambers. The CESR ring accommodates two such chambers equipped with BPM-style pickup detectors shielded against the
direct beam-induced signal. The signals recorded by a digitizing oscilloscope provide time-resolved information on cloud development. Results for diamond-like
carbon, amorphous carbon, and titanium-nitride coatings have been obtained and compared to those for an uncoated aluminum chamber. Here we report on
extensions to the ECLOUD modeling code which refine its description of a variety of new types of in situ vacuum chamber comparisons. Our results highlight
the sensitivity afforded by these measurements to model parameters such as the quantum efficiency for producing photoelectrons, their production location and
energy distributions, as well as to the secondary yield and production kinematics. We use this sensitivity to draw conclusions comparing the photoelectron and
secondary yield properties of the various vacuum chamber coatings, including conditioning effects as a function of synchrotron radiation dose. We find

substantial conditioning effects in both the quantum efficiency for producing photoelectrons and for the secondary yield.
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Both the quantum efficiency for reflected photons The diamond-like carbon coating exhibits an The carbon coating suppresses photoelectron

The quantum efficiency for reflected photons and

and the SEY change by less than a few percent over increase in quantum efficiency for reflected photons production relative to the TiN coating, especially at the secondary yield are both much smaller for

this range of radiation dose for the TiN coating. while the secondary yield decreases significantly. high photoelectron energy. conditioned TiN than for uncoated aluminum.

LEPP, the Cornell University Laboratory for Elementary-Particle Physics, and CHESS resources have merged and a new lab, (CLASSE), has formed. CLASSE develops and operates facilities and provides infrastructure for the study of
beams and accelerators, photon science, particle physics and the early universe, serving students, the public and scientists from Cornell and elsewhere. LEPP's primary source of support is the National Science Foundation.
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