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Optimization of the electron cloud buildup modeling code ECLOUD

Determination of the photoelectron production kinetic energy distribution

for photoelectrons produced by reflected photons

Disentangling the Photoelectron Production Kinetic

Energy Distribution from the Beam Kick Strengths

The early SPU signal from the leading bunch for a positron beam is largely due to
photoelectrons produced on the bottom of the vacuum chamber. This is the closest
-0.003 ik I $ i " ,‘Z il production point where the beam kick attracts the photoelectrons toward the SPU.

o [T rren Thus the size and shape of the leading bunch signal is determined by the reflected
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photoelectrons, and the Kkinetic energy distribution of the photoelectrons. In

particular, the arrival time distribution determines the shape. By modeling the
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shape for different strengths of beam kick, we can determine the photoelectron
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energy distribution. An example of such an analysis is shown on the left. Note that
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the signal begins just a few nanoseconds after bunch passage even for weak beam

kicks, indicating that high-energy photoelectrons were produced (hundreds of eV).
-0.007

-0.008 ¥ f{"

_ﬂ.m.g

This level of modeling accuracy was achieved with the photoelectron energy

distribution shown below, using a sum of two power law distributions. The high-
energy component (22 %) has a peak energy of 80 eV and an asymptotic power of 4.4.
Its contribution to the signal is shown as yellow circles in the lower left plot. The low-

energy component (78%) has a peak energy of 4 eV and an asymptotic power of 2.
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It's contribution to the signal is shown as pink triangles.
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Constraints on the production kinetic energy distribution
for secondary electrons

f(ESGC) = ESGC exp (-ESGC/ESEY )
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LEPP, the Cornell University Laboratory for Elementary-Particle Physics, and CHESS resources
have merged and a new lab, (CLASSE), has formed. CLASSE develops and operates facilities
and provides infrastructure for the study of beams and accelerators, photon science, particle
physics and the early universe, serving students, the public and scientists from Cornell and
elsewhere. LEPP's primary source of support is the National Science Foundation.
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