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PROJECT SUMMARY

Overview:

Page A

Overview
Accelerators are powerful tools for scientific discovery and engines for industry. The ability
to accelerate and manipulate particle beams is crucial to modern scientific research, enabling
the discovery of the Higgs boson and the mapping of molecular dynamics. The electron cloud
effect is a well known phenomenon in high-energy particle accelerators, consisting of the
buildup of a high density of low-energy electrons inside the vacuum chamber. These electrons
can cause a variety of undesirable effects, including emittance growth, beam instabilities
and cryogenic heat load. The goal of this proposal is to further the understanding of the
behavior of electron cloud observed to be trapped in the fields of quadrupole magnets. Such
trapped cloud may limit the spacing of bunches in proton and positron synchrotrons and storage
rings, and ultimately the beam quality and intensity. 
The proposal is to instrument a quadrupole magnet with a shielded electrode detector for measuring
the flux of cloud electrons into the wall of the chamber, and with resonant microwave detectors
to measure the density of electrons in the chamber volume. The quadrupole will be installed
in the Cornell electron/positron storage ring test accelerator (CESRTA) and used to measure
cloud properties under a variety of beam conditions as a function of quadrupole field strength.
The designs of the two types of detectors are based on prior CESRTA experience. Simulation
code will be further developed to aid in the interpretation and analysis of the data. The
proposed study will be coordinated within the framework of the ongoing CESRTA program.

Intellectual Merit :
Intellectual Merit 
The high-energy storage ring CESR is a laboratory for the systematic study of the phenomena
that emerge and ultimately limit particle density in intense compact beams. These studies
contribute to the performance of fourth generation synchrotron light X-ray sources, electron-positron
colliders, and proton accelerators and colliders, as well as to the understanding of particle
beam dynamics. The studies inform the manipulation of intense beams. Previous studies at CESRTA
are the basis of the design of damping rings for linear and circular colliders now under construction
or in advanced stages of design.

Broader Impacts :
Broader Impacts 
A better understanding of the physics of particle beams and related technology paves the way
for new accelerators that are ever more powerful probes of materials, biological systems,
molecules, atoms, nuclei and the most fundamental particles in nature. Research accelerators
may be used to develop new drugs, to design lighter and stronger jet engine components, or
better battery technology. Accelerators are tools of discovery that may inspire young scientists
to explore our mysterious universe. This work will advance the capability of particle accelerators,
the world?s most powerful microscopes, and train the next generation of accelerator scientists.

The undergraduate, graduate and postdoctoral students trained through this program will have
the rare opportunity to operate the state-of-the-art particle accelerators that are at the
heart of their investigations of the accelerator technology and the properties of accelerated
beams. That operational experience prepares them for leadership roles in the development of
the future accelerators that will push back the frontiers of science. The public will gain
deeper understanding of accelerator-based research through guided tours.
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Overview: Electron Cloud Trapping in High Energy Accelerators

1.1 Objective and Significance

The electron cloud (EC) effect is a well-known phenomenon in particle accelerators (see, for
example,[1]), in which a high density of low energy electrons builds up inside the vacuum chamber.
These electrons can cause a wide variety of undesirable effects, including emittance growth and
beam instabilities[2]. Electron cloud has been observed in many facilities[3], and is expected to be
a major limiting factor in next generation positron and proton storage rings.

Performance of the B-Factory storage rings KEK-B in Japan [4] and PEP-II in the U.S. [5] was
limited at least in part by electron cloud effects. Electron cloud induced pressure rise and beam
instabilities were observed in the CERN Proton Synchrotron, part of the injection chain for the
Large Hadron Collider (LHC). Electron cloud phenomena limit bunch spacing in the LHC, increase
heat load on cold dipoles, and lead to bunch dependent emittance growth and poor lifetime[3]. An
understanding of these effects is essential for the LHC luminosity upgrade, as well as future electron
positron colliders.

The decay time of the electron cloud dictates the length of the gap that separates bunch trains.
Longer decay times imply a longer gap, with the length of the gap ultimately limiting the beam
current. Typical decay times for electron clouds in drifts and dipole fields are about 100 ns.
However electrons can be trapped in quadrupole and sextupole fields for times long compared to
the revolution period of the ring, essentially indefinitely. Electron trapping was observed in the
CESR dipole magnets that are equipped with distributed ion pumps, where the electric fields from
the pumps combine with the dipole magnetic field to trap electrons [7]. Trapping of electrons in
a proton storage ring was reported in Ref. [6].

The first evidence of electron trapping in the field of a quadrupole of a positron storage ring
appeared at the Cornell Electron Storage Ring (CESRTA) in 2013 [13]. Cloud with lifetime well
in excess of the order 2 micro-second revolution period of the storage ring was measured in the
quadrupole chamber. Simulations indicated that electrons in the chamber would be trapped indef-
initely. The trapping phenomenon has important implications for high intensity rings. Trapping
of photoelectrons in the quadrupole and sextupole magnets of the Super KEK-B positron ring
has been modeled [8] in some detail and has motivated vacuum chamber redesign. Estimates of
long-lived electron cloud buildup in quadrupoles at the LHC indicate significant consequences for
cryogenic heat load [9]. Simulations suggest that trapping occurs with electron beams as well as
for positron and proton beams, and might impact performance of very low emittance and high
brightness electron storage rings for X-ray science.

Our measurements with a time-resolving electron detector located in a quadrupole magnetic
field have provided comparisons of signals from 10- and 20-bunch trains of positrons which show
clear evidence for electron trapping during the entire 2.3 μs time interval prior to the return of the
bunch train. Modeling indicates that approximately 7% of the cloud generated by a 5.3 GeV train
of 20 bunches, each carrying 1.3 × 1011 positrons, remains trapped. The measurements show a
non-monotonic dependence on bunch spacing indicative of beam-induced multipacting effects. The
clearing effect of an intermediate bunch has been measured and successfully modeled, showing the
trapped cloud can be reduced by a factor of four by such a clearing bunch. The characteristic of a
quadrupole magnetic field to concentrate electrons near the beam raises concerns for storage rings
with positively charge beams, since those electrons can be attracted into the beam.

The goal of this proposal is to further our understanding of the growth and decay of the electron
cloud in quadrupole fields with better measurements. Specifically we propose to determine:

• Dependence of cloud properties on quadrupole field strength for gradients from 0 through
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3.5 T/m with positron beams.

• Dependence of cloud properties on quadrupole field strength for gradients from 0 through
3.5 T/m with electron beams (A first time measurement).

• Dependence of cloud density on bunch charge to test the specific prediction that at large
bunch charge there is a disproportionate increase in the EC density and in the azimuthal
distribution of the electron flux onto the beam-pipe wall.

• Measurements of time-resolved electron cloud growth and decay using two independents de-
tection techniques. Resonant microwave measurements will provide information about the
density of the cloud within the volume of the chamber. A time resolving shielded electrode
will measure the flux of electrons into the wall of the chamber.

• The dependence of the effectiveness of a clearing bunch, on quadrupole gradient and beam
species.

In lepton machines and high energy proton accelerators, the cloud is seeded by photoelectrons
generated by synchrotron radiation. The collision of these electrons with the beam pipe can then
produce one or more secondary electrons, depending on the secondary electron yield (SEY) of the
material. If the average SEY is greater than unity, the cloud density will grow exponentially, until
a saturation is reached.

The study of EC growth, decay and mitigation has been carried out as part of the CESR storage
ring test accelerator (CESRTA) program [10]. Specialized instrumentation includes a variety of
detectors that sample the flux of electrons onto the beam-pipe wall. Some measure a DC current,
while others give the time-resolved flux of electrons onto the wall. Data from these instruments
have been compared with codes that simulate electron cloud growth such as ECLOUD [11] and
POSINST [12]. The codes have been extended to incorporate response of the electron detectors.
These comparisons have led to refinement of the codes, so that they better predict behavior of the
next generation high intensity accelerators.

The trapping phenomenon was observed by accelerator scientists Crittenden and Sikora with
students, using a shielded electrode detector in a quadrupole at the CESR storage ring that samples
the time-resolved flux of cloud electrons onto the beam-pipe surface. Data from this detector have
demonstrated for the first time that a fraction of the electron cloud is trapped in the quadrupole [13].
Simulations of the cloud using the ECLOUD code are in rough agreement with the measured signals
generated by a positron beams.

However the quality of our measurements of the behavior of the electron cloud in a quadrupole
was limited by the low signal levels and our inability to vary the quadrupole gradient. Indeed
with an electron beam, the intensity of the synchrotron radiation is insufficient to produce a signal
in this location. The proposed new instrumentation will overcome the limitations of the existing
hardware, allowing a more complete characterization of electron cloud trapping in quadrupoles, as
enumerated in the above list of goals.

The research will be carried out within the framework of the CESRTA program, which is
funded by NSF 1416318 Cornell Program for Student-Centered Accelerator Science (9/1/2014-
8/31/2017). Students (graduate and undergraduate) and post docs participating in the proposed
study of trapped cloud will be supported by the existing grant and the REU program. The CESRTA
organization will provide overall coordination of the design, fabrication and installation of the
equipment. The concept for the electron cloud detection, detailed design of the detectors, and
electron cloud and RF microwave analysis all borrow heavily from the CESRTA program experience
and expertise.
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2 Proposed Instrumentation

We propose that a new quadrupole with a shielded electrode detector be installed in a section
of the storage ring that has higher synchrotron radiation flux, especially with electron beams.
Improvements will be made in the design of the detector, including an azimuthally wider collector
that simulations predict will give a significantly higher sensitivity at high bunch currents. By
adding a new quadrupole and detector near an existing quadrupole it will be possible to vary the
quadrupole field strength with a stored beam, compensating for this field change primarily with
the adjacent quadrupole. The power supplies for the quadrupoles are independent, allowing the
possibility of measuring the dependence of the trapped cloud density on the quadrupole gradient
from zero up to at least 3.5 T/m. In addition, the new quadrupole chamber will be designed with
electrodes to enable resonant microwave measurements of cloud density. The technique of using
resonant microwaves to measure the EC density within the beam-pipe volume has been developed
at CESR by Sikora (see for example [19]) and demonstrated at various locations around the storage
ring. The EC densities obtained with this method have been compared with those obtained using
both DC current and time-resolving wall flux detectors [15], mostly in sections without external
magnetic fields. Analysis and cross-calibration of the data from the time resolving detector with
the microwave measurements will provide a better understanding of the instruments as well as the
temporal nature of the cloud. Measurements in the presently instrumented quadrupole chamber
using this technique are not possible, primarily because there are no electrodes that might be used
to couple microwaves into the chamber. Sikora and Crittenden will lead the effort to design the
new instrumentation and carry out the experimental program.

2.1 New Quadrupole Magnet and Detectors

The existing quadrupole with EC detector (Q48W) is located in a straight section approximately
four meters from the nearest upstream dipole for the positron beam and 14 m from the nearest
upstream dipole for the electron beam. Both dipoles are so-called ‘soft bends’ with a relatively low
field of about 1.4 kG for a 5.3 GeV beam. We propose to install a new quadrupole with detector
in a region of the storage ring where the synchrotron radiation flux on the vacuum chamber will be
significantly higher. The 3.7 m (Q15W) straight is between dipole magnets with 2.24 kG(electrons)
and 3.36 kG(positrons) fields respectively. The instrumented quadrupole will be located in this
straight adjacent to a standard lattice quadrupole. Figs. 1 and 2 compare the initial estimates
of the flux of synchrotron radiation for electron and positron beams at the old (existing) and new
(proposed) detector locations.

The direct synchrotron light flux from a positron and electron beam at Q15W is significantly
higher than at the present location of Q48W. This increase in flux will give better signal to noise
for measurements with positrons and allow the possibility of measurements with electron beams.
Simulations with the ECLOUD code of the expected signal from the detector at the new location
show similar signals for 5.3 GeV beams and quadrupole gradients of 7.5 T/m and 3.5 T/m as well
as for 2 GeV beams with gradients of 2 T/m.

The new quadrupole will be assembled from existing CESR MK1 style laminations. In order
that the aperture be large enough to house the flux detector, the laminations will be machined and
spacers added to give a 15 cm clearance for the beam-pipe/detector assembly. This modification is
identical to that made to a quadrupole that has been in service for the past 10 years in the context
of a luminosity monitor[16].

A new shielded electrode detector will be based on the existing design described in Ref. [13].
Simulations show that the azimuthal distribution of the peak electron flux increases with bunch
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Figure 1: At the present location (Q48W) of
the quadrupole equipped with an EC detector,
the synchrotron light flux at 5.3 GeV is about
0.23 photons/m/electron for a positron beam
and nearly zero for an electron beam.

Figure 2: At the proposed location of a new
quadrupole with EC detector (Q15W), there is
higher synchrotron light flux than at the present
Q48W location for both positron and electron
beams at 5.3 GeV.

charge and with the highest anticipated charge, it will extend beyond the 6 mm width of the
existing detector. A wider azimuthal acceptance will be part of the new detector design. The
new detector and quad will replace an existing 120 cm test section of beam-pipe instrumented
with flux detectors in a drift [14]. As shown in Fig. 2 the new quadrupole will be adjacent to a
standard lattice quadrupole. Variations in the field in the instrumented quad can be compensated
with its neighbor allowing first measurements of the dependence on magnet gradient. The readout
electronics and cabling for the existing electron flux detector will be reused.

The microwave properties of the new quadrupole chamber, including identificaton of resonant
modes, will be modeled with InventorTM and CST Microwave StudioTM. Button electrodes to
couple microwaves in and out of the chamber will be included in the design. The simulation will
be benchmarked with bead-pull measurements on approximate physical models and on the final
assembly before installation in the storage ring. For data taking, two runs of Heliax will be needed
for the drive and pickup signals and an existing signal generator and spectrum analyzer will be
used.

2.2 Description of Electron Cloud Detectors

The proposed EC density detectors are extensions of devices already in use at CESRTA. The
following sections give a brief description of these detectors.

2.2.1 Shielded Electrode in a Quadrupole Magnet

A sketch of the existing shielded electrode detector is shown in Fig. 3. An array of parallel holes
allows cloud electrons to enter the detector that is centered on a pole face near the longitudinal
center of the quadrupole. The holes have a depth to diameter ratio of 3:1, which attenuates the
electromagnetic pulse from the passing bunch, while providing adequate transparency for electrons.
The collector is about 6 mm wide by 100 mm long and is AC coupled to 40 dB of amplification
before the signal is recorded with a digital oscilloscope.
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Figure 3: A sketch of the quadrupole shielded
electrode, where holes in the beam-pipe wall al-
low cloud electrons to enter the detector, while
attenuating the direct beam signal.

Figure 4: Quadrupole shielded electrode
data from a 10-bunch train and a 20-bunch
train of positrons at 10 mA/bunch (1.6 ×
1011 positrons/bunch).

Figure 4 shows the data obtained with this detector that was the first indication of trapped
charge. Data from two bunch configurations are shown, a 10-bunch and a 20-bunch train with
the same charge per bunch, plotted on the same scale. The signal from the first ten bunches of
the 20-bunch train is larger than the signal from the 10-bunch train alone. This suggests that
the 20-bunch train leaves some amount of charge behind that is available to seed the buildup of
the cloud on the next turn. Additional information on this and similar measurements is given in
Ref. [13].

According to simulations with the ECLOUD code, roughly 7% of the EC density remains
trapped in the quadrupole field for times longer than the 2562 ns revolution period of the stored
beam in CESR [17]. Figure 5 shows the simulated density in a cross-section of the beam-pipe
at a time just before the return of a stored 20-bunch train of positrons with bunch populations
of 1.16 × 1011 and 1.32 × 1011. Simulations also suggest that at the highest bunch charge, the
peak current of electrons onto the beam-pipe wall is split about the line centered on the pole face.
Figure 6 shows the simulated distribution of electrons just after the passage of a 20-bunch train of
positrons. At the highest bunch charge, the split distribution is wider than the acceptance of the
6 mm width of the present detector, reducing its sensitivity to the increased flux of electrons at these
currents. The original 6 mm width design, was based on the assumption of a narrow distribution
of low energy cloud electrons that would spiral along the field lines toward the pole face. The 3:1
depth to diameter ratio of the holes limited the acceptance of the detector for electrons incident
at larger angles. Our redesign will include a wider collector and an array of holes oriented to more
nearly follow the diverging field lines of the quadrupole.

2.2.2 Microwave Measurements

The use of resonant microwaves to measure electron cloud (EC) density has been developed by
Sikora and students at Cornell over the past several years [19]. In this technique, the accelerator
beam-pipe is excited with microwaves near the cutoff frequency of the pipe, typically with some
resonant response as shown in the example of Fig. 7. The presence of the electron cloud will shift
the resonant frequencies by an amount Δω given by Eq. 1 in the limit of EC densities with low
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Figure 5: ECLOUD simulations show cloud electrons that are trapped in the quadrupole field at
a time just before the return of a stored 20-bunch train of positrons. The revolution period is
2562 ns.

collision frequency. In this equation, ne is the local EC density, E2
0 the local electric field of the

resonant microwaves, ε0 the vacuum permittivity, and with e and me the charge and mass of an
electron. The integrals are taken over the resonant volume.

Δω

ω0
≈ e2

2ε0meω2
0

∫
V neE

2
0dV∫

V E2
0dV

(1)

In principle, a time-averaged EC density can be obtained by measuring shifts in the resonant
peak frequencies, but at densities of 1012 e−/m3, Δω/ω is only about 10−4 and is not easily
measured given the typically low Q values. In addition, changes in beam-pipe temperature will
effect the resonant frequency. Instead, we use a short train of bunches in the storage ring to
generate a periodic EC density. Figure 8 shows that when the beam-pipe is excited at or near a
resonant frequency, the periodic EC density will generate phase modulation in the response. The
phase modulation sidebands are then observed with a spectrum analyzer [19].

An alternate technique is to detect the change in phase directly and record it with an oscil-
loscope [20]. The development of this phase detection technique will be important for the study
of electron cloud that is trapped on a timescale that is long compared to the revolution period of
the storage ring. The trapped cloud does not generate a modulation signal, but does produce a
phase offset. With careful analysis, the phase signal will provide a more direct measure of the time
evolution of the cloud.

3 Activities

3.1 Design

• Design new shielded electrode flux detector with larger azimuthal acceptance.

• Design the chamber geometry to support microwave measurements.
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Figure 6: ECLOUD simulations at a time just after the passage of a 20-bunch train of positrons
show that the electrons hitting the beam-pipe wall (and detector) are split about the center of the
quadrupole pole face. This is especially true at the highest bunch population of 8.26 mA/bunch.
The existing detector is 6 mm wide at the approximate scale and location shown. The new detector
will cover a wider azimuth to improve signal electron acceptance at the higher bunch populations.

• Design the mechanical support structures that will be needed for the installation of the
quadrupole magnet and beam-pipe.

• Plan the location and routing of magnet power, signal cables and instruments for data col-
lection.

3.2 Fabrication

• Large aperture quadrupole

– Machine the pole tips of the assembled laminations and the iron spacers.

– Wind coils, install them on the poles and make electrical, magnetic field quality and
water flow tests.

– Machine and assemble the mechanical support for the quadrupole

• Shielded electrode flux detector

– Fabricate the shielded electrode detector, the hole array plates and machine slots in the
beam-pipe.

– Assemble these onto the beam-pipe; perform vacuum and electrical tests.

• Resonant microwave detector

– Machine and assemble button electrodes for coupling microwaves in and out of the
chamber

– Perform bead pull measurements of quadrupole chamber to characterize resonant modes.
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Figure 7: An example of resonant response of
CESR beam-pipe. The triangles mark the reso-
nant frequencies calculated for a shorted section
of waveguide of length 1.385 m with a cutoff fre-
quency of 1.8956 GHz.

Figure 8: With a fixed drive frequency, a shift
in the resonant frequency will produce a phase
shift in the response.

3.3 Installation

• Install new chamber with quadrupole in location Q15W

• Install heliax cables for microwave data

• Recover electronics from existing quadrupole detector and reinstall at new location

• Install a standard CESR chopper power converter for the new quadrupole

3.4 Commissioning

• With guidance from simulations, develop a program of measurements and experiments.

• Beam tests with electrons and positrons

3.5 Time Line

Assuming that funding is available summer 2015

• Summer 2015: Finalize the design of the shielded electrode flux detector and the RF design
of the chamber.

• Fall 2015: Assemble and modify quadrupole laminations, assemble with spacers, wind coils
and install support hardware.

• January 2016: Install new chamber with quadrupole in storage ring.

• April 2016: Detector commissioning and data taking.

• May 2016: Begin analysis
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3.6 Data Taking and Analysis

Considerable effort will be required to develop the simulations to properly model the response of the
electron flux detector and the resonant microwaves. The time-sliced particle-in-cell cloud buildup
and electron macroparticle tracking numerical model, which includes photoelectron and secondary
electron models as well as detector response functions, has proved essential in understanding the
complicated relationship between the observed signals and the cloud spatial and time structures.
Development of response modeling for the detector with improved azimuthal coverage will be nec-
essary. Of particular interest will be the opportunity to validate the highly nonlinear relationship
between signals and cloud density as a function of bunch population indicated by the modeling of
existing measurements and predicted for the measurements proposed here.

A clearing bunch has been observed to modulate the density of the trapped cloud. We propose
to develop experimental techniques to quantify this modulation by measuring the change in the
sideband amplitude of resonant microwaves. We will also develop hardware and analysis that use
direct phase detection so that the DC magnitude of the trapped cloud can be measured.

We will be taking data over a wide range of magnetic fields, with electrons for the first time as
well as with positrons, and at different beam energies. In the past, large changes in magnetic field
have always brought out either the inadequacies of the model or new physical insights. The analysis
of the data from the flux and microwave detectors will proceed in parallel, with cross-calibration
of the results of these two very different measurement techniques [15].

4 Broader Impact

The findings of the CESRTA electron cloud research program formed the basis for the design of
the damping rings for the International Linear Collider[28][29]. Mitigations tested at Cornell 10
are being incorporated into the B-factory that is being built at KEK in Japan[30]. Evaluation of
mitigations has informed the design of LHC upgrades where electron cloud effects are observed
to limit the number of proton bunches that can be circulated in the collider[31]. Electron cloud
trapped in the very high gradient interaction region quadrupoles has been identified as an important
contribution to cryogenic head load[32]. The observation of trapped cloud in CESR prompted a
collaborative study of the phenomenon in SuperKEK-B[33].

Accelerators deliver X-rays, produce high-energy particles and create the conditions found in
the center of stars and the early stages of our Universe. By one estimate, between 1939 and 2009, a
Nobel Prize was awarded every 2.9 years for research made possible or carried out at least partially
on an accelerator [34]. By improving the performance of accelerators, this proposal will benefit
all of these. It will also make them more cost effective to build and operate. Today’s accelerators
are also a critical tool for industry, medicine, national defense, and research, and may offer a path
to safe nuclear energy. Annual sales of industrial accelerators, for example, exceed $2B, and are
growing at an estimated 10% per year [35].

5 Outreach

Over the past several years, a number of undergraduate students have been involved in the ac-
quisition and analysis of electron cloud data, many as part of the Research Experience for Under-
graduates (REU) program. Some of the students who contributed to the study of trapped cloud
and the development of the resonant microwave technique include Sean Foster, Lillie Pentecost,
Ken Hammond, Robert Schwartz, Ben Carlson, Danielle Duggins, Alister Tencate, Chris Shill,
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and Erika Cowan. Indeed, REU student Chris Schill alerted us to a peculiarity in our measure-
ments that turned out to be the signature of trapping[36] and REU student Dante Iozzo’s modeling
study of trapped electrons led to the discovery and quantification of a highly nonlinear relationship
between the observed signals and the cloud density[37]. Their names appear as authors and coau-
thors of many of the conference proceedings and publications. We look forward to the continued
involvement of students at all levels, in this research.

6 Results from Prior Support

• NSF 1002467 Lepton Collider R&D 5/1/2011-4/30/2015, $15,009,973

With prior support from both NSF and DOE, the CESRTA research program has made im-
portant contributions to our understanding of beam dynamics of ultra-low emittance storage rings,
and to the development of instrumentation for measuring properties of the beam and its environ-
ment. The results appear in more than 150 conference proceedings, PhD theses, internal reports
and peer reviewed journal articles. The compete bibliography of CESRTA publications is included,
beginning on page 4, of the ‘References Cited’ section of this proposal

6.1 Electron Cloud

Our study of the electron cloud includes characterization of mitigations, measurement of cloud
growth and decay, and investigation of the dynamics of the interaction of the circulating electron
or positron beam with the cloud. Electron cloud simulation codes have been extended and refined
based on comparisons with our extensive data set and have become a more reliable tool for pre-
dicting behavior. Specialized instrumentation was developed to enable many of the studies. Nearly
30 retarding field analyzers were deployed in different magnetic field and vacuum environments in
the Cornell storage ring to measure the time averaged flux of electrons hitting the walls of the
vacuum chamber. Shielded electrodes provided time resolved measurements of electron flux and a
direct observation of cloud growth and decay. The density of the electron cloud in the volume of
the chamber was measured by observing the cloud induced phase and frequency shift of resonant
microwaves.

6.1.1 Retarding Field Analayzers

The retarding field analyzer (RFA) measures the DC flux of electrons into the wall of the vacuum
chamber. It is the principle tool for measuring the growth of the cloud and the surface properties
of the chambers, and for determining the effectiveness of various suppression techniques. The RFA
is mounted on the top of the chamber and is typically segemented to provide position dependence.
The voltage on the retarding grid determines the minimum energy electron that can reach the
collector, thus providing a means of measuring the electron energy distribution [21]. A voltage scan
with an RFA in a field free region is shown in Fig. 9. A comparison of RFA measurements for five
different beam pipe coatings is shown in Fig. 10. Fig. 11 is an example of a dipole RFA data taken
as a function of the magnetic field. The most prominent feature of the data is regularly occurring
spikes or dips in all three plotted chambers. These correspond to “cyclotron resonances,” which
occur whenever the cyclotron period of cloud electrons in the dipole field is an integral multiple of
the bunch spacing thus enhancing the transfer of energy from the beam to the electron. With 4 ns
bunch spacing the data show resonant enhancement at intervals of 89 Gauss, in good agreement with
our simple model. The resonances appear as peaks in the RFA signal in the Aluminum chamber,
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but as dips in the coated chambers. The resonant enhancement in the uncoated aluminum vacuum
chamber is a result of higher energy electrons striking the bottom and top of the vacuum chamber
at more grazing angles. For TiN coated chambers, the energy dependence of the secondary yield
peaks at lower energy than for aluminum. We find as a result that in the coated chambers the cloud
density decreases on resonance, where the electron energy is beyond the peak yield. Simulations
with the ECLOUD code that incorporate the appropriate physics parameters of the TiN coating
are in good agreement with the measurements.

Figure 9: RFA voltage scan. The flux detec-
tor has 9 collectors arrayed across the top of
the vacuum chamber, with collector 5 at the
center. The electron cloud is evidently concen-
trated near the center of the chamber. The
electron energy is given by −Vgrid. The vac-
uum chamber is TiN coated, beam conditions
1 × 45 × 1.25 mA, 5.3 GeV with 14 ns spaced
bunches.

Figure 10: Comparison of different beam pipe
coatings. Plots show average collector signal
vs. beam current for 20 bunches of positrons
with 14 ns spacing at beam energy 5.3 GeV.
Note that the aluminum chamber signals are
divided by 3. The TiN signal is plotted for
two different beam doses.

6.1.2 Shielded Button Electrode

The shielded button electrode is a standard beam position monitor button electrode that is shielded
from the direct beam signal by a screen with holes for transmission of cloud electrons. The time
resolution of the detector is a fraction of a nanosecond permitting time-resolving measurements
of the growth and decay of the cloud. In a typical measurement, two bunches are circulated in
the storage ring. Synchrotron radiation from the lead bunch knocks electrons off the walls that
then populate the chamber with some distribution. The trailing (witness) bunch of positrons kicks
electrons that have drifted to the bottom half of the chamber into the detector at the top. The
delay of the witness bunch with respect to the lead maps the development of the cloud.

The time evolution of the cloud is sensitive to its kinematic phase space distribution[18],[14].
The beam kicks, which can be controlled by varying the bunch population, accelerate cloud electrons
to energies at and beyond the peak energy of the secondary emission curve. Subsequent collisions
with the vacuum chamber wall reduce the cloud kinetic energy. Eventually the secondary emission
process is dominated by elastic reflection of the remaining low-energy electrons. The cloud lifetime
is then determined by the material-specific elastic yield value of the surface.
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Figure 11: RFA signal as a function of dipole
field: 1 × 451mA positrons, 5 GeV 4 ns spac-
ing. Cyclotron resonances are observed every
89 G. Note that the Aluminum chamber signal
is divided by 20.

Figure 12: Witness bunch study with the TiN-
coated aluminum chamber. The smooth curves
show the digitized shielded electrode signals,
while the points show the results of the model
including statistical uncertainties.

Fig. 12 illustrates a method of determining cloud lifetime, and the elastic yield value, for a
titanium nitride coated chamber. Overlaying the two-bunch signals obtained by varying the delay
in the arrival of the trailing bunch in 14-ns steps clearly shows both the buildup and decay of
the cloud. Six scope traces produced by two 5.3 GeV positron bunches of population 8 × 1010

are superposed. The delay of the witness bunch ranges from 14 to 84 ns. The magnitudes of the
modeled signals at large witness bunch delay show the dependence on the elastic yield parameter δ0.
The best fit is given by a value δ0 = 0.05, which is an order of magnitude lower than is obtained from
measurements on an uncoated aluminuum vacuum chamber. Detectors that combine the position
and energy sensitivity of the RFA with the temporal measurement of the shielded detector, have
been installed in dipole and quadrupole chambers.

Measurements of the electron cloud with resonant microwaves are shown in Fig. 13. If the
EC density were uniform over the length of this section of beam-pipe, the data obtained from
these five resonances would coincide. But at the highest current, the measured EC densities vary
by about 30%. The differences in these measurements are too large to be explained by errors in
the measurement of the Q of each resonance or of the sideband ratios, suggesting that the EC
density is not uniform and that the distribution of the standing waves is not symmetric. Indeed
the asymmetry of the standing waves provides a means for measuring the nonuniformity of the
cloud[19].

6.1.3 Electron Cloud Beam Dynamics

Experiments were performed at CESRTA to characterize the interaction of the electron cloud with
the high energy positron and electron beams. The first order effect of the electron cloud on the
circulating beam is to focus positron beams and defocus electron beams. The focusing (defocusing)
is manifested as a tuneshift. A train of bunches produces an electron cloud with density increasing
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Figure 13: The EC density is calculated for each
of the five peak frequencies iof Fig. 7 and plot-
ted as function of total beam current in a 10-
bunch train of positrons.

Figure 14: Measured tune shifts (black points)
vs. bunch number, for a train of 10, 0.75 mA,
5.3 GeV positron bunches with 14 ns spacing,
followed by witness bunches. Blue points are
from POSINST simulation and a sophisticated
model of synchrotron radiation.

along the train[22]. The tune is shifted for each bunch by an amount proportional to the local
cloud density. A measurement of the bunch by bunch tune shift for a train of ten bunches is shown
in Fig. 14. The points in the figure at bunch numbers greater than 10 are measurements for the
tune shift of a witness bunch placed sequentially in 14 ns increments beyond the end of the train to
characterize the decay of the cloud. In Fig. 15 the electron density as determined by the measured
tune shift for a train of 30 bunches is plotted along with the results of the POSINST simulation
of the density. A second order effect of the cloud on the beam is to increase the beam emittance.
Beam centroid motion and size are observed to grow along a train. Often the first bunch in the
train has an anomalously large size. Fig. 16 shows the measured vertical size and centroid motion of
each bunch in a train of 30 positron bunches. A quantitative understanding of the physics driving
these effects is the subject of ongoing research.

6.2 Instrumentation

The beam based measurements essential to the research program required the development of
new instrumentation, including a multi-bunch multi-turn beam position monitor system, an X-ray
beam size monitor for bunch by bunch measurement of vertical beam size, a visible light monitor
of horizontal beam size, and a digital tune tracker for resonantly driving individual bunches at the
normal mode frequencies.

6.2.1 X-Ray Beam Size Monitor
The X-ray beam size monitor[25] measures bunch by bunch and turn by turn vertical beam size
with resolution of a few microns. Synchrotron X-rays radiated by the bunch in a hard bend magnet
are imaged by an optical element onto a detector.

The fast diodes and readout provide turn by turn measurement of the size of bunches separated
by as few as 4 ns. That capability is illustrated in Fig. 16 that shows beam size as a function of
bunch number for 30 bunches with 4 ns spacing, preceded by a precursor bunch 20 ns ahead of the
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Figure 15: Average initial (i.e., before the
“pinch”) electron cloud density vs. bunch num-
ber, com- parison between estimate from mea-
sured tune shifts (red), and simulation (black)
from POSINST.

Figure 16: Turn-averaged beam size by bunch
number for a run with 30 bunches in a train
with 4 ns bunch separation and an additional
precursor bunch 20 ns ahead of the train.

train. The precursor is meant to temporarily sweep away the electron cloud. Without the precursor
we find that the lead bunch (bunch #6) tends to have larger beam size. A coded aperture optic,
optimized for operation in the low beam energy regime (1.8GeV) where the X-ray spectrum is soft
and the photon statistics limited, was successfully tested, demonstrating a significantly improved
resolving power. The new optic was used for measurements of intra-beam scattering[26].

6.2.2 Visible Light Beam Size Monitor
A beam profile monitor utilizing visible synchrotron radiation (SR) from a bending magnet has
been designed and installed in the storage ring (CESR)[24]. The monitor employs a double-slit
interferometer, as shown in Fig. 17 to measure both the horizontal and vertical beam sizes over a
wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50
to 500 μm can be measured with a resolution of approximately 5 μm. By imaging the π-polarized
component of SR, a small vertical beam size (∼ 70 μm) was measured during an undulator test
run in CESR, which was consistent with the interferometer measurement. To measure the bunch
length, a beam splitter is inserted to direct a fraction of light into a streak camera setup. This
beam size monitor measures the transverse and longitudinal beam sizes simultaneously, a capability
that has proven invaluable for the study of collective effects that dilute the beam emittance. A
measurement of the dependence of the horizontal beam size on bunch charge is shown in Fig. 18
along with the prediction of intra-beam scattering (IBS) theory. As anticipated, the increase in
horizontal beam size due to IBS depends on the initial (∼zero current) vertical emittance[26].

6.3 Low Emittance Tuning

The low emittance tuning algorithm developed at CESRTA [27] routinely achieves geometric vertical
emittance of order 10 pm-rad and is limited by survey tolerances. The tuning algorithm depends
on beam based measurements of the closed orbit, transverse coupling, and vertical dispersion. The
coupling is determined by resonantly exciting a bunch at the transverse normal mode tunes, and
measuring out of plane response at each BPM. Dispersion is similarly determined by exciting the
beam at the synchrotron tune and measuring horizontal and vertical response at that frequency.
A digital tune tracker [39] is used to drive the beam on resonance and to monitor the phase of the
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Figure 17: A typical interference pattern of SR
using a D=2.0 mm double slits. (b) The hori-
zontal intensity profile integrated between two
white lines in (a) and the best fit using Eq. (1).
(c) The visibility measured using three different
sets of double slits (D=2.0, 2.5, and 3.0 mm).

Figure 18: Horizontal beam size vs bunch
charge for electrons and positrons at low ver-
tical emittance and then again with higher ver-
tical emittance. The points are the data and
the bands the model of intra-beam scattering
including theoretical uncertainty.

drive on each turn for comparison with the measured phase of the bunch at each BPM. Because the
data is collected in a fraction of a second, the emittance tuning technique is insensitive to drifts in
timing and BPM gain. Insofar as no guide field magnets need be changed, the method is relatively
non-destructive.

6.4 Collective effects

The instrumentation described above has enabled the study of other collective effects, including
intra-beam scattering (see Fig. 18)[26] and the fast ion instability [40].

6.5 Publications

The complete bibliography of reports, conference proceedings and peer reviewed publications docu-
menting the results of prior support for the CESRTA research program appears beginning on page
4 of the ‘References Cited’ section of this proposal. A number of analysis and simulation codes
have been developed as part of the research program. The BMAD [41] open source code library
now includes modules for computing, fast ion instability, intra-beam scattering, wakefield effects,
space charge. The CMAD [42] simulation is used to study the interaction of the beam with the
electron cloud and has reproduced a number of the features of the data.
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(FNAL), I.A. Koop (Budker), W. Korsch (Kentucky), I. Kourban-is (FNAL),  K. Krempetz (FNAL), A. G. 
Krivshich (PNPI), K. Kubo (CERN),  N. Kuchinskiy (Dubna), Y. Kuno (Osaka), B. Lauss (PSI), A. Leveling 
(FNAL), L. Li (Shanghai), I. Logashenko (Budker), A. Luca (Frascati), K. Lynch (York),  K. R. Lynch 
(Boston), A. Lyon (FNAL), E. M. Maev (PNPI), O. E. Maev (PNPI),  M. Martini (Frascati), J. P. Miller 
(Boston), S. Miscetti (Frascati),  N. Mokhov (FNAL), A. Molvik (CERN), J.P. Morgan (FNAL), W.M. Morse 
(BNL), D. Munson (CERN), D. Neuffer (FNAL), H. Nguyen (FNAL), K. Ohmi (CERN), C.J.G. Onderwater 
(KVI), J-F. Os-tiguy (FNAL), M. Palmer (Fermilab), Y. Papaphillipopou (CERN), A. Para (FNAL), G. Penn 
(KEK), G. E. Petrov (PNPI), M. Pivi (Virginia), B. Plaster (Kentucky), D. Plate (KEK), D. Pocanic (Virginia), 
C.C. Polly (FNAL), M. Popovic (FNAL), M. Ramsey-Musolf (Wisconsin), M. Rominsky (FNAL), P. Rubinov 
(FNAL), G. Rumolo (CERN), I. Sarra (Frascati), G. N. Schapkin (PNPI), H. Schmickler (CERN), R. 
Schultz (FNAL), G. G. Semenchuk (PNPI), Y.K. Semertzidis (BNL), Y.M. Shatunov (Budker), K. Shibata 
(KEK), A.K. Soha (FNAL), E. Solodov (Budker), M. A. Soroka (PNPI), D. Still (FNAL), D. Stockinger, 
(Dresden), S. Strigonov (FNAL), Y. Suetsugu (KEK), E. Swanson (Washington), V. Tishchenko (BNL), M. 
Tobiyama (SLAC), J. Urakawa (SLAC), A. A. Vasilyev (PNPI), G. Velev (FNAL), G. Venanzoni, (Frascati), 
M. Venturini (SLAC), A. A. Vorobyov (PNPI), M. E. Vznuzdaev (PNPI), L. Wan (SLAC), P. Winter (ANL), 
A. Wolski (Cockroft), Y. Yan (SLAC), T. Zhao (Washington) 

e. ii. Graduate Advisors and Post Doctoral Sponsors  
Thesis Advisor: Rudi Thun, University of Michigan 
Post-doctoral Supervisor: Robert Siemann, Cornell University 
e. iii. Thesis Adviser (last 5 years) 
Thesis Advisees: Jim Shanks, Joe Calvey, Yariv Yanay, Michael Ehrlichman, Carstan Quinlan, 
Kelvin Blaser, Colin Clement, Jeremy Perrin (all Cornell University) 
e. iv. Postgraduate-Scholar Sponsor (last 5 years): Suntao Wang, Jim Shanks, SeungCheon 
Kim (all Cornell University), Avishek Chatterjee (University of Geneva), Joe Calvey (Argonne 
National Lab), Michael Ehrlichman (Paul Scherer Institute), Kiran Sonnad (KEK) 
 

Total Graduate Students Advised: 17  
Total Postgraduate Scholars Sponsored: 7 
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Budget Justification – Electron Cloud Trapping in High Energy Accelerators 
 

Personnel:   
Other Professionals:  Funds are requested to support the effort of accelerator physicists, 
equipment technicians and CESR accelerator support staff.  The accelerator physicists will 
oversee equipment design, beam measurements and data analysis. Much of this work will be 
done by students and postdocs who will be supported by the existing CesrTA grant. The 
equipment technicians will provide labor to construct the beam-pipe, detector and magnet and 
to install the equipment in the storage ring.  The CESR support staff will provide assistance 
during the machine studies periods. 
 
Fringe benefits:  Fringe benefits are charged to all salaries in this budget.  The rate is 34.9% 
starting July 1, 2015.  The rate is based on an agreement with DHHS dated September 2, 2014. 
 
Capital Equipment:  Funds are requested to construct a shielded electrode detector and a 
resonant microwave detector on a quadrupole vacuum chamber, and to assemble a large 
aperture quadrupole. 
 
Material and Supplies:  The requested budget includes materials, eg. epoxy and copper, 
needed for the quadrupole and for miscellaneous lab supplies needed for this project.   
 
Other:  Funds are budgeted for the cost of the electric used during the storage ring operation 
for the machine studies time. 
 
Indirect costs:  The rate of 61% is applied to all costs except capital equipment and the electric 
costs.  The rate is based on an agreement with DHHS dated September 2, 2014. 
 



                                                              Current and Pending Support  
 

 
 Other agencies (including NSF) to w hich this proposal has been/will be submitted. 

Investigator: Rubin, David L.  
Support: X Current  Pending   
Project/Proposal Title:   OPERATION OF CORNELL HIGH ENERGY SYNCHROTRON SOURCE (CHESS) 
Source of Support:   NATL SCIENCE FOUNDATION 
Total Award Amount:  $77,586,038 
 

Total Award Period Covered:  7/1/11 – 3/31/15  

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support: X Current  Pending   
Project/Proposal Title:   LEPTON COLLIDER R&D 
Source of Support:   NATL SCIENCE FOUNDATION 
Total Award Amount:  $15,009,973 
 

Total Award Period Covered:  5/1/11 – 4/30/15  

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support: X Current  Pending   
Project/Proposal Title:   AN IMPROVED MEASUREMENT OF THE MUON ANOMALOUS MAGNETIC MOMENT WITH FERMILAB        
 

  Source of Support:   DOE 
Total Award Amount:  $1,050,000 
 

Total Award Period Covered:  7/1/12 - 3/31/15 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support: X Current  Pending   
Project/Proposal Title:   OPERATION OF CORNELL HIGH ENERGY SYNCHROTRON SOURCE (CHESS) 
Source of Support:   NATL SCIENCE FOUNDATION 
Total Award Amount::  $100,401,477 
 

Total Award Period Covered:  4/1/14 – 3/31/19 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:  1.0 

Support: X Current  Pending   
Project/Proposal Title:   :   MRI CONSORTIUM: DEVELOPMENT OF INSTRUMENTATION TO MEASURE THE SPIN PRECESSION 
FREQUENCY IN THE FERMILAB MUON G-2 EXPERIMENT 
Source of Support:   NATL SCIENCE FOUNDATION 
Total Award Amount:  $867,111 
 

Total Award Period Covered:  9/15/13 – 8/31/16 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support: X Current  Pending   
Project/Proposal Title:   CORNELL PROGRAM FOR STUDENT-CENTERED ACCELERATOR SCIENCE 
Source of Support:   NATL SCIENCE FOUNDATION 
Total Award Amount:  $9,972,786 
 

Total Award Period Covered:  9/1/14 – 8/31/17 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:  1.0 

Support: X Current  Pending   
Project/Proposal Title:   EAGER PROPOSAL: PRELIMINARY STUDIES FOR A DARK PHOTON SEARCH 
Source of Support:   NATL SCIENCE FOUNDATION 
Total Award Amount:  $32,913 
 

Total Award Period Covered:  7/1/14 -6/30/15 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   



Support: Current  X  Pending   
Project/Proposal Title:   REU SITE: ACCELERATOR PHYSICS AND SYNCHOTRON RADIATION SCIENCE 
Source of Support:   NATL SCIENCE FOUNDATION 
Total Award Amount:  $480,180 
 

Total Award Period Covered:  3/1/15 – 2/28/18 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support: Current  X  Pending   
Project/Proposal Title:   INNOVATIONS IN OPTIMIZATION AND CONTROL OF ACCELERATORS USING METHODS OF 
DIFFERENTIAL GEOMETRY AND GENETIC ALGORITHMS 
Source of Support:   DOE 
Total Award Amount:  $743,287 
 

Total Award Period Covered:  1/1/15 -12/31/17 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support: Current  X  Pending   
Project/Proposal Title:   R&D TOWARD FUTURE ENERGY FRONTIER CIRCULAR COLLIDERS (FCC) 
Source of Support:   DOE 
Total Award Amount:  $1,111,413 
 

Total Award Period Covered:  4/1/15 – 3/31/18 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support:    Current X  Pending   
Project/Proposal Title:   Search for Dark Photons in Positron Collisions at Cornell 
Source of Support:        National Science Foundation 
Total Award Amount:    $2,643,791 
 

Total Award Period Covered:  7/1/15-06/30/18 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support: X  Current Pending   
Project/Proposal Title:   Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole 
Moment 
Source of Support:        DOE 
Total Award Amount:    $97,000 
 

Total Award Period Covered:  8/15/12-8/14/15 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support:   Current X Pending   
Project/Proposal Title:   MRI: Development of a Brilliant X-ray Source Upgrade for CHESS 
Source of Support:        NSF 
Total Award Amount:    $3,990,081 
 

Total Award Period Covered:  10/1/15 - 9/30/18 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

Support:   Current X Pending   
Project/Proposal Title:   Electron Cloud Trapping in High Energy Accelerators 
Source of Support:        NSF 
Total Award Amount:    $348,028 
 

Total Award Period Covered:  8/1/15 - 7/31/16 

Location of Project:  Cornell University 
Person-Months Per Year Committed to the Project.                 Cal:  

 
  Acad: Sumr:   

 
 

 



Appendix 4: Facilities, Equipment, and Other Resources 
 
Cornell Electron Storage Ring (CESR) accelerator facility 
 
The facilities available for the proposed beam tests include the accelerator infrastructure at Wilson 
Laboratory: electron and positron linac, full energy synchrotron booster and storage ring with energy 
range from 1.8 to 5.6 GeV. The storage ring is equipped with state of the art high bandwidth 
instrumentation for monitoring position and size of the circulating beams, and multi-bunch feedback 
systems. The integration of beam instrumentation with the accelerator control system provides the 
capability for a diverse experimental program. The scientific and technical staff has decades of experience 
developing instrumentation and operating particle accelerators and access to the well equipped CLASSE 
electronics and mechanical shops. Computing resources available to investigators are likewise state of the 
art. 
 
Key support services at CLASSE include clerical personnel, purchasing, stockroom, supplies, mailroom, 
moving and rigging, machine and electronics shops, engineering, vacuum lab, general technicians, 
technical and publication drafting, computer and network services, and outreach coordination. 
 
The equipment required for the proposed research is available for the proposed experimental program. 
The Cornell Electron Storage Ring (CESR) will be available for beam tests. The storage ring is well 
instrumented to monitor lattice characteristics and the flexible control system allows straightforward 
implementation of specialized optics. Existing electron cloud detectors, data acquisition systems and 
related infrastructure will be the basis for developing the new detectors.  
 



Data Management Plan 
 

Expected Data. We employ state-of-the-art control systems for accelerator operation with fully 
automated computer-controlled data recording techniques, so that all measurements will yield raw data in 
electronic file format. Data are recorded using a variety of software packages, some commercially 
produced and some specific to the accelerator facilities. Raw data are sometimes processed utilizing 
standard software packages (MATLAB, etc.) or custom visualization or analysis code. Raw and processed 
data are used as inputs to models and computer simulations, whose algorithms, computer codes, and 
outputs are parts of complete datasets. Details of the simulations and models will be published in peer-
reviewed journals, and documented code and algorithms will be included as part of the complete dataset. 
 
In particular, all storage ring parameters are routinely recorded by the CESR control system. Data 
collected with beam instrumentation, including turn by turn and bunch by bunch beam position and bunch 
size monitors, and electron cloud detectors are archived, as are all relevant calibration constants. For a 
subset of measured quantities a “pass 1” processed version of the data are stored. We continue to add 
storage capability in order to maintain complete records 
 
Data Format. Hardcopy notebooks will be maintained to document installation and use of project 
equipment and experimental procedures developed over the course of this project.  
 
The data themselves will be stored in ASCII, CSV, or binary formats (sometimes using typical MATLAB 
I/O standards and functions) for large size sets. Data snapshots will be stored in individual directories 
with appropriate time stamps. Indexing of the experimental data (metadata) will be available in each 
directory and the main parent directory, along with documentation in the hardcopy notebooks according 
to accepted standards in the lab. Metadata standards will be developed by the investigators as necessary 
(custom) to unambiguously associate data with specimens and preparation procedures, instruments, dates 
and times, processing and analysis techniques, and any other information deemed necessary to fully 
understand the data analysis flow and results. 
 
Data Archival. All raw, processed and analyzed data will be copied to a storage area network of 
redundant disk arrays with error protection and a total capacity of hundreds of terabytes. Each folder or 
directory on this file system will include data index tables and summaries of experimental data contained 
therein. The data on these disk arrays and all of its content are archived on a revision controlled 
redundant-hardware off-site tape library with daily incremental and full monthly backups. The hardcopy 
notebooks will be stored in file cabinets along with the equipment. 
 
To guarantee redundant access and persistence, the PI will also archive all project data in the 
eCommons@Cornell repository. This Digital Repository is powered by opensource project DSpace and is 
open to anyone affiliated with Cornell University as a place to capture, store, index, preserve and 
redistribute materials in digital formats that may be useful for educational, scholarly, research or historical 
purposes. eCommons@Cornell is a service of the Cornell University Library that provides long-term, 
open access to a broad range of Cornell-related digital content of enduring value. All work deposited in 
eCommons will be assigned a persistent identifier and a persistent Web address (URL), guaranteeing that 
data will be accessible independent of the hosting location or domain of the repository. 
 
Access to Data and Data Sharing Practices and Policies. We expect that all the data gathered and 
results derived during this project will be freely available to interested parties. A number of collaborative 
Wiki-based websites are maintained by the Laboratory for research areas covering CesrTA, These web-
sites contain many details of specific hardware design and instrumentation, weekly meeting minutes, 
summary of experimental procedures, as well as preliminary experimental results. The access to these 
resources is password-protected with our collaborators outside of Cornell having full access to these 



resources and contributing frequently to its content.  
 
Policies for Re-Use, Re-distribution. All of our websites will include standard disclaimers and 
conditions regarding the use of the data in other publications and products in accordance with Cornell 
University standards. In summary, data is allowed to be reused without expressed consent from the PI’s 
but requires statements of attribution and disclaimers that the originators of the data are not responsible in 
any way for re-use or novel interpretations or results. Disclaimers and policies for deposit, access, 
withdrawal, ownership, privacy and preservation of data will follow closely those for the 
eCommons@Cornell depository found at http://ecommons.library.cornell.edu/policy.html. 
 
Machine operations and people data (proposal, beamtime requests, etc.) are always kept private and 
secure (no external access to raw data). Machine and facility use information is summarized periodically 
for official reporting purposes only (i.e. NSF review committees, GPRA and NSF annual reports). 

http://ecommons.library.cornell.edu/policy.html

