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Betatron phase and coupling measurements at the Cornell Electron/Positron Storage Ring
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Measurement of the betatron phase in the vertical and horizontal planes as well as the transverse
horizontal-vertical coupling is a standard procedure now used at the Cornell Electron/Positron Storage
Ring. The measurement is made by shaking the beam and observing the phase of oscillation at detectors
located around the ring. The measurements allow quadrupolar errors to be corrected.

PACS numbers: 29.20.Dh, 29.27.Fh, 29.40.Gx
I. INTRODUCTION

Errors in the lattice parameters of a storage ring can
come from many sources. For example, the calibration
constants used to set quadrupole magnets may be inaccu-
rate, the orbit may pass through the sextupoles off center,
or there may be unsuspected quadrupole fields associated
with machine elements. To verify that a design lattice
has actually been implemented correctly, one or more se-
lected lattice functions must be measured around the ring
to be compared with the expected values. At CESR, the
Cornell Electron/Positron Storage Ring, exploiting the fact
that the quadrupole magnets are individually controlled,
one method that has been used is to measure the tune Q as
a function of quadrupole strength k. The Twiss parameters
bh and by at the quadrupole are then obtained from the
standard formula [1]

dQh,y �
bh,y

4p
dk l , (1)

where l is the length of the quadrupole. This procedure
has several disadvantages. It perturbs the quadrupoles, and
thus hysteresis must be accounted for; also, the permis-
sible tune excursion may be limited if the operating point
falls close to a destructive resonance. Since the slew rate
of the quadrupole power supplies is limited, the procedure
is slow: Typically it takes 30 min to make a measurement
at approximately 100 quadrupoles. Finally, whenever the
beam is not centered in the quadrupole under study, vary-
ing k provokes orbit distortions which in turn will cause
tune shifts due to the sextupoles.

An alternative approach is to shake the beam at some
betatron sideband and then measure the phase of the os-
cillations at the beam position detectors around the ring.
This yields the betatron phases fh,y at the detectors which
can then be related to the beta function via [1]

1
bh,y

�
dfh,y

ds
. (2)

This technique has been used at, for example, LEP [2]
and the ISP [3] where, since the ISP is a proton machine,
the shaking had to be swept through resonance to avoid
excessive beam blowup. At CESR, measuring the phase by
1098-4402�00�3(9)�092801(7)$15.00
this method has several advantages. It is quick, typically
taking 40 s for about 100 detectors. Since the quadrupoles
are not perturbed and the tune is not changed, the danger
of losing the beam is minimized. Additionally, the x and y
components of the oscillations at a detector can be resolved
allowing for extraction of the local coupling parameters.
Measuring the coupling in CESR is important to ensure
that the coupling produced by the CLEO detector solenoid
has been properly compensated.

II. PHASE MEASUREMENT HARDWARE

The experimental setup is shown schematically in
Fig. 1. A shaker excites a beam normal mode and the
oscillations of the beam are monitored via a beam position
detector. The beam signal is sent through a signal proces-
sor which stretches and amplifies the signal. The detector
signal is then sent to a signal analyzer which measures
the phase and amplitude of the signal at the normal mode
frequency. Ultimately, the data are transferred to the main
computer for storage and analysis.

In actuality there are two shakers: one is used to excite
the horizontal mode and the other is used to excite the
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FIG. 1. Schematic illustration of the experimental setup. The
beam position detectors are labeled d1, d2, d3, etc.
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vertical mode of the beam (for simplicity only one shaker
is shown in the figure). A shaker excites the beam at a
betatron sideband vs,

vs � pv0 1 vb , (3)

where vb is the betatron frequency, v0 is the revolution
frequency, and p is an integer. For practical reasons, the
shaker is limited to operate in the band jvsj # v0�2. The
shaker driver issues a reference signal in the form of a
square wave at the betatron frequency. This is used as the
reference for phase measurement of the detector signals.
The shaker driver is phase locked to the beam motion to
ensure that the shaker frequency is maintained on the reso-
nance peak. This is necessary since the betatron tunes drift
due to magnet regulation noise. If the shaking frequency
were held fixed, the tune variation would translate directly
into phase error between the beam motion and the refer-
ence signal.

The signal processor shown in Fig. 1 is one of six,
equally spaced around the ring. Any of the four buttons
of any beam detector can be connected to the nearest sig-
nal processor by a network of relays. Any signal processor,
in turn, can be switched into one of two semicircumferen-
tial trunk cables that terminate at the control room. Since
there are two trunk cables, two buttons may be observed
simultaneously, provided that they are on opposite sides of
the ring. Each signal processor has a p-i-n-diode attenu-
ator, followed by a chain of switchable fixed attenuators
and amplifiers for range selection. After this there is a
diode pulse stretcher which delivers pulses suitable for
transmission down the long cable to the control room.
The p-i-n-diode attenuator is used to implement an auto-
matic gain control (AGC) circuit that maintains the pulse
stretcher at a level of maximum sensitivity. This is nec-
essary because the signal levels from individual detector
buttons vary substantially due to optics, detector geome-
try, and cable attenuation.

A block diagram of the signal analyzer is shown in
Fig. 2. The signal analyzer consists of a pair of digitiz-
ing front ends to receive the beam signals from the two
trunk cables and a betatron phase reconstructor and digital
signal processor (DSP) for each of the two beam modes.
Thus, the systems for the horizontal and vertical normal
modes are independent except that they both receive digi-
tal data from the same detector buttons simultaneously. For
simplicity, only the diagram for one normal mode is shown
in the figure.

The digitizing front ends are similar to those used in the
CESR feedback system [4]. They remove the dc signal
component at the analog level and issue a 10 bit digital
signal with average value zero. Thus, the dynamic range
of the subsequent DSP is not reduced by dc offsets.

The betatron phase reconstructor is a wide-range phase-
locked loop circuit that multiplies the frequency of the
betatron phase reference signal by 512. This provides
092801-2
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FIG. 2. Signal analyzer block diagram. Shown is the diagram
for one normal mode (1�2 of the signal analyzer). Not shown
is the time multiplexing of the digital signal processor. The
numbers beside the digital signal paths indicate the number of
data bits.

a clock for the digital generation of high-resolution sine
and cosine functions for Fourier analysis. The phase-
locked loop includes a modulo-512 counter which gives
a 9 bit representation of the instantaneous betatron phase.
The system is built to monitor betatron frequencies up
to v0�2 � 2p 3 195 kHz. This requires the phase re-
constructor to have a maximum oscillator frequency of
99.8 MHz (�512 3 195 kHz). The frequency multiplier
applies the method developed for the CESR timing system
[5] to achieve a low level of subharmonic distortion. The
phase noise of the multiplied betatron clock is approxi-
mately 1 mrad at the betatron frequency.

The DSP is an integrator that computes the sine and co-
sine Fourier components of the signal: It consists of a
latch that samples the reference digital betatron phase on
each turn, a short first-in first-out (FIFO) memory that de-
lays the phase sample so that it is synchronous with the
arrival of the detector data, lookup tables that give the
sine and cosine functions of the phase to 16 bits, a pair of
10 3 16 bit multipliers that mix the sine and cosine func-
tions with the input data, and a pair of 40 bit accumulators.
The sample time of the latch is obtained from the CESR
master timing system and is fixed, independent of the de-
tector being monitored. The 40 bit accumulators allow the
summing of 16 k beam samples without overflow. At the
092801-2
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end of a measurement, the accumulators contain the sine
and cosine Fourier components of the signal with unknown
normalization.

The FIFO delay memory for the phase sample is nec-
essary because the phase sample and the beam data must
be presented to the multiplier simultaneously, and, from
detector to detector, the delay time for the detector signal
to reach the signal analyzer varies by more than the revo-
lution time T0 (�2.56 ms). The signal from each detector
on a given turn must be multiplied by the same reference
sample as all the other signals from the other detectors.
That is, the delay is, up to an additive constant, the time it
takes the beam to go from s � 0 to the detector plus the
time the signal takes to go from the detector to the signal
analyzer. This delay has been measured for each detector
and is loaded from a lookup table at the time of measure-
ment. The FIFO memory needs only to be two words deep
to accommodate the range of effective delays in CESR. In
essence, the lookup table defines the location s � 0 where
the measured phase will undergo a discontinuity equal to
the fractional tune.

Each DSP is implemented with a programmable logic
array. The array used has approximately 1700 logic cells
and is capable of synchronous computation at frequencies
in excess of 100 MHz. The array also contains random-
access memory, which can be automatically initialized
to provide the sinusoidal lookup tables. The multiplier-
accumulator blocks complete an accumulation cycle in
approximately 100 ns, and so several detector buttons
can be integrated simultaneously by time multiplexing of
the DSP.

The high speed and logic capacity of the programmable
logic device used provides two advantages in performance:
The betatron phases can be reconstructed at high reso-
lution, and a narrow filtering bandwidth can easily be
achieved. The use of high resolution sinusoidal func-
tions in the integrand means that harmonics of the betatron
signal are effectively rejected. Therefore, the measure-
ment is insensitive to nonlinearities in the beam motion,
the detector button response, or the pulse stretching elec-
tronics. This allows the use of larger shaking amplitudes
without loss of accuracy, with a resulting improvement in
signal-to-noise ratio.

If the DSP is treated conceptually as a filter, the
bandwidth of the filter is inversely proportional to the
number of samples accumulated. This bandwidth de-
termines the ability of the analyzer to reject random
instrumental noise and to separate the horizontal and ver-
tical modes of the beam. With data being taken once per
revolution, and with a revolution frequency of 390 kHz, the
filter bandwidth is about 20 Hz (�390 kHz�16 3 103).
With this level of filtering, the measurement can be done
on both horizontal and vertical modes simultaneously
since the tunes of the two modes are typically 10 kHz or
more apart and therefore there is negligible interference.
With 16 k samples, the minimum measurement time is
092801-3
41 ms (�16 k 3 T0). In practice, taking into account
relay settling time, a single measurement for a given beam
button takes around 200 ms. Since each detector has
four buttons it takes 800 ms to make a measurement on
a single detector. The signal analyzer takes simultaneous
measurements on two detectors. Thus, the time needed to
read 100 detectors is about 40 s.

III. PHASE DATA PROCESSING

The oscillations due to the shaker are observed at the
detectors around the ring. The phase u�i� of the beam
signal at the ith detector relative to the shaker reference
signal gives the betatron phase fi at the detector:

f�i� � u�i� 1 2 pmi 1 ua , (4)

where mi is an integer to correct for the fact that phases
are always measured modulo 2p and ua is a constant,
independent of the detector being used, that accounts for
phase shifts in any filters, etc. For CESR, phase differences
between the measured and the theoretical are always well
under p. Thus mi is simply chosen to be zero for one
arbitrary detector and the mi for all the other detectors
are calculated so that the measured phase differences most
closely match the theoretical ones. ua is then chosen so
that the average difference over all the detectors between
the measured and theoretical phase is zero.

If the tune Q falls above the half-integer, the betatron
sideband that falls within the shaker range of jvsj , v0�2
will have a negative frequency [for example, in Eq. (3)
with Q � 10.6, we need p � 211 to get vs � 20.4v0].
In this case, the measured u has a reversed sign from the
true u since any measurement apparatus calculates phase
under the assumption that its input frequencies are positive.
Consequently, the sign of the measured u needs to be
changed before applying Eq. (4).

Equation (4) shows an advantage of a digital system:
In an analog measurement the delay time to the signal
analyzer affects the measured phase as discussed in the
Appendix. For a digital system the propagation delay has
no effect on the measured phase, up to the point where
the data synchrony with the reference sample is lost. In
that case, the data samples are multiplied by the wrong
reference sample and the computed phase makes a jump
equal to the fractional tune.

Each detector in CESR consists of four button electrodes
labeled 1 through 4 as shown in Fig. 3. For the horizontal
mode the overall phase uh is obtained from an appropriate
average of the phases from the individual button signals

Aheiuh � eiu4,h 1 eiu2,h 2 eiu3,h 2 eiu1,h, (5)

where the ui,h are the phases from the analyzer system
monitoring the horizontal betatron frequency and Ah is
some real number whose value is not important. For the
vertical, the appropriate average is

Ayeiuy � eiu4,y 1 eiu3,y 2 eiu2,y 2 eiu1,y . (6)
092801-3
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FIG. 3. Typical button layout at a beam position detector.

Because of the symmetry, any coupling will not alter the
computed value for the overall phases. This is strictly
true only when the beam is centered between the buttons.
However, even when the beam is moderately off center
there is still good cancellation of the phase shifts of the
individual button signals. This is important since the phase
shift at the individual buttons due to coupling can easily
be more than the phase deviations from the theoretical that
need to be measured.

In actuality, because of solenoids, skew quadrupoles,
etc., oscillations of the horizontal and vertical modes will
not be strictly in the x and y planes, respectively. This
coupling can be parametrized using the C matrix [6,7].
Assuming weak coupling, the motion of the horizontal
normal mode at a detector is given by

x � Ax

p
bx cos�nvx� ,

y � 2Ax

q
by �C22 cos�nvx� 1 C12 sin�nvx�� ,

(7)

where Ax is the overall amplitude, bx and by are the beta
functions, vx is the normal mode tune, and n is the turn
number. From Eq. (7) it is seen that C22 is the normalized
amplitude of the vertical component of the motion that is
in phase with the horizontal motion and C12 is the nor-
malized amplitude of the out-of-phase component of the
vertical component of the motion. For the vertical normal
mode C11 gives the in-phase component of the horizontal
component and C12 gives the out-of-phase component:

x � Ay

p
bx �C11 cos�nvx� 2 C12 sin�nvy�� ,

y � Ay

q
by cos�nvy� .

(8)

The Cij are a measure of the coupling with Cij � 1 cor-
responding to full coupling.

C11, C12, and C22 are calculated from the measurements
using Eqs. (7) and (8). C21 is not directly measurable here.
It could be measured if the transverse momentum, x0 and
y0, were measurable. Experimentally, the C12 data are
found to have a better signal-to-noise ratio than the C11
092801-4
or C22 data. This is due to the fact that any cross talk
from the reference signal into the beam signal will tend
to pollute the in-phase component but not the out-of-phase
component. Also, any twisting of the beam pipe will result
in changes in the in-phase C11 and C22 components but not
in C12.

In theory b can be extracted from the measured am-
plitude. In practice, this is not done since the noise in
the measurement makes the phase data much more reli-
able than the amplitude data. Instead, b is computed from
the phase data by rewriting Eq. (2),

db

bb
� 2

d�df�
dfb

, (9)

where bb and fb are the beta function and phase obtained
from some base line lattice (typically the design HEP op-
tics) and db and df are the variations of the measured
values from the base line. Equation (9) is evaluated by
fitting the curve of df verses fb using a quasi-Hermite
nonsmoothing cubic spline developed by Akima [8]. The
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FIG. 4. Example db�b calculation from the phase data. The
horizontal scale for the phase data is the beam detector index
while for the b data the horizontal scale is the quadrupole index.
(a) Phase difference between a model lattice and a base line
lattice. (b) Exact db�b as calculated from the model and base
line lattices. (c) db�b as calculated from a spline fit of (a).
(d) Difference between (b) and (c).
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spline fit is easily differentiated to give db at any point.
This procedure for finding db is valid as long as the
coupling is not significant (jCj & 0.1) since with strong
coupling Eq. (2) is not valid.

An example of a b computation is shown in Fig. 4.
Figure 4(a) shows df as a function of detector index. For
purposes of illustration the “data” in this case are calcu-
lated from a model lattice in which one quad was adjusted
to be different from the base line lattice. For simplicity,
only the results of one plane are shown. Figure 4(b) shows
the exact db�b as computed from the model and base lat-
tices. Figure 4(c) shows db�b as calculated from Eq. (9)
and a spline fit to the data in Fig. 4(a). Figure 4(d) shows
the difference between Figs. 4(b) and 4(c). As seen from
4(d), the spline fit generally gives good results despite the
fact that Eq. (9) is valid only to first order in the deviations
while the peak db�b in this example is around 70%. The
points where the fit is poor are at places where the change
in fb between detectors is too large so that the spline fit
gives a poor interpolation for df. Another source of er-
ror manifests itself where the change in fb between data
points is of the order of the uncertainty in the measured
phase. In this case the differentiation [Eq. (9)] will be in-
accurate. A good solution here is to eliminate all but one
092801-5
of any group of data points whose phase differences are
too small before doing the fit.

IV. CORRECTING THE TWISS PARAMETERS

At CESR the capacity to control quadrupole magnets in-
dividually allows for the correction of quadrupole errors.
Once the phase and coupling have been measured, any
variation between the data and design values can be com-
pensated (at least in part) by changing quadrupole strengths
k and/or quadrupole rotation angles uq. This is similar to
using steering correctors to flatten the orbit. To do this
one starts with a model lattice with adjustable quadrupole
strengths and rotation angles. The aim is to find the set of
k’s and uq’s such that the f and C as calculated from the
model most nearly match the measured values. The cor-
rection is then applied by varying the k’s and uq’s of the
actual quadrupoles by the difference between the k’s and
uq’s of the model fit and the design lattice.

Nonlinearities generally preclude a simple matrix in-
version approach. At CESR good results have been ob-
tained using the subroutine FRPRMN from Ref. [9], which is
an implementation of Fletcher-Reeves-Polak-Ribiere mini-
mization. The “merit” function M to be minimized is taken
to be
M � kf

X
i[det

�fx,f �i� 2 fx,m�i��2 1 kf

X
i[det

�fy,f�i� 2 fy,m�i��2 1 kc

X
i[det

�C12,f �i� 2 C12,m�i��2

1 kk

X
j[quad

�kf �j� 2 km�j��2 1 ku

X
j[quad

�uqf�j� 2 uqm�j��2. (10)
Here fx,m, fy,m, and C12,m refer to the measured phases
and coupling and km and uqm refer to the values of the
quadrupole strengths and rotation angles determined at the
time of the measurement. fx,f, fy,f, and C12,f in Eq. (10)
are the phases and coupling as calculated from the fit
model, and kf and uqf refer to the quadrupole and rotation
angles of the fit model lattice. Only the C12 component
of C is used in the fit because of the larger noise seen in
the other two measured components. The last two terms
in Eq. (10) are present to keep the minimization algorithm
from “walking,” that is, finding a minimum solution that
is far from the correct solution due to inaccuracies in the
data and/or any degeneracies or near degeneracies in the
problem. The constants kf, kc, kk, and ku give different
weights to the different terms. In practice it is found that
keeping kk and ku as small as possible, without having the
solution walk, works best.

Figures 5 and 6 show an example of a correction. Fig-
ure 5 shows the initial measurement after the quadrupoles
had been adjusted to correspond to a newly designed
lattice. Figures 5(a) and 5(b) show the deviation of the
measured phase from the design, Fig. 5(c) shows the de-
viation of C12, and Figs. 5(d) and 5(e) show the deviation
of beta. The quadrupoles were set based upon the design
quadrupole strengths and tilts and the calibration constants
for these strengths and tilts. For CESR, small inaccuracies
in the calibrations can lead to large errors in the lattice
parameters especially in the horizontal plane since the
horizontal tune is near the half-integer resonance. As can
be seen from Fig. 5, the maximum b error is greater than
100%. In this case, for purposes of illustration, b was
not calculated via a spline fit but rather by using the fitted
model lattice discussed above. The advantage of using the
model fit over the spline fit is that the model fit does not
have the drawbacks of the spline fit as discussed above.
The disadvantage of using the model fit is that, being
computationally intensive, it takes longer than the spline
fit. Another disadvantage is that if the b errors are due to
sources other than errors of the quadrupole settings, then
the model may give a poor fit and hence the computed b

may be inaccurate.
Since the theoretical design lattice has been optimized

to give optimum machine performance (in terms of maxi-
mal dynamic aperture, maximal luminosity, etc.), the large
deviations of the measured lattice functions from the de-
sign, as shown in Fig. 5, would lead to a significant degra-
dation in performance. Hence the need for a correction.
After fitting the data using the model lattice, since the
092801-5
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FIG. 5. Initial measurement of phase and coupling before cor-
recting. All graphs show the differences between measurement
and design. The horizontal scale for the phase and C12 data is the
beam detector index, while for the b data it is the quadrupole
index. (a) and (b) horizontal and vertical phase differences.
(c) C12 difference. By design, the design C12 is zero except
within the “coupling bump” near the interaction region which
compensates the coupling of the CLEO detector solenoid. (d)
and (e) are the b difference.

fitted kj’s and uj’s are (presumably) equal to the actual
kj ’s and uj’s present in the ring, the correction is made by
adjusting the quadrupole strengths and rotation angles by
an amount D � design 2 fit.

Figure 6 shows the deviations of the measured lattice
parameters from the design after four rounds of measur-
ing and correcting the optics, with each round of correc-
tions taking about 5 min. For all intents and purposes, the
errors in the lattice parameters are now negligible. For
CESR, with the C12 error being 0.01 rms as shown in the
figure, the coupling will not have any significant effect
on the luminosity [10]. The correction has reduced the
phase error to 1± rms, and the b error is 2% rms. Suc-
cessive measurements show that the reproducibility of the
phase data is 0.05±, while the C12 data are reproducible
to 0.002.
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FIG. 6. Measurement after correcting the phase and coupling
errors. This is to be compared to Fig. 5. Notice that the scales
for all the graphs have been reduced.

V. CONCLUSION

Measuring the phase advance of coherent betatron
oscillations has proved to be a rapid and accurate method
for determining and then correcting errors in the imple-
mentation of a desired lattice in CESR. It also measures
the local coupling parameters around the ring, thus helping
with solenoid compensation, quadrupole rotations, and
skew-quadrupole corrections.

An important advantage of measuring betatron phase
over measuring b is that it is sensitive to variations in
the phase between widely separated points. This can be
important for closure of bumps. Additionally, CESR is
intended to be east /west symmetric, with this symmetry
causing the strengths of some resonances to vanish. Since
phase errors can break this symmetry, it is important to
measure the phase and correct it accurately.

A possible disadvantage of the phase measurement is
its insensitivity to b in regions of large b (and hence
small phase advance). However, since large bx is usually
accompanied by small by (and vice versa), this has not
proved to be a significant limitation in CESR.
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Another advantage of the phase measurement is that
it can be used when there are significant orbit displace-
ments. For CESR, in normal operation, a “pretzeled” orbit
is used so that multiple bunches of electrons and positrons
can share the same beam pipe and it is useful to be able
to measure the Twiss parameters under actual operating
conditions.
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APPENDIX: ANALOG PHASE MEASUREMENT

If the reference signal from the shaker and the betatron
signal from the detector are both sent through appropriate
bandpass filters at vs, we obtain two nearly sinusoidal
signals whose phases can be compared by a variety of
standard techniques such as digitally sampling the signals
and using a digital Fourier transform or by direct analog
multiplication. Any such phase comparison, operating in
the time domain, depends upon the time delay to the signal
analyzer. The analog of Eq. (4) for this system is

f�i� � u�i� 1 2 pmi 1 Dt vs 1 ua , (A1)

where the time delay Dt is

Dt �
si

c
1 tc�i� . (A2)

Here si is the longitudinal position of the detector in the
ring, c is the speed of light, and tc�i� is the time delay for
the signal to go from the detector to the signal analyzer. For
CESR with vs � 2p 3 150 kHz, to measure the phase to
within 1 mrad it is necessary to know Dt to within 1 ns,
which is not a trivial task.

The simplest way to determine the time delay is to ex-
ploit the fact that all detector signals exhibit a strong com-
ponent at v0. The phase of this component varies by
092801-7
Dtv0 independent of any betatron oscillations. Measuring
the phase of the signal component at v0 for each detector
thus determines the values of Dt. Unfortunately, because
of the diode pulse stretcher in the signal processor, Dt
is also dependent upon the amplitude of the beam signal.
The signals from various detectors differ considerably in
amplitude, not only due to different cable lengths and at-
tenuations, but also because the beam may not be centered
between the four buttons at a detector. These amplitude
changes affect Dt and produce phase errors that can be an
important limitation of any analog system requiring the use
of a stretcher. The AGC system mentioned in the text is
one method for minimizing this problem.
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