Measuring Beam Size with Sextupoles

Average Kick on Beam from Sextupole Field

 $\Delta p_x = -\frac{1}{2} \Delta K_2 L \sigma^2$

 $\sigma^2 = -(2\Delta p_x) / (\Delta K_2 L)$

Ariel Shaked (ags232) Cornell ERL/EIC Group 9/26/2022 Δp_x : The change in the centroid value between the exit of the sextupole, from the centroid value at the end of the element upstream ($p_{x, sextupole exit} - p_{x, element upstream}$)

 ΔK : The change in the sextupole strength when it is turned off

(0 - K_{original})
^ℂ No average kick when sextupole is turned off because avg position of bunch is in the center of the sextupole

L: Length of Element

σ: Beam Size

Cornell University

Visualizing the beam with Tao: $x - p_x$ Phase Space

Measuring Beam Size with Sextupoles /A. Shaked

sex 12W

 ${\rm K_2L}$ decreases from positive value to zero ${\rightarrow}\,\Delta{\rm K_2}\,L\,{<}\,0$

Angle Change in Sextupole decreases from positive value to zero $\rightarrow \Delta p_x < 0$

 $\Delta K_2 L$ and Δp_x have the same sign $\rightarrow \sigma^2 > 0$

$$\Delta p_x = (4.23 - 8.92)e-7$$

= -4.69 e-7
$$\Delta K_2 L = -0.369 m^{-2}$$

$$\sigma = 1.59 mm$$

sex 13W

 ${\rm K_2L}$ increases from negative value to zero $\rightarrow \Delta {\rm K_2} \ L > 0$

Angle Change in Sextupole increases from negative value to zero $\rightarrow \Delta p_x > 0$

 $\Delta K_2 L$ and Δp_x have the same sign $\rightarrow \sigma^2 > 0$

> $\Delta p_x = (1.36 - (-9.77))e-8$ = +11.13 e-8 $\Delta K_2 L = +.318 m^{-2}$ $\sigma = .837 mm$

 $\sigma^2 > 0$ in both cases