Uncertainty Propagation for Beam Size Determination Using Sextupoles

Assuming the two terms are independent,

$$
\begin{gathered}
\sigma^{2}=2 \frac{\mathrm{~d} x^{\prime}}{\mathrm{d} k_{2} l}-\left(\frac{\mathrm{d} k_{1} l}{\mathrm{~d} k_{2} l}\right)^{2}, \\
\left(\delta \sigma^{2}\right)^{2}=\left(\delta\left(2 \frac{\mathrm{~d} x^{\prime}}{\mathrm{d} k_{2} l}\right)\right)^{2}+\left(\delta\left(\frac{\mathrm{d} k_{1} l}{\mathrm{~d} k_{2} l}\right)^{2}\right)^{2} \\
(2 \sigma \delta \sigma)^{2}=\left(2 \delta\left(\frac{\mathrm{~d} x^{\prime}}{\mathrm{d} k_{2} l}\right)\right)^{2}+\left(2 \frac{\mathrm{~d} k_{1} l}{\mathrm{~d} k_{2} l} \delta\left(\frac{\mathrm{~d} k_{1} l}{\mathrm{~d} k_{2} l}\right)\right)^{2} \\
(\delta \sigma)^{2}=\frac{1}{4 \sigma^{2}}\left(\left(2 \delta\left(\frac{\mathrm{~d} x^{\prime}}{\mathrm{d} k_{2} l}\right)\right)^{2}+\left(2 \frac{\mathrm{~d} k_{1} l}{\mathrm{~d} k_{2} l} \delta\left(\frac{\mathrm{~d} k_{1} l}{\mathrm{~d} k_{2} l}\right)\right)^{2}\right)
\end{gathered}
$$

Example: IPAC21 (Sextupole 10aw) wave analyses assuming second-order effects are small

$$
\begin{gathered}
\mathrm{x}_{0}=5.262 \pm 0.026 \mathrm{~mm}(0.5 \%) \\
\frac{\mathrm{d} x^{\prime}}{\mathrm{d} k_{2} l}=14.27 \pm 0.14 \mu \mathrm{rad} / \mathrm{m}^{-2}(1.0 \%) \\
\sigma^{2}=2 \times 14.27-(5.262)^{2}=28.54-27.69=0.85 \mathrm{~mm}^{2} \\
\sigma=0.92 \mathrm{~mm} \\
(\delta \sigma)^{2}=\frac{1}{4(0.85)}\left((2(0.14))^{2}+(2(5.262)(0.026))^{2}\right) \mathrm{mm}^{2} \\
(\delta \sigma)^{2}=\frac{1}{4(0.85)}(0.078+0.075)=0.045 \mathrm{~mm}^{2} \\
\delta \sigma=0.21 \mathrm{~mm}
\end{gathered}
$$

A 3.0% effect in the difference of squares is measured with an accuracy of 45%, so the error in $\boldsymbol{\sigma}$ is 23%.

Example: IPAC21 (Sextupole 10aw)
Orbit wave analysis and quad kick from tunes assuming second-order effects are small

$$
\begin{gathered}
\mathrm{x}_{0}=5.126 \pm 0.013 \mathrm{~mm}(0.3 \%) \\
\frac{\mathrm{d} x^{\prime}}{\mathrm{d} k_{2} l}=14.27 \pm 0.14 \mu \mathrm{rad} / \mathrm{m}^{-2}(1.0 \%) \\
\sigma^{2}=2 \times 14.27-(5.126)^{2}=28.54-26.28=2.26 \mathrm{~mm}^{2} \\
\sigma=1.50 \mathrm{~mm} \\
(\delta \sigma)^{2}=\frac{1}{4(2.26)}\left((2(0.14))^{2}+(2(5.126)(0.013))^{2}\right) \mathrm{mm}^{2} \\
(\delta \sigma)^{2}=\frac{1}{4(2.26)}(0.078+0.018)=0.011 \mathrm{~mm}^{2} \\
\delta \sigma=0.10 \mathrm{~mm}
\end{gathered}
$$

An 8% effect in the difference of squares is measured with an accuracy of 13%, so the error in $\boldsymbol{\sigma}$ is 7%.

Example: IPAC21 (Sextupole 10aw)

Modeled orbit change from CesrV using measured orbit and quad kick from wave analysis
assuming second-order effects are small

$$
\mathrm{x}_{0}=5.262 \pm 0.026 \mathrm{~mm}(0.5 \%)
$$

$\frac{\mathrm{d} x^{\prime}}{\mathrm{d} k_{2} l}=\frac{2 \tan (\pi Q)}{\beta} \frac{\mathrm{d} x}{\mathrm{~d} k_{2} l}$
$=0.287 \frac{\mathrm{~d} x}{\mathrm{~d} k_{2} l}$
$=0.287(50.4 \pm 1.4)=14.46 \pm 0.40 \mu \mathrm{rad} / \mathrm{m}^{-2}(2.2 \%)$
$\sigma^{2}=2 \times 14.46-(5.262)^{2}=28.92-27.69=1.23 \mathrm{~mm}^{2}$
$\sigma=1.11 \mathrm{~mm}$
$(\delta \sigma)^{2}=\frac{1}{4(1.23)}\left((2(0.40))^{2}+(2(5.262)(0.026))^{2}\right) \mathrm{mm}^{2}$
$(\delta \sigma)^{2}=\frac{1}{4(1.23)}(0.16+0.075) \mathrm{mm}^{2}$

$$
\delta \sigma=0.22 \mathrm{~mm}
$$

A 4.3% effect in the difference of squares is measured with an accuracy of 40%, so the error in $\boldsymbol{\sigma}$ is 20%.

Example: Sextupole 10aw Single-kick analysis for orbit kick and quad kick from tunes (IPAC21) assuming second-order effects are small

$$
\begin{gathered}
\mathrm{x}_{0}=5.126 \pm 0.013 \mathrm{~mm}(0.3 \%) \\
\frac{\mathrm{d} x^{\prime}}{\mathrm{d} k_{2} l}=13.71 \pm 0.12 \mu \mathrm{rad} / \mathrm{m}^{-2}(0.8 \%) \\
\sigma^{2}=2 \times 13.71-(5.126)^{2}=27.41-26.28=1.13 \mathrm{~mm}^{2} \\
\sigma=1.06 \mathrm{~mm} \\
(\delta \sigma)^{2}=\frac{1}{4(1.13)}\left((2(0.12))^{2}+(2(5.126)(0.013))^{2}\right) \mathrm{mm}^{2} \\
(\delta \sigma)^{2}=\frac{1}{4(1.13)}(0.058+0.018)=0.017 \mathrm{~mm}^{2} \\
\delta \sigma=0.13 \mathrm{~mm}
\end{gathered}
$$

A 4% effect in the difference of squares is measured with an accuracy of 28%, so the error in $\boldsymbol{\sigma}$ is 14%.

