Proposed Resolution of the Beam Size Measurement Puzzle

$$\sigma_{\mathrm{X}}^2 = -2\,rac{\Delta p_{\mathrm{X}}}{\Delta K_2 L} + Y_0^2 - X_0^2$$

Jim Crittenden & Wyatt Carbonell Cornell ERL/EIC Group 25 July 2023

$\Delta p_x / \Delta K_2 L$ for all K_2 scans

Horizontal Orbit Kick Slope $\Delta p_X / \Delta k_2 l$ (µrad/m⁻²)

$$\sigma_{\mathrm{X}}^2 = -2\,rac{\Delta p_{\mathrm{X}}}{\Delta K_2 L} + Y_0^2 - X_0^2$$

In general, $\Delta p_x / \Delta K_2 L$ is too negative.

Example: scan 85, sextupole 10AW

 $\frac{\Delta b_1}{\Delta K_2 L} = X_0 = -2.4355 \pm 0.0088 \text{ mm}$ $\frac{\Delta a_1}{\Delta K_2 L} = Y_0 = -0.4267 \pm 0.0031 \text{ mm}$ $rac{\Delta p_{
m X}}{\Delta K_2 L} = -4.82 \pm 0.10 \; \mu {
m rad/mm}^2$ $\frac{\Delta p_{\mathrm{Y}}}{\Delta K_{\mathrm{e}}L} = -3.69 \pm 0.13 \ \mu \mathrm{rad}/\mathrm{mm}^2$ $\sigma_{
m x}^2 = -2rac{\Delta p_{
m X}}{\Delta K_2 L} + Y_0^2 - X_0^2 = 3.88 \pm 0.21~{
m mm}^2$ $\sigma_{
m x} = 1.971 \pm 0.052 \; {
m mm}$ $\sigma^2_{
m nonsext} = rac{\Delta p_{
m Y}}{\Delta K_{
m I} I} - X_0 \; Y_0 = -2.367 \pm 0.065 \; {
m mm}^2$ $\sigma_{
m x}^2 \;=\; -2rac{\Delta p_{
m X}}{\Delta K_2 L} + Y_0^2 - X_0^2 + rac{\Delta p_{
m Y}}{\Delta K_2 L} - X_0 \; Y_0$ $= 1.52 \pm 0.22 \text{ mm}^2$ $\sigma_{\rm x} = 1.232 \pm 0.088 \; {
m mm}$

 X_0 and Y_0 are measured to better than 1%.

 $\Delta p_x / \Delta K_2 L$ and $\Delta p_y / \Delta K_2 L$ dominate the uncertainty at 2-3%.

Prior to the "non-sextupole" correction, the beam size calculation is about 20 σ too high.

Afterward it is 1.7σ greater than the value expected from the optics.

-2.2

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Proposed source: fringe field ?

<u>Relevant parameters</u> Maximum field change at x = 1 mm is less than 10 Gauss. Magnet gap is 9 cm, length is 27 cm

 $\frac{\Delta p_x / \Delta K_2 L \text{ and calculated } \sigma_x \text{ depend on } \Delta K_2 L \text{ .}}{\text{Such nonlinearity suggests hysteretic effect.}}$ But wouldn't hysteresis give a sextupole?

> Tao model shows no dependence on $\Delta K_2 L$. There is no fringe field or hysteresis inTao.

Horizontal and vertical angle ΔK_2 dependence both show the nonlinear behavior

The beam size calculation becomes independent of ΔK_2 .

The canary-in-the-coal-mine approach seems to work.

But what is the source of this non-sextupole field?