Proposed Resolution of the Beam Size Measurement Puzzle

Comparison of beam size from K2 analysis to optics (mm)

$$
\sigma_{\mathrm{X}}^{2}=-2 \frac{\Delta p_{\mathrm{X}}}{\Delta K_{2} L}+Y_{0}^{2}-X_{0}^{2}
$$

Jim Crittenden \& Wyatt Carbonell
Cornell ERL/EIC Group
25 July 2023

$\Delta p_{x} / \Delta K_{2} L$ for all K_{2} scans

Horizontal Orbit Kick Slope $\Delta p_{X} / \Delta k_{2} l\left(\mu \mathrm{rad} / \mathrm{m}^{-2}\right)$

$$
\sigma_{\mathrm{X}}^{2}=-2 \frac{\Delta p_{\mathrm{X}}}{\Delta K_{2} L}+Y_{0}^{2}-X_{0}^{2}
$$

In general, $\Delta p_{x} / \Delta K_{2} L$ is too negative.

Train of thought

1. There exists a non-sextupole contribution to $\Delta \mathrm{p}_{\mathrm{x}}$ as measured:

$$
\Delta p_{\mathrm{X}}^{\text {meas }}=\Delta p_{\mathrm{X}}+\Delta p_{\mathrm{X}}^{\text {nonsext }}
$$

2. Idea: $\Delta \mathrm{p}_{\mathrm{Y}}$ results from the same field along the trajectory.

Use it as a "canary in the coal mine."

$$
\begin{aligned}
& \Delta p_{\mathrm{Y}}^{\text {meas }}=\Delta p_{\mathrm{Y}}+\Delta p_{\mathrm{Y}}^{\text {nonsext }} \\
& \Delta p_{\mathrm{Y}}^{\text {nonsext }}=\Delta p_{\mathrm{Y}}^{\text {meas }}-K_{2} L X_{0} Y_{0}
\end{aligned}
$$

3. Proposal to be discussed on slide 5:

$$
\Delta p_{\mathrm{X}}^{\text {nonsext }}=\frac{\Delta p_{\mathrm{Y}}^{\text {nonsext }}}{2}
$$

4. For the beam size calculation, calculate Δp_{X} as:

$$
\Delta p_{\mathrm{X}}=\Delta p_{\mathrm{X}}^{\text {meas }}-\frac{\left(\Delta p_{\mathrm{Y}}^{\text {meas }}-K_{2} L X_{0} Y_{0}\right)}{2}
$$

Example: scan 85, sextupole 10AW

$$
\begin{aligned}
\frac{\Delta b_{1}}{\Delta K_{2} L} & =X_{0}=-2.4355 \pm 0.0088 \mathrm{~mm} \\
\frac{\Delta a_{1}}{\Delta K_{2} L} & =Y_{0}=-0.4267 \pm 0.0031 \mathrm{~mm} \\
\frac{\Delta p_{\mathrm{X}}}{\Delta K_{2} L} & =-4.82 \pm 0.10 \mu \mathrm{rad} / \mathrm{mm}^{2} \\
\frac{\Delta p_{\mathrm{Y}}}{\Delta K_{2} L} & =-3.69 \pm 0.13 \mu \mathrm{rad} / \mathrm{mm}^{2}
\end{aligned}
$$

$$
\sigma_{\mathrm{x}}^{2}=-2 \frac{\Delta p_{\mathrm{X}}}{\Delta K_{2} L}+Y_{0}^{2}-X_{0}^{2}=3.88 \pm 0.21 \mathrm{~mm}^{2}
$$

$$
\sigma_{\mathrm{x}}=1.971 \pm 0.052 \mathrm{~mm}
$$

$$
\sigma_{\text {nonsext }}^{2}=\frac{\Delta p_{\mathrm{Y}}}{\Delta K_{2} L}-X_{0} Y_{0}=-2.367 \pm 0.065 \mathrm{~mm}^{2}
$$

$$
\sigma_{\mathrm{x}}^{2}=-2 \frac{\Delta p_{\mathrm{X}}}{\Delta K_{2} L}+Y_{0}^{2}-X_{0}^{2}+\frac{\Delta p_{\mathrm{Y}}}{\Delta K_{2} L}-X_{0} Y_{0}
$$

$$
=1.52 \pm 0.22 \mathrm{~mm}^{2}
$$

$$
\sigma_{\mathrm{x}}=1.232 \pm 0.088 \mathrm{~mm}
$$

X_{0} and Y_{0} are measured to better than 1%.
$\Delta p_{x} / \Delta K_{2} L$ and $\Delta p_{Y} / \Delta K_{2} L$ dominate the uncertainty at 2-3\%.

Prior to the "non-sextupole" correction, the beam size calculation is about 20σ too high.

Afterward it is 1.7σ greater than the

 value expected from the optics.
Proposed source: fringe field ?

Relevant parameters
Maximum field change at $x=1 \mathrm{~mm}$ is less than 10 Gauss.
Magnet gap is 9 cm , length is 27 cm

Tao model shows no dependence on $\Delta K_{2} L$. There is no fringe field or hysteresis inTao.

Cornell Laboratory for
Accelerator-based Sciences and Education (CLASSE)

Horizontal and vertical angle $\Delta \mathrm{K}_{2}$ dependence both show the nonlinear behavior

The beam size calculation becomes independent of ΔK_{2}.

The canary-in-the-coal-mine approach seems to work.

But what is the source of this non-sextupole field?

