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Tune Shifts from Skew Quad Errors

Following Handbook 4.5.4 (Rubin), perturb the one-turn matrix at a place where o« = 0:

F =
cos 2wQ« Bx sin 2w Q« 0 0
—x sin 2w Q« cos 2Qx 0 0
0 0 cos 2mQy By sin 27w Qy
0 0 —vy sin27wQy  cos2wQy

Thin skew quad Handbook 4.54 Eq. 5

AKL is the strength of a normal quad which is now rotated by 45° to make the skew quad error.

Mthin =
1 0 0 0
0 1 AKL 0
0 0 1 0
AKL O 0 1
Define
I K
K, I

Perturbed 1-turn matrix:
P = F M¢hin =

|: M MK, :|
So,m = NK;=

AKLpBy,sin27Q, 0
AKL cos27@Q, O
and, n = MK;=

AKLB;sin27Q, 0
AKL cos27@Q, O

The symplectic conjugate (Sagan and Rubin (PRSTAB 2,074001 (1999)), Eq. 5)
nt —=
0 0
—AKL cos27Q, AKLfS;sin27Q,

and m + n

AKL3,sin27wQ, 0
AKL (cos2wQy — cos2wQz) AKLB,sin27Q,
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Handbook 4.54 Eq. 28

The tune split due to coupling is given by:

Tr(A—B) = 2(cos27Qa — cos2wQpB)

= \/Tr(M — N)? 4+ 4det (m + nt)

= \/4 (cos 2mQ. — cos 27Q,)° + 4 (AKL)? 8.0, sin 27 Q. sin 27Q,

Special case Qz = Qy

For the case Q= = Qy, the tune split is symmetric.

Defining AQas = (Qa — QB) /2, we have Q4 = Q= + AQap and QB = Qy — AQaB.
Also define p = 27wQ, = 27wQy and Apuap = 2w AQ ap for simplicity.

For AQaB K Qa and AQas K @B,

(AKL)? B.8ysin?y = (cos2mQa — cos2wQgp)>
= (cospcos Apuap —sinpusin Apap — cos ppcos Apap + sin psin (—A/LAB))2
~ (cosp — Apapsinp — cosp — Apap sin p)?

4 ApSpsin® p

~ (27)?(Qa — Qp)*sin’ i

1R

which reproduces Handbook 4.5.4 Eq. 31: va —vp ~ 1 PPy

27 f

Obtaining normal and skew quad strengths from tune shifts

The form for the tune shifts due to skew quad errors:

(cos 27 (Qz + AQz) — cos 27 (Qy + AQy))? — (cos 27mQe — cos 27Qy)% = (AKL)? BBy sin 2w Q, sin 2w Q, (1)

can be compared to the formula obtained for the normal tune shifts (Wille Eq. 3.272):

2 (cos2m (Q + AQ) — cos2wQ) = —AKLBsin2wQ (2)

Since a skew quad term makes equal-sign contributions to the transport matrix elements Rz1 and Ras (see matrix representation
below), the normal quad term can be extracted from the difference of AK L values obtained using the horizontal and vertical
tune shifts.

The left side of this form simplifies under AQ, K Q= and AQy K Q4 to

4m (cos27Qy — cos 27Qy) (—AQ4 sin 27Q, + AQy sin 2wQ,) = (AKL)? BBy sin 2w Q. sin 2w Q,



February 9, 2022
JAC

Matrix representation

Transport matrix for an element with normal quad strength KL and skew quad strength K L in the approximations

VKL < 1and vVKs;L < 1 and length L:

Map M1 Map, =

1 0 0 1L o o 1 0 0
KL 41 KL g KL 41 KL
2 2 0 1 0 O 2 2
0 0 1 0 0 0 1 L 0 0 1 0
KsL g =KL 4 00 0 1 KsL g =KL 4
2 2 2 2
i KL? KoL2 i
1+ == L 0
2 2
KL+ (K+Ks)2L3 14 KL2 K.L KsL?
2 2
B K.L? 0 1 KL? L
2 2
K.L K.L? _KL+ (K+Kg)2L3 1 KIL2
L 2 2
For K = 0 this becomes
_ . -
1 L ZL 0
2
2753 2
K2L 1 K.L K.L
4 2
2
KT 0 1 L
2
K.L K.L? K213 1
L 2 4 -

The drift length L does not contribute to the skew transport.
The skew quad strength KL makes a second-order, same-sign contribution to the H and V tunes.

For Ks = 0 this becomes

14 KLZ L 0 0 ]
KL+ X2 4 4 xe? 0
2
0 0 1—% L
0 0 _KL+ X k2
L 2 -
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Tune Shifts from Normal and Skew Quad Contributions

Skew Quad

L
q—BY = KzL (X2 — yz)
P

=
130 X 2

1 gL dBy

bl = —— =KyLx
2! Py dx
1 qL dB

al = — 9% 99X _ KoLy
2! PO dx

Assuming the initial sextupole strength is zero, changes in the sextupole strength Ko gives changes in the local
field slopes (normal (by) and skew (a1) quad strength changes):

L (dB
Ab = A <—Y) — 2AK, L (Xo + Ax)
Po X
L _/dB
Aa1 = q— —X = 2AK2L (YO + Ay)
PO dx
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Normal and Skew Quad Contributions from Sextupoles
Tune shifts from skew a1 (Eq. 1)
(cos 27 (Qz + AQz) — cos (Qy + AQy))? — (cos 2wQ, — cos 27Q,)° = alB.8, sin 2wQ, sin 27Q, (3)

Factor a® — 3% = [a—B][(a+8)]:
[cos 2 (Qz + AQz) — cos (Qy + AQy)) — (cos 2Qs — €08 2w Qy] [...+...] = aiBxPy sin 27 Q. sin27Q, = A® (4)

Tune shifts from normal b1 (Eq. 2)

b .
cos 27 (Qa/y + AQq/y) — €OS2TQ4/y = —?lﬁw/y sin 2w Q. /y (5)

Subtract Y equation from X equation:

(cos 27 (Qz + AQz) — cos2wQz) — (cos 27 (Qy + AQy) — cos 2wQy) = —b?l (Bz sin2wQq — By sin27wQy) = B (6)
Substitute Eq. 6 into Eq. 4:

B[cos 27 (Qz + AQz) — cos (Qy + AQy)) + (cos 2wQ, — cos 2wQ,] = A® (7)

Multiply Eq. 6 by B and add to Eq. 7:

2 B[cos 27 (Qz + AQx) — cos 2wQ,] = A® + B? (8)

Multiply Eq. 6 by B and subtract from Eq. 7:

2 Bcos 27 (Qy + AQ,) — cos 27Q,] = A*> — B? (9)

This needs more work. The split in the tunes in the skew case is given by changing the sign of AZ.
By symmetry cos 27 (Qz + AQz) — cos 2w Q. = — [cos 2w (Qy + AQy) — cos 2mwQy], so
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Tune shifts from skew quad with strength a1 (See talk of 5 January 2022)

(cos (ko 4+ Apa) — cos (1y + Apy))? — (cos pz — cos piy)® = aiBz8y sin pg sin py

After Georg’s Mathematica analysis based on Sagan and Rubin Linear analysis of coupled lattices, Phys.Rev.S.T. Vol 2, 074001 (1999),
for Ape, Apy K 1,
—aiBzBy sin py

Aps = 5
® 4 (cos e — COS iy) +0(a1)

2 .
a3 BzBy sin pg

i 1/8 /By H + 0(0,%)
(cos pa — cos py)

Apy =

Reminder special case pz = py = p, (talk of 5 January 2022 and Handbook 4.5.4 Eq. 31)

A ai/ BBy
B

2
Linear in aq!

Warning from DCS: there are additional terms (including linear in a1) if the unperturbed lattice is already coupled.

Two approaches:
e Add the coupling matrix to the Mathematica analysis,

e Run simulations in CesrV in the lattice optimized to a phase measurement.



