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Tune Shifts from Skew Quad Errors

Following Handbook 4.5.4 (Rubin), perturb the one-turn matrix at a place where α = 0:

F =









cos 2πQx βx sin 2πQx 0 0
−γx sin 2πQx cos 2πQx 0 0

0 0 cos 2πQy βy sin 2πQy

0 0 −γy sin 2πQy cos 2πQy









Thin skew quad Handbook 4.54 Eq. 5

∆KL is the strength of a normal quad which is now rotated by 45◦ to make the skew quad error.

Mthin =









1 0 0 0
0 1 ∆KL 0
0 0 1 0

∆KL 0 0 1









Define
[

I Kt

Kt I

]

Perturbed 1-turn matrix:

P = F Mthin =

[

M MKt

NKt N

]

So, m ≡ NKt=

[

∆KLβy sin 2πQy 0
∆KL cos 2πQy 0

]

and, n ≡ MKt=

[

∆KLβx sin 2πQx 0
∆KL cos 2πQx 0

]

The symplectic conjugate (Sagan and Rubin (PRSTAB 2,074001 (1999)), Eq. 5)
n+ =

[

0 0
−∆KL cos 2πQx ∆KLβx sin 2πQx

]

and m + n+ =

[

∆KLβy sin 2πQy 0
∆KL (cos 2πQy − cos 2πQx) ∆KLβx sin 2πQx

]

1



February 9, 2022
JAC

Handbook 4.54 Eq. 28

The tune split due to coupling is given by:

Tr (A − B) = 2 (cos 2πQA − cos 2πQB)

=
√

Tr (M − N)2 + 4det (m + n+)

=
√

4 (cos 2πQx − cos 2πQy)
2 + 4 (∆KL)2 βxβy sin 2πQx sin 2πQy

Special case Qx = Qy

For the case Qx = Qy, the tune split is symmetric.
Defining ∆QAB ≡ (QA − QB) /2, we have QA = Qx + ∆QAB and QB = Qy − ∆QAB.
Also define µ ≡ 2πQx = 2πQy and ∆µAB ≡ 2π∆QAB for simplicity.
For ∆QAB ≪ QA and ∆QAB ≪ QB,

(∆KL)2 βxβy sin2 µ = (cos 2πQA − cos 2πQB)2

= (cosµ cos∆µAB − sinµ sin∆µAB − cosµ cos∆µAB + sinµ sin (−∆µAB))2

≃ (cosµ − ∆µAB sinµ − cosµ − ∆µAB sinµ)2

≃ 4∆µ2
AB sin2 µ

≃ (2π)2 (QA − QB)2 sin2 µ

which reproduces Handbook 4.5.4 Eq. 31: νA − νB ≃
1

2π

√
βxβy

f
.

Obtaining normal and skew quad strengths from tune shifts

The form for the tune shifts due to skew quad errors:

(cos 2π (Qx + ∆Qx) − cos 2π (Qy + ∆Qy))
2 − (cos 2πQx − cos 2πQy)

2 = (∆KL)2 βxβy sin 2πQx sin 2πQy (1)

can be compared to the formula obtained for the normal tune shifts (Wille Eq. 3.272):

2 (cos 2π (Q + ∆Q)− cos 2πQ) = −∆KLβ sin 2πQ (2)

Since a skew quad term makes equal-sign contributions to the transport matrix elements R21 and R43 (see matrix representation
below), the normal quad term can be extracted from the difference of ∆KL values obtained using the horizontal and vertical
tune shifts.

The left side of this form simplifies under ∆Qx ≪ Qx and ∆Qy ≪ Qy to

4π (cos 2πQx − cos 2πQy) (−∆Qx sin 2πQx + ∆Qy sin 2πQy) = (∆KL)2 βxβy sin 2πQx sin 2πQy
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Matrix representation

Transport matrix for an element with normal quad strength KL and skew quad strength KsL in the approximations√
KL ≪ 1 and

√
KsL ≪ 1 and length L:

MabMLMab =













1 0 0 0
KL

2
1 KsL

2
0

0 0 1 0
KsL

2
0 −KL

2
1





















1 L 0 0
0 1 0 0
0 0 1 L
0 0 0 1





















1 0 0 0
KL

2
1 KsL

2
0

0 0 1 0
KsL

2
0 −KL

2
1













=



























1 + KL2

2
L

KsL
2

2
0

KL +
(K+Ks)

2L3

4
1 + KL2

2
KsL

KsL
2

2

KsL
2

2
0 1 − KL2

2
L

KsL
KsL

2

2
−KL +

(K+Ks)
2L3

4
1 − KL2

2



























For K = 0 this becomes



























1 L
KsL

2

2
0

K2

s
L3

4
1 KsL

KsL
2

2

KsL
2

2
0 1 L

KsL
KsL

2

2

K2

s
L3

4
1



























The drift length L does not contribute to the skew transport.
The skew quad strength KsL makes a second-order, same-sign contribution to the H and V tunes.

For Ks = 0 this becomes























1 + KL2

2
L 0 0

KL +
K2L3

4
1 + KL2

2
0

0 0 1 − KL2

2
L

0 0 −KL +
K2L3

4
1 − KL2

2
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Tune Shifts from Normal and Skew Quad Contributions

Skew Quad

qL

P0

BY = K2L
(

x2
− y2

)

qL

P0

BX = 2K2L x y

b1 =
1

2!

qL

P0

dBY

dx
= K2L x

a1 =
1

2!

qL

P0

dBX

dx
= K2L y

Assuming the initial sextupole strength is zero, changes in the sextupole strength K2 gives changes in the local
field slopes (normal (b1) and skew (a1) quad strength changes):

∆b1 =
qL

P0

∆

(

dBY

dx

)

= 2∆K2L (X0 + ∆x)

∆a1 =
qL

P0

∆

(

dBX

dx

)

= 2∆K2L (Y0 + ∆y)
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Normal and Skew Quad Contributions from Sextupoles

Tune shifts from skew a1 (Eq. 1)

(cos 2π (Qx + ∆Qx) − cos (Qy + ∆Qy))
2 − (cos 2πQx − cos 2πQy)

2 = a2
1βxβy sin 2πQx sin 2πQy (3)

Factor α2 − β2 = [α−β][(α+β)]:

[cos 2π (Qx + ∆Qx) − cos (Qy + ∆Qy))− (cos 2πQx − cos 2πQy] [...+...] = a2
1βxβy sin 2πQx sin 2πQy ≡ A2 (4)

Tune shifts from normal b1 (Eq. 2)

cos 2π
(

Qx/y + ∆Qx/y

)

− cos 2πQx/y = −
b1

2
βx/y sin 2πQx/y (5)

Subtract Y equation from X equation:

(cos 2π (Qx + ∆Qx) − cos 2πQx) − (cos 2π (Qy + ∆Qy) − cos 2πQy) = −
b1

2
(βx sin 2πQx − βy sin 2πQy) ≡ B (6)

Substitute Eq. 6 into Eq. 4:

B [cos 2π (Qx + ∆Qx) − cos (Qy + ∆Qy)) + (cos 2πQx − cos 2πQy] = A2 (7)

Multiply Eq. 6 by B and add to Eq. 7:

2 B [cos 2π (Qx + ∆Qx) − cos 2πQx] = A2 + B2 (8)

Multiply Eq. 6 by B and subtract from Eq. 7:

2 B [cos 2π (Qy + ∆Qy) − cos 2πQy] = A2 − B2 (9)

This needs more work. The split in the tunes in the skew case is given by changing the sign of A2.
By symmetry cos 2π (Qx + ∆Qx) − cos 2πQx = − [cos 2π (Qy + ∆Qy) − cos 2πQy], so
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Tune shifts from skew quad with strength a1 (See talk of 5 January 2022)

(cos (µx + ∆µx) − cos (µy + ∆µy))
2 − (cosµx − cosµy)

2 = a2
1βxβy sinµx sinµy

After Georg’s Mathematica analysis based on Sagan and Rubin Linear analysis of coupled lattices, Phys.Rev.S.T. Vol 2, 074001 (1999),
for ∆µx,∆µy ≪ 1,

∆µx =
−a2

1βxβy sinµy

4 (cosµx − cosµy)
+ O(a4

1)

∆µy =
a2
1βxβy sinµx

4 (cosµx − cosµy)
+ O(a4

1)

Reminder special case µx = µy ≡ µ, (talk of 5 January 2022 and Handbook 4.5.4 Eq. 31)

∆µ ≃
a1

√

βxβy

2

Linear in a1!

Warning from DCS: there are additional terms (including linear in a1) if the unperturbed lattice is already coupled.

Two approaches:

• Add the coupling matrix to the Mathematica analysis,

• Run simulations in CesrV in the lattice optimized to a phase measurement.
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