Following Handbook 4.5.4 (Rubin), perturb the one-turn matrix at a place where $\boldsymbol{\alpha}=\mathbf{0}$:
$F=$

$$
\left[\begin{array}{cccc}
\cos 2 \pi Q_{\mathrm{x}} & \beta_{\mathrm{x}} \sin 2 \pi Q_{\mathrm{x}} & 0 & 0 \\
-\gamma_{\mathrm{x}} \sin 2 \pi Q_{\mathrm{x}} & \cos 2 \pi Q_{\mathrm{x}} & 0 & 0 \\
0 & 0 & \cos 2 \pi Q_{\mathrm{y}} & \beta_{\mathrm{y}} \sin 2 \pi Q_{\mathrm{y}} \\
0 & 0 & -\gamma_{\mathrm{y}} \sin 2 \pi Q_{\mathrm{y}} & \cos 2 \pi Q_{\mathrm{y}}
\end{array}\right]
$$

Thin skew quad Handbook 4.54 Eq. 5
$\Delta K L$ is the strength of a normal quad which is now rotated by 45° to make the skew quad error.
$\mathrm{M}_{\mathrm{thin}}=$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \Delta K L & 0 \\
0 & 0 & 1 & 0 \\
\Delta K L & 0 & 0 & 1
\end{array}\right]
$$

Define

$$
\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{K}_{t} \\
\boldsymbol{K}_{t} & \boldsymbol{I}
\end{array}\right]
$$

Perturbed 1-turn matrix:
$\boldsymbol{P}=\boldsymbol{F} \mathrm{M}_{\mathrm{thin}}=$

$$
\left[\begin{array}{cc}
M & M K_{t} \\
N K_{t} & N
\end{array}\right]
$$

So, $\mathbf{m} \equiv \boldsymbol{N} \boldsymbol{K}_{\boldsymbol{t}}=$

$$
\left[\begin{array}{cc}
\Delta K L \beta_{y} \sin 2 \pi Q_{y} & 0 \\
\Delta K L \cos 2 \pi Q_{y} & 0
\end{array}\right]
$$

and, $\mathbf{n} \equiv M K_{t}=$

$$
\left[\begin{array}{cc}
\Delta K L \beta_{x} \sin 2 \pi Q_{x} & 0 \\
\Delta K L \cos 2 \pi Q_{x} & 0
\end{array}\right]
$$

The symplectic conjugate (Sagan and Rubin (PRSTAB 2,074001 (1999)), Eq. 5) $\mathrm{n}^{+}=$

$$
\left[\begin{array}{cc}
0 & 0 \\
-\Delta K L \cos 2 \pi Q_{x} & \Delta K L \beta_{x} \sin 2 \pi Q_{x}
\end{array}\right]
$$

and $\mathbf{m}+\mathbf{n}^{+}=$

$$
\left[\begin{array}{cc}
\Delta K L \beta_{y} \sin 2 \pi Q_{y} & 0 \\
\Delta K L\left(\cos 2 \pi Q_{y}-\cos 2 \pi Q_{x}\right) & \Delta K L \beta_{x} \sin 2 \pi Q_{x}
\end{array}\right]
$$

Handbook 4.54 Eq. 28

The tune split due to coupling is given by:

$$
\begin{aligned}
\operatorname{Tr}(A-B) & =2\left(\cos 2 \pi Q_{A}-\cos 2 \pi Q_{B}\right) \\
& =\sqrt{\operatorname{Tr}(M-N)^{2}+4 \operatorname{det}\left(\mathrm{~m}+\mathrm{n}^{+}\right)} \\
& =\sqrt{4\left(\cos 2 \pi Q_{x}-\cos 2 \pi Q_{y}\right)^{2}+4(\Delta K L)^{2} \beta_{x} \beta_{y} \sin 2 \pi Q_{x} \sin 2 \pi Q_{y}}
\end{aligned}
$$

$\underline{\text { Special case } \boldsymbol{Q}_{x}=\boldsymbol{Q}_{y}}$
For the case $\boldsymbol{Q}_{\boldsymbol{x}}=\boldsymbol{Q}_{\boldsymbol{y}}$, the tune split is symmetric.
Defining $\Delta Q_{A B} \equiv\left(Q_{A}-Q_{B}\right) / 2$, we have $Q_{A}=Q_{x}+\Delta Q_{A B}$ and $Q_{B}=Q_{y}-\Delta Q_{A B}$.
Also define $\mu \equiv 2 \pi Q_{x}=2 \pi Q_{y}$ and $\Delta \mu_{A B} \equiv 2 \pi \Delta Q_{A B}$ for simplicity.
For $\Delta Q_{A B} \ll Q_{A}$ and $\Delta Q_{A B} \ll Q_{B}$,

$$
\begin{aligned}
(\Delta K L)^{2} \beta_{x} \beta_{y} \sin ^{2} \mu & =\left(\cos 2 \pi Q_{A}-\cos 2 \pi Q_{B}\right)^{2} \\
& =\left(\cos \mu \cos \Delta \mu_{A B}-\sin \mu \sin \Delta \mu_{A B}-\cos \mu \cos \Delta \mu_{A B}+\sin \mu \sin \left(-\Delta \mu_{A B}\right)\right)^{2} \\
& \simeq\left(\cos \mu-\Delta \mu_{A B} \sin \mu-\cos \mu-\Delta \mu_{A B} \sin \mu\right)^{2} \\
& \simeq 4 \Delta \mu_{A B}^{2} \sin ^{2} \mu \\
& \simeq(2 \pi)^{2}\left(Q_{A}-Q_{B}\right)^{2} \sin ^{2} \mu
\end{aligned}
$$

which reproduces Handbook 4.5.4 Eq. 31: $\boldsymbol{\nu}_{A}-\boldsymbol{\nu}_{B} \simeq \frac{1}{2 \pi} \frac{\sqrt{\boldsymbol{\beta}_{x} \boldsymbol{\beta}_{y}}}{f}$.

Obtaining normal and skew quad strengths from tune shifts
The form for the tune shifts due to skew quad errors:

$$
\left(\cos 2 \pi\left(Q_{x}+\Delta Q_{x}\right)-\cos \left(Q_{y}+\Delta Q_{y}\right)\right)^{2}-\left(\cos 2 \pi Q_{x}-\cos 2 \pi Q_{y}\right)^{2}=(\Delta K L)^{2} \beta_{x} \beta_{y} \sin 2 \pi Q_{x} \sin 2 \pi Q_{y}
$$ can be compared to the formula obtained for the normal tune shifts (Wille Eq. 3.272):

$$
2(\cos 2 \pi(Q+\Delta Q)-\cos 2 \pi Q)=-\Delta K L \beta \sin 2 \pi Q
$$

Since a skew quad term makes equal-sign contributions (see matrix representation below), the normal quad term can be extracted from the difference of $\boldsymbol{\Delta} \boldsymbol{K} \boldsymbol{L}$ values obtained using the horizontal and vertical tune shifts.

The left side of this form simplifies under $\boldsymbol{\Delta} \boldsymbol{Q}_{\boldsymbol{x}} \ll \boldsymbol{Q}_{\boldsymbol{x}}$ and $\boldsymbol{\Delta} \boldsymbol{Q}_{\boldsymbol{y}} \ll \boldsymbol{Q}_{\boldsymbol{y}}$ to

$$
4 \pi\left(\cos 2 \pi Q_{x}-\cos 2 \pi Q_{y}\right)\left(-\Delta Q_{x} \sin 2 \pi Q_{x}+\Delta Q_{y} \sin 2 \pi Q_{y}\right)=(\Delta K L)^{2} \beta_{x} \beta_{y} \sin 2 \pi Q_{x} \sin 2 \pi Q_{y}
$$

Matrix representation

Transport matrix for an element with normal quad strength $\boldsymbol{K} \boldsymbol{L}$ and skew quad strength $\boldsymbol{K}_{s} \boldsymbol{L}$ in the approximations $\sqrt{\boldsymbol{K}} \boldsymbol{L} \ll 1$ and $\sqrt{\boldsymbol{K}_{s}} \boldsymbol{L} \ll 1$ and length $L:$
$M_{\mathrm{ab}} M_{L} M_{\mathrm{ab}}=$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{K L}{2} & 1 & \frac{K_{s} L}{2} & 0 \\
0 & 0 & 1 & 0 \\
\frac{K_{s} L}{2} & 0 & \frac{-K L}{2} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & L & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & L \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{K L}{2} & 1 & \frac{K_{s} L}{2} & 0 \\
0 & 0 & 1 & 0 \\
\frac{K s L}{2} & 0 & \frac{-K L}{2} & 1
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
1+\frac{K L^{2}}{2} & L & \frac{K_{s} L^{2}}{2} & 0 \\
K L+\frac{\left(K+K_{s}\right)^{2} L^{3}}{4} & 1+\frac{K L^{2}}{2} & K_{s} L & \frac{K_{s} L^{2}}{2} \\
\frac{K_{s} L^{2}}{2} & 0 & 1-\frac{K L^{2}}{2} & L \\
K_{s} L & \frac{K_{s} L^{2}}{2} & -K L+\frac{\left(K+K_{s}\right)^{2} L^{3}}{4} & 1-\frac{K L^{2}}{2}
\end{array}\right]
\end{aligned}
$$

For $\boldsymbol{K}=\mathbf{0}$ this becomes

$$
\left[\begin{array}{cccc}
1 & L & \frac{K_{s} L^{2}}{2} & 0 \\
\frac{K_{s}^{2} L^{3}}{4} & 1 & K_{s} L & \frac{K_{s} L^{2}}{2} \\
\frac{K_{s} L^{2}}{2} & 0 & 1 & L \\
K_{s} L & \frac{K_{s} L^{2}}{2} & \frac{K_{s}^{2} L^{3}}{4} & 1
\end{array}\right]
$$

The drift length \boldsymbol{L} does not contribute to the skew transport.
The skew quad strength $\boldsymbol{K}_{s} \boldsymbol{L}$ makes a second-order, same-sign contribution to the H and V tunes.

For $\boldsymbol{K}_{s}=\mathbf{0}$ this becomes

$$
\left[\begin{array}{cccc}
1+\frac{K L^{2}}{2} & L & 0 & 0 \\
K L+\frac{K^{2} L^{3}}{4} & 1+\frac{K L^{2}}{2} & 0 & \\
0 & 0 & 1-\frac{K L^{2}}{2} & L \\
0 & 0 & -K L+\frac{K^{2} L^{3}}{4} & 1-\frac{K L^{2}}{2}
\end{array}\right]
$$

Bmad manual section 16: Normal sextupole

$$
\begin{gathered}
\frac{q L}{P_{0}} B_{\mathrm{Y}}=\mathrm{K}_{2} L\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \\
\frac{q L}{P_{0}} B_{\mathrm{X}}=2 \mathrm{~K}_{2} L \mathrm{xy} \\
\frac{q L}{P_{0}} \frac{\mathrm{~d} B_{\mathrm{Y}}}{\mathrm{dx}}=2 \mathrm{~K}_{2} L \mathrm{x} \\
\frac{q L}{P_{0}} \frac{\mathrm{~d} B_{\mathrm{X}}}{\mathrm{dx}}=2 \mathrm{~K}_{2} L \mathrm{y}
\end{gathered}
$$

Assuming the initial sextupole strength is zero, changes in the sextupole strength $\mathbf{K}_{\mathbf{2}}$ gives changes in the local field slopes (normal ($\boldsymbol{b}_{\boldsymbol{1}}$) and skew ($\boldsymbol{a}_{\boldsymbol{1}}$) quad strength changes):

$$
\begin{aligned}
& \Delta b_{1}=\frac{q L}{P_{0}} \Delta\left(\frac{\mathrm{~d} B_{\mathrm{Y}}}{\mathrm{dx}}\right)=2 \Delta \mathrm{~K}_{2} L\left(\mathrm{X}_{0}+\Delta \mathrm{x}\right) \\
& \Delta a_{1}=\frac{q L}{P_{0}} \Delta\left(\frac{\mathrm{~d} B_{\mathrm{X}}}{\mathrm{dx}}\right)=2 \Delta \mathrm{~K}_{2} L\left(\mathrm{Y}_{0}+\Delta \mathrm{y}\right)
\end{aligned}
$$

