Correction to the Beam Size Calculation Due to the Finite Length of the Sextupole

The horizontal angle change due to sextupole strength change integrated over sextupole length is given by

$$
\begin{equation*}
\left\langle\Delta p_{\mathrm{x}}\right\rangle_{\mathrm{L}}=\int_{0}^{\mathrm{L}} \mathrm{~d} s \frac{\mathrm{~d} \Delta p_{\mathrm{x}}(s)}{\mathrm{d} s} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d} \Delta p_{\mathrm{x}}(s)=-\mathrm{d} s \frac{\Delta K_{2}}{2}\left(x^{2}(s)+\sigma_{\mathrm{x}}^{2}\right) \tag{2}
\end{equation*}
$$

Here $\boldsymbol{x}(\boldsymbol{s})$ is the distance of the beam from the sextupole center and $\boldsymbol{\sigma}_{\mathrm{x}}$ is the horizontal size of the beam.
Writing $x(s)$ as

$$
\begin{equation*}
x(s)=X_{0}+p_{\mathrm{x}}(s) d s \tag{3}
\end{equation*}
$$

where $\boldsymbol{X}_{\mathbf{0}}$ is the beam position at the entrance, and

$$
\begin{equation*}
p_{\mathrm{x}}(s)=P_{\mathrm{x} 0}+\Delta p_{\mathrm{x}}(s) \tag{4}
\end{equation*}
$$

where $\boldsymbol{P}_{\mathbf{x} \mathbf{0}}$ is the entrance angle, and using Eq. 2, we obtain

$$
\begin{equation*}
\left\langle\Delta p_{\mathrm{x}}\right\rangle_{\mathrm{L}}=-\frac{\Delta K_{2} L}{2}\left[\left(X_{0}^{2}+\sigma_{\mathrm{x}}^{2}\right)+\int_{0}^{\mathrm{L}} \mathrm{~d} s \int_{0}^{s^{\prime}} d s^{\prime} 2 X_{0}\left(P_{\mathrm{x} 0}+\Delta p_{\mathrm{x}}\left(s^{\prime}\right)\right)\right] \tag{5}
\end{equation*}
$$

Keeping only terms linear in $\boldsymbol{\Delta} \boldsymbol{K}_{\mathbf{2}}$, we have

$$
\begin{equation*}
\left\langle\Delta p_{\mathrm{x}}\right\rangle_{\mathrm{L}}=-\frac{\Delta K_{2} L}{2}\left(X_{0}^{2}+\sigma_{\mathrm{x}}^{2}+X_{0} P_{\mathrm{x} 0} L\right) \tag{6}
\end{equation*}
$$

Since $\boldsymbol{P}_{\mathbf{x 0}}$ can reach values of milliradians, this correction term can be of order tenths of $\mathrm{mm}^{\mathbf{2}}$, which is comparable to the measurement error in the beam size. However, as we will see below, it is cancelled by the length correction to the quadrupole term $\boldsymbol{\Delta} \boldsymbol{b}_{\boldsymbol{1}}$.
The change from the prior approximation to the term in the beam size calculation is given by

$$
\begin{equation*}
-2\left\langle\frac{\Delta p_{\mathrm{x}}}{\Delta K_{2} L}\right\rangle_{\mathrm{L}}=-2 \frac{\Delta p_{\mathrm{x}}}{\Delta K_{2} L}+X_{0} P_{\mathrm{x} 0} L \tag{7}
\end{equation*}
$$

Repeating the above exercise for the quadrupole term caused by the sextupole strength change, we find

$$
\begin{equation*}
\left\langle\Delta b_{1}\right\rangle_{\mathrm{L}}=\Delta K_{2} L\left(X_{0}+\frac{P_{\mathrm{x} 0} L}{2}\right) \tag{8}
\end{equation*}
$$

This correction can be of order 0.1 mm , which is comparable to our uncertainty in calculating the beam size. The change from the prior approximation to the term in the beam size calculation is given by

$$
\begin{equation*}
\left\langle\frac{\Delta b_{1}}{\Delta K_{2} L}\right\rangle_{\mathrm{L}}=\frac{\Delta b_{1}}{\Delta K_{2} L}+\frac{P_{\mathrm{x} 0} L}{2} \tag{9}
\end{equation*}
$$

And now for the surprise. We calculate the squared beam size using the length-corrected values:

$$
\begin{align*}
\sigma_{\mathrm{x}}^{2} & =-2\left\langle\frac{\Delta p_{\mathrm{x}}}{\Delta K_{2} L}\right\rangle_{\mathrm{L}}-\left(\left\langle\frac{\Delta b_{1}}{\Delta K_{2} L}\right\rangle_{\mathrm{L}}\right)^{2} \tag{10}\\
& =-2 \frac{\Delta p_{\mathrm{x}}}{\Delta K_{2} L}+X_{0} P_{\mathrm{x} 0} L-\left[X_{0}^{2}+X_{0} P_{\mathrm{x} 0} L+\left(\frac{P_{\mathrm{x} 0} L}{2}\right)^{2}\right] \tag{11}
\end{align*}
$$

The linear terms in the length correction in the beam size calculation cancel exactly!

The extension to both transverse coordinates gives the same result for the length-correction cancellation in the $\boldsymbol{\Delta} \boldsymbol{a}_{\mathbf{1}}$ and $\boldsymbol{\Delta} \boldsymbol{p}_{\mathbf{y}}$ terms as well.

