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1 General Resonance Analysis

Given a second order one-turn map, we want to find the resonance amplitudes and phases. The one-turn
map is of the form

x(n+ 1) = Mx x(n) + Tx x(n)x(n) (1)

x = (x, px, y, py) are the transverse beam coordinates in phase space, n is the turn number, [Mx,Tx] are
the first and second order parts of the map. The linear matrix Mx can be written in normalized form[3]

Ma = V−1 Mx V (2)

where V is a symplectic matrix, and Ma is block diagonal

Ma =

(
R(ωa) 0

0 R(ωb)

)
(3)

ωa and ωb are the a and b eigen mode tunes and R is a rotation matrix

R(ω) =

(
cosω sinω
− sinω cosω

)
(4)

The normalized coordinates a = (a, pa, b, pb) are related to the laboratory coordinates via

x = Va. (5)

The one-turn map [Ma,Ta] in normalized coordinates is related to the laboratory map via concatenation
with bfV

[Ma,Ta] = V−1 ◦ [Mx,Tx] ◦V (6)

Explicitly, using the implied summation convention, the second order transformation is

Ta,ijk = V −1ip Tx,pqr Vqj Vrk (7)

The one-turn map can now be analyzed in the resonance basis[4] z = (za, z
∗
a, zb, z

∗
b ) where

za ≡ a− i pa
zb ≡ b− i pb (8)

In the resonance basis the equation of motion of the one-turn map [Mz,Tz] is

z(n+ 1) = Mz z(n) + Tz z(n) z(n) (9)
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where

Mz = W−1 Ma W =


ei ωa 0 0 0

0 e−i ωa 0 0
0 0 ei ωb 0
0 0 0 e−i ωb


Tz = W−1 ◦Ta ◦W (10)

with

W =
1

2


1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

 (11)

The analysis uses first order perturbation theory considering Tz as the perturbation. The solution is
written in the form

z = z + ẑ (12)

where ẑ is the first order solution and z is the zeroth order solution which is readily seen to be

za(n) = Aa e
i ωa n

zb(n) = Ab e
i ωb n (13)

where the complex amplitudes Aa and Ab are determined by the initial conditions. Using Eq. (12) and
Eq. (13) in Eq. (9), and ignoring higher order terms, the equation for ẑa is

ẑa(n+ 1)− ẑa(n) ei ωa = Tz,1jk zj(n) zk(n) (14)

with a similar equation for ẑb. The solution of ẑa is

ẑa(n) =
∑
j,k

ẑa,jk e
i(ωj+ωk)n =

∑
j,k

Aj Ak Tz,1jk e
i (ωj+ωk)n

ei(ωj+ωk) − ei ωa
(15)

where

(A1, A2, A3, A4) = (Aa, A
∗
a, Ab, A

∗
b)

(ω1, ω2, ω3, ω4) = (ωa,−ωa, ωb,−ωb) (16)

and for zb

ẑb(n) =
∑
j,k

ẑb,jk e
i(ωj+ωk)n =

∑
j,k

Aj Ak Tz,3jk e
i (ωj+ωk)n

ei(ωj+ωk) − ei ωb
(17)

The solutions for ẑa and ẑb show that, along with a DC orbit shift, there are oscillations ωj + ωk at all the
sum and difference frequencies ±2ωa, ±2ωb, ±(ωa +ωb) and ±(ωa−ωb). Excluding the DC terms, For each
term ẑa,jk which oscillates at ωj + ωk there is a mirror term ẑa,̃jk̃ that oscillates at −ωj − ωk with

1̃ = 2, 2̃ = 1, 3̃ = 4, 4̃ = 3 (18)

Excluding the DC terms, the four terms ẑa,jk, ẑa,̃jk̃, ẑb,jk, ẑb,̃jk̃ all contribute to the oscillations seen at a

given resonance frequency at a BPM. Combining Eqs. (5), (8), (15), (17) gives for a given ωj +ωk resonance
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frequency

x(n) =
1

2

(
V11(ẑa,jk + ẑ∗

a,̃jk̃
) + i V12(ẑa,jk − ẑ∗a,̃jk̃)+

V13(ẑb,jk + ẑ∗
b,̃jk̃

) + i V14(ẑb,jk − ẑ∗b,̃jk̃)
)
ei (ωj+ωk)n + CC

y(n) =
1

2

(
V31(ẑa,jk + ẑ∗

a,̃jk̃
) + i V32(ẑa,jk − ẑ∗a,̃jk̃)+

V33(ẑb,jk + ẑ∗
b,̃jk̃

) + i V34(ẑb,jk − ẑ∗b,̃jk̃)
)
ei (ωj+ωk)n + CC (19)

If the lattice is decoupled, and all the sextupoles are not tilted, the first two lines appear only with the
a-mode (horizontal) motion and the latter two appear only with the b-mode (vertical) motion.

2 Overview

The idea is to measure the phase and amplitude of the horizontal and vertical resonance lines at all BPM’s
while resonantly shaking at both the horizontal and vertical betatron resonance frequencies. This information
allows the calculation of sextupole strengths and locations.

This analysis uses first order perturbation theory. That is, only effects that are first order in the sextupole
strength are considered. A more general analysis can be obtained using Normal Form analysis[1]. While not
as general as Normal Form analysis, the following derivation has the advantage of simplicity and makes a
clear connection between the sextupole kicks and and the beam response.

First order perturbation theory consists of using the unperturbed oscillations in the kick equations to
calculate the oscillations at the various resonant frequencies. The unperturbed oscillations of the beam are
given by

x0(s, n) =
√
Ax βx(s) cos(ωx n+ φx(s) + φx0) (20)

y0(s, n) =
√
Ay βy(s) cos(ωy n+ φy(s) + φy0) (21)

The kick (dx′, dy′) given by a sextupole of strength k2 and length L is

(dx′, dy′) = k2 L (
1

2
(x2 − y2), x y) (22)

With first order perturbation theory, the effect of a collection of sextupoles is simply the sum of the effects
of each one so the problem may be simplified by considering a single sextupole.

The result will be that there are four resonance lines that can be seen in the position data. Each resonance
line is comprised of two resonance frequencies that are opposite in sign but have different amplitudes. At
any one BPM, it is not possible to distinguish these resonant lines apart. Using multiple BPMs however,
breaks the symmetry and allows one to differentiate the two.

In the horizontal plane, the resonant lines correspond to the ±2ωx and ±2ωy frequencies. In the vertical
plane the resonant lines correspond to ±(ωx + ωy) and ±(ωx − ωy). Each resonance line represents an
oscillation in either the horizontal or vertical plane. That is, none of the resonance lines couple horizontal
and vertical motions.

3 Horizontal Resonance Analysis

The horizontal response is written in normalized coordinate (x̃, x̃′) given by(
x̃
x̃′

)
=

(
1/
√
βx 0

α/
√
βx

√
βx

) (
x
x′

)
(23)
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To first order in the sextupole strength, the horizontal kick dx̃′ due to a sextupole at position s̄ is

dx̃′(s̄, n) =
√
βx(s̄) dx′ =

√
βx(s̄)

2
k2 L (x20(s, n)− y20(s, n))

= Kx2 cos(2 ω̄xn)−Ky2 cos(2 ω̄yn) + (Kx2 −Ky2) (24)

where

ω̄xn ≡ ωx n+ φx(s̄) + φx0 (25)

ω̄yn ≡ ωy n+ φy(s̄) + φy0 (26)

and

Kx2 ≡
1

4
k2 LAx β

3/2
x (s̄) (27)

Ky2 ≡
1

4
k2 LAy β

1/2
x (s̄)βy(s̄) (28)

At the sextupole, the position on the nth turn is due to the kicks on all the previous turns

x̃(s̄, n) =

n∑
k=−∞

dx̃′(s̄, k)Rx12(n− k) (29)

where Rx12(m) is the response to a kick after n turns

Rx12(m) = sin(ωxm) (30)

Similarly, the angle of the beam just after the sextupole is given by

x̃′(s̄+, n) =

n∑
k=−∞

dx̃′(s̄, k) cos(ωx (n− k))

where s̄+ denotes the position just after the sextupole.
The beam response is divided up into three parts corresponding to the three terms on the RHS of Eq. (24).

The first term gives the response at the ±2ωx resonance line. Using Eqs. (29) and (31), this position response
is

x̃(s̄, n) =
Kx2

4

[
cos(2ω̄xn + 3ωx/2)

sin(3ωx/2)
− cos(2ω̄xn + ωx/2)

sin(ωx/2)

]
(31)

Similarly, the angle of the beam just after the sextupole at s̄+ is given by

x̃′(s̄+, n) =
Kx2

4

[
sin(2ω̄xn + 3ωx/2)

sin(3ωx/2)
+

sin(2ω̄xn + ωx/2)

sin(ωx/2)

]
(32)

Notice that x̃′, unlike x̃, is not continuous across the sextupole. Starting from x̃ and x̃′ at the sextupole, the
response at a given location s > s̄ is

x̃(s, n) = x̃(s̄, n) cos(φx(s)− φx(s̄)) + x̃′(s̄+, n) sin(φx(s)− φx(s̄)) (33)

The general solution for all s is

x̃(s, n) =


Kx2

4

[
cos(2ω̄xn − 3ωx/2− dφx(s))

sin(3ωx/2)
− cos(2ω̄xn − ωx/2 + dφx(s))

sin(ωx/2)

]
s < s̄

Kx2

4

[
cos(2ω̄xn + 3ωx/2− dφx(s))

sin(3ωx/2)
− cos(2ω̄xn + ωx/2 + dφx(s))

sin(ωx/2)

]
s > s̄

(34)
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where
dφx(s) = φx(s)− φx(s̄) (35)

The first term on the RHS of Eq. (34), which comes from the first term on the RHS of Eqs. (31) and (32),
represents an oscillation at a frequency of −2ωx. The second terms on the RHS in these three equations
represent an oscillation at 2ωx. In the Normal Form analysis, the −2ωx oscillations are driven by the h3000
term and the 2ωx oscillations are driven by the h1200 term[1].

The position in Eq. (32) at a given s position can be considered as the sum of two phasers of amplitude
A− = Kx2/(4 sin(3ωx/2)) and A+ = Kx2/(4 sin(ωx/2)). Each phaser rotates as 2ωx with an s-dependent
phase difference. The amplitude of oscillation, |x̃|, at a given s position will thus vary between |A− − A+|
when the phasers are out-of-phase and |A−+A+| when the phasers are in-phase. Since there are two phasers
involved here, the phase of the x̃ oscillations at a given s-position is not a simple function of the phase
advance φx(s).

The second term on the RHS of Eq. (24) gives the ±2ωy resonance line. The analysis of the ±2ωy line
is similar to the ±2ωx analysis. The result is that at any given location the position response is

x̃(s, n) =


−Ky2

4

[
cos(2ω̄yn − ωy − ωx/2− dφx(s))

sin(ωy + ωx/2)
− cos(2ω̄yn − ωy + ωx/2 + dφx(s))

sin(ωy − ωx/2)

]
s < s̄

−Ky2

4

[
cos(2ω̄yn + ωy + ωx/2− dφx(s))

sin(ωy + ωx/2)
− cos(2ω̄yn + ωy − ωx/2 + dφx(s))

sin(ωy − ωx/2)

]
s > s̄

(36)

The third term on the RHS of Eq. (24) is constant and thus results in an orbit distortion. The result is
the standard closed orbit due to a kick

x̃(s) =
(Kx2 −Ky2) cos(ωx/2− |dφx(s)|)

2 sin(ωx/2)
(37)

4 Vertical Resonance Analysis

The vertical motion is analyzed like the horizontal motion. The vertical kick is given by

dỹ′(s̄, n) =
√
βy(s̄) dy′ =

√
βy(s̄) k2 Lx0(s, n) y0(s, n)

= Kxy [cos(2ω̄xyn+)− cos(2ω̄xyn−)] (38)

where

ω̄xyn± =
1

2
[(ωx ± ωy)n+ (φx(s̄)± φy(s̄)) + (φx0 ± φy0)] (39)

and

Kxy ≡
1

4
K2 L

√
AxAy β

1/2
x (s̄)βy(s̄) (40)

The ±(ωx +ωy) resonance line corresponds to the first term on the RHS of Eq. (38). The analysis is the
same as the horizontal resonances. The result is

ỹ(s, n) =


Kxy

4

[
cos(2ω̄xyn+ − ωxy+ − ωy/2− dφy(s))

sin(ωxy+ + ωy/2)
− cos(2ω̄xyn+ − ωxy+ + ωy/2 + dφy(s))

sin(ωxy+ − ωy/2)

]
s < s̄

Kxy

4

[
cos(2ω̄xyn+ + ωxy+ + ωy/2− dφy(s))

sin(ωxy+ + ωy/2)
− cos(2ω̄xyn+ + ωxy+ − ωy/2 + dφy(s))

sin(ωxy+ − ωy/2)

]
s > s̄

(41)
where

ωxy+ =
1

2
(ωx + ωy) (42)
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and
dφy(s) = φy(s)− φy(s̄) (43)

Finally, The oscillations of the ±(ωx − ωy) resonance line is

ỹ(s, n) =


Kxy

4

[
cos(2ω̄xyn− − ωxy− − ωy/2− dφy(s))

sin(ωxy− + ωy/2)
− cos(2ω̄xyn− − ωxy− + ωy/2 + dφy(s))

sin(ωxy− − ωy/2)

]
s < s̄

Kxy

4

[
cos(2ω̄xyn− + ωxy− + ωy/2− dφy(s))

sin(ωxy− + ωy/2)
− cos(2ω̄xyn− + ωxy− − ωy/2 + dφy(s))

sin(ωxy− − ωy/2)

]
s > s̄

(44)
where

ωxy− =
1

2
(ωx − ωy) (45)

5 Data Analysis

Two ways to approach the data are discussed here. The first approach involves fitting the measured data
using a software model of the lattice. From the oscillations at the fundamental betatron frequencies, the
Twiss parameters at the BPMs can be measured. The first step in the fit involves fitting the model quadrupole
strengths to the measured Twiss parameters. Once the model quadrupoles have been fit, the beta function
and betatron phase at the sextupoles can be calculated from the model. Using this, the only unknowns in
the appropriate equation for z̃ (which is x̃ or ỹ depending upon which resonance is being analyzed) developed
above (one of Eq. (34), (36), (41), or (44)) are the sextupole strengths k2. A fit between the measured z̃ at
a resonance line and the z̃ from the model using the strengths of the sextupoles may now be done. This can
be done by decomposing the oscillations at a BPM for a given resonance line into two components

z̃(s, n) = Ac cos(2ω̄rn) +As sin(2ω̄rn) (46)

Where ω̄rn is the resonance frequency of the line (one of ω̄xn, ω̄yn, ω̄xyn+, or ω̄xyn−). Comparing this to the
appropriate equation for z̃, equations for Ac and As may readily be derived.

Once a set of strengths are calculated, the model k2 values can be compared to the k2 values as calculated
from the calibration value (which is, say, calculated from the currents going through the sextupoles). This
is a check that nothing is mis-wired, etc. If the calibrations are reasonably accurate (but not exact) the
sextupole strengths may be corrected to achieve some desired distribution. Calling k2(model) the strengths
from the fit, and k2(design) the strengths that are desired, then the change in k2 needed is

dk2 = k2(design)− k2(model) (47)

The second approach involves trying to find where sextupole error are originating. Assume for for the
sake of illustration that there is no error in the sextupole calibrations so that k2 of all the sextupoles is known.
The difference dz̃ ≡ z̃(measured)− z̃(model) for any line should now be zero but will, in general, not be due
to various imperfections in the lattice (say a vertical steering has an associated sextupole component). The
task at hand is to locate and calculate the strength of such errors.

It is assumed that any errors are “isolated”. That is, there are error free regions around any given error.
An error free region can be fit to a freely propagating orbit “wave”. The fit is of the form

dz̃(s, n) = Ac+ cos(ωr n+φz(s))+As+ sin(ωr n+φz(s))+Ac− cos(ωr n−φz(s))+As− sin(ωr n−φz(s)) (48)

where ωr is the resonance frequency under consideration (one of 2ωx, 2ωy, ωx + ωy, or ωx − ωy). The fit
parameters are Ac+, As+, Ac−, and As−. From the fits to two regions surrounding a putative error, the
amplitude and placement of the error may be determined[2].

By varying the strength of a given sextupole and looking at the change in the resonance lines, this second
approach may also be used to calibrate sextupoles.
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