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Abstra
t

We have applied modern te
hniques for single parti
le Hamiltonian dynami
s
to be able to pursue self-
onsistent modeling for both numeri
al evaluation
and analyti
al studies. These te
hniques made it feasible to pursue a system-
ati
 approa
h in the design towards a sextupole s
heme for the Swiss Light
Sour
e (SLS). The derivation of analyti
al formula to obtain insight into the
parameter dependen
e of various dynami
al properties was simpli�ed 
onsid-
erable by the use of map normal form rather than traditional Hamiltonian
perturbation theory. In the pro
ess we also veri�ed that perturbation theory
works fairly well for regions of phase spa
e where the motion is regular, hen
e
allowing us to model and redu
e the e�e
s of the nonlinear perturbations.
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1 Introdu
tion

We would like to start by informing the reader that a 
riti
al point of view
will be taken in the following presentation. In parti
ular when 
ontrasting
here applied state of the art te
hniques against more old-fashioned. The
main reason originates from the observation that the s
ienti�
 pro
ess is not
always as rational it likes to presume. We also prefer to view the many models
appearing in this �eld, in
luding our owns, as little more than temporary
approximations, eventually to be repla
ed when more sophisti
ated methods
appears on the horizon. Furthermore, often heard 
laims like: \Existing
a

elerator works." or \Everything in the 
ontrol room is linear." have of

ourse little s
ienti�
 
ontent due to their inherent la
k of pre
ision.

In any 
ase, a 
riti
al presentation 
an only aid to 
larify matters for the
skepti
al yet open-minded reader that prefers to draw his own 
on
lusions
based on his own judgment. In parti
ular, any new
omer to a �eld that has
to 
onfront su
h a broad range of physi
al phenomena. And yet, often unne
-
essarily obs
ured by an individual tenden
y to overemphasize di�eren
es in
te
hniques rather than �rst establishing the 
ommon ground, rarely beyond

lassi
al ele
trodynami
s, from whi
h the various advantages of the di�erent
te
hniques would emerge in broad daylight. We therefore partly sympathize
with the slow a

eptan
e among the many potential users that 
ould bene�t
from these new methods. See ref. [1℄ for an ex
ellent general s
ienti�
 review,
ref. [2℄1 for the more typi
al subje
tive, and ref. [3℄ for an attempt to rea
h
a 
oherent presentation from the experts.

In fa
t, we 
hallenge the mathemati
ally in
lined reader to try to extra
t
a 
oherent pi
ture2 from the presentations in these publi
ations noting that
they are, apart from the quantum 
u
tuations in syn
hrotron radiation, ap-
pli
ations of 
lassi
al ele
trodynami
s [4℄. On time s
ales where the e�e
t
of syn
hrotron radiation 
an be ignored, the guiding prin
iples for the vari-
ous te
hniques presented in these papers may be summarized as: relativisti

single parti
le Hamiltonian dynami
s [5℄ taking advantage of the underlying

1The following referen
es may serve as a set of papers 
omplementing ea
h other for
the reader interested in a
quiring a somewhat broader point of view: basi
 Lie algebrai

te
hniques for a

elerators [60, 61, 62, 63, 64, 65℄, generating fun
tion te
hniques [66,
67, 68℄, symple
ti
 integrators [69, 70, 71, 72, 73, 74, 75, 76, 77℄, trun
ated Power Series
Algebra (TPSA) [78, 79, 80, 81, 82℄, map normal form [83, 84, 85, 86℄, syn
hrotron radiation
[87, 88, 89, 90, 92℄, a

elerator modeling and design [91, 92, 93, 94, 95, 96, 97, 98℄.

2Ref. [1, 90℄ are two ex
eptions that may be viewed as a \proof of prin
iple".
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Lie algebrai
 stru
ture of Hamilton's equations to numeri
ally integrate or,
by using Trun
ated Power Series Algebra (TPSA) [6℄ for Automati
 Di�er-
entiation (AD) [7℄, evaluate, 
on
atenate, extra
t and bring perturbatively
into normal form [8, 9℄ the 
orresponding symple
ti
 maps.

We emphasize that even though the presented work was 
arried out for
the Swiss Light Sour
e (SLS), the applied methodology is 
ompletely general
and suitable for any syn
hrotron. We will in the following therefore view
SLS as an example. Like any modern high performan
e syn
hrotron, it has
a magneti
 latti
e with very strong fo
using and large natural 
hromati
ity
whi
h as usual is 
ompensated by 
hromati
 sextupoles. Sin
e these then also
are relatively strong, the stability is governed by the 
orresponding nonlinear
dynami
s.3

We are from a general point of view dealing with a 
on�nement problem.
The study is 
ompli
ated by the fa
t that di�erent dynami
al pro
esses are
important on di�erent time s
ales. They may be 
lassi�ed roughly as:

� First-turn: inje
tion, �rst turn (single-pass) and 
losed orbit.

� Short-term: a few syn
hrotron os
illations, typi
ally 102 turns; betatron-
and syn
hro-betatron motion and related resonan
es.

� Medium-term: one damping time, typi
ally 104 turns; syn
hrotron ra-
diation (
lassi
al radiation, quantum 
u
tuations determining the equi-
librium emittan
e), and wake-�eld e�e
ts.

� Long-term: typi
ally 109 turns; residual gas s
attering, Tous
hek s
at-
tering, and beam-beam intera
tion.

These are traditionally addressed by a step-wise pro
ess where one �rst es-
tablishes a latti
e with reasonable short term stability. The other time s
ales

an then be analyzed, often by models parameterized in terms of global prop-
erties of the short-term dynami
s [16, 17, 18, 19℄. Re�ned 
onsiderations for

3SLS is a third generation syn
hrotron light sour
e with state of the art brightness
primarily obtained by pushing the emittan
e. The linear opti
s design for su
h a sour
e,
is a nontrivial nonlinear optimization problem whi
h will not be addressed here. This

an to some degree be appre
iated by the elementary fa
t that even though in itself a
linear stability problem, a realisti
 latti
e design requires 
areful tailoring of related latti
e
fun
tions with strong nonlinear dependen
e on the magnet strengths. For these aspe
ts see
[10, 11, 12, 13, 14℄. The �nally adopted latti
e, based on a triple-bend-a
hromat stru
ture
[15℄ was developed by A. Streun [13, 14℄

2



the inje
tion pro
ess or estimated life times may lead to new requirements
on some of the global properties and the latti
e design be
omes an iterative
pro
ess.

A fundamental problem for a systemati
 sear
h of a solution for the 
on-
�nement problem, is the la
k of a 
omplete theory for stability in the non-
linear 
ase. The elegan
e and simpli
ity of linear 
ontrol theory originates
from the fa
t that stability, 
ontrollability- and observability of a system 
an
be determined dire
tly from 
ertain algebrai
 properties of the mathemati
al
model. In parti
ular, the eigenvalues of the state matrix4 and the rank of
the 
ontrollability and observability matrix.5 For the nonlinear 
ase, stabil-
ity depends in general also on the initial 
onditions, and one is for
ed to
study the stability of individual traje
tories for given initial 
onditions by
numeri
al integration, so 
alled tra
king.

Appli
ation of sophisti
ated mathemati
al methods has led to the well
known KAM-theorem [22℄, stating roughly that a system with periodi
 so-
lutions has quasi-periodi
 solutions for suÆ
iently small perturbations. But
this theorem is unfortunately rather a
ademi
, i.e. solution exists..., and has
found little use in quantitative a

elerator design, the 
rux originating from
the de�nition of a suÆ
iently small perturbation.6 We therefore have to rely
on a more intuitive approa
h, arguing that the long term stability ought be
improved by redu
ing the leading order nonlinear perturbations, sin
e this
brings the equations of motion 
loser to the linear approximation for whi
h
linear stability has been established in the pro
ess of linear latti
e design.
The argument 
an be made somewhat sharper by 
onsidering the parametri

variation of the tune with for example the momentum deviation Æ. If one

onsiders an ensemble of parti
les over Æ, one may expe
t stability problems
for parti
les with an a
tual tune 
lose to any betatron resonan
e driven by
the magneti
 latti
e. For ele
trons, one may of 
ourse argue that stability
over one damping time should be suÆ
ient for stability over all times. But
this is naive sin
e the ele
trons will in general be slowly 
rossing resonan
es

4First applied to the alternating gradient syn
hrotron by Courant and Snyder [20℄ by
analyzing the state matrix (the one-turn transport matrix).

5See any textbook on the subje
t or [21℄ for a straightforward appli
ation to Hill's
equation.

6To quote I. Per
ival [23℄: \In fa
t H�enon showed Arnold's proof only applies if the
perturbation is less than 10�333 and Moser's if it is less than 10�48, in appropriate units.
The latter is less than the gravitation perturbation of a football in Spain by the motion
of a ba
terium in Australia!"
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in their traje
tories of damped betatron os
illations towards the equilibrium
orbit. In parti
ular just after inje
tion and a Tous
hek event.

Systemati
 a

elerator design relies on the fa
t that modern te
hniques
allows one to easily and self-
onsistently7 test su
h a hypothesis against nu-
meri
al simulations based on pre
ise models that des
ribes the single parti
le
dynami
s on the short- and medium-term time s
ales. E�e
tively, the a

el-
erator physi
ist's e
onomy version of the aerodynami
ist's \wind tunnel". At
large, feasible of 
ourse due to the relative simpli
ity of dynami
s for systems
des
ribed by ordinary- rather than partial di�erential equations.

2 The Equations of Motion

The e�e
t of syn
hrotron radiation 
an be negle
ted in the following treat-
ment sin
e we are primarily 
on
erned about 
ontrol of the short term dy-
nami
s. This approximation is pursued for simpli
ity, sin
e 
lassi
al radiation

an be a

ommodated in the underlying theoreti
al framework by generaliz-
ing from a Hamiltonian 
ow to a ve
tor �eld whenever required [3℄.

2.1 The Relativisti
 Hamiltonian
The Hamiltonian for a 
harged parti
le in an external ele
tromagneti
 �eld
transformed into the lo
al 
omoving frame 
ustomarily used for a

elerators
is given by [5, 20℄

H1 (x; px; y; py;�pt; 
t; s) = �
�
1 + href (s)x

�
�

(
q

p0
As (s) +

r
1�

2

�
pt + p2t �

h
px �

q

p0
Ax (s)

i2
�

h
py �

q

p0
Ay (s)

i2)
(1)

where

pt � �E � E0

p0

; href (s) � 1

�ref (s)
; � � v



(2)

7Using the same dynami
al model for analyti
al- and numeri
al studies. In parti
ular
when latti
e errors are in
luded.
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and t the absolute time of 
ight. �ref is the lo
al radius of 
urvature along the
referen
e 
urve followed by the 
omoving frame8. The momentum deviation

Æ � p� p0
p0

(3)

is introdu
ed by the 
anoni
al transformation

F2 =

t

�

�
1�

q
1 + �2 (2Æ + Æ2)

�
; H2 = H1 +

�F2

�s
= H1;

�
T =
�F2

�Æ
= � � (1 + Æ) 
tq

1 + �2 (2Æ + Æ2)
;

pt =
�F2

� (
t)
=

1

�

�
1�

q
1 + �2 (2Æ + Æ2)

�
(4)

leading to the Hamiltonian

H2 (x; px; y; py; Æ; 
t; s) = �
�
1 + href (s) x

�
�

(
q

p0
As (s) +

r
(1 + Æ)2 �

h
px �

q

p0
Ax (s)

i2
�

h
py �

q

p0
Ay (s)

i2)
(5)

Note that T , formally de�ned as the 
onjugate 
oordinate to Æ, is not equal
to the time of 
ight t, now given by

t = T

q
1 + �2 (2Æ + Æ2)

� (1 + Æ)
(6)

2.2 The Expanded Hamiltonian

We now introdu
e a sequen
e of justi�able approximations with the goal to
obtain a simple but still a

urate dynami
al model. In the ultrarelativisti


limit when � ! 1

pt ! �Æ; t! T (7)

8We emphasize that the referen
e 
urve is in theory 
ompletely arbitrary. From a
pra
ti
al point of view, it is 
hosen primarily from engineering 
onsiderations, in parti
ular
the shape of the ideal 
losed orbit. A 
orresponding magneti
 guiding �eld with traje
tories
of proper geometri
al shape for ideal initial 
onditions is then determined.
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This limit will be assumed in the following.9 Note that at low energies, it
is more suitable to use the momentum 
onjugate to the time of 
ight t, i.e.
the energy deviation pt de�ned by eq. (2). The multipole expansion of the
ve
tor potential [4℄ in the sour
e-free environment of the beam 
an for the
pie
e-wise 
onstant 
ase10 be written

q

p0
Ax (s) = 0;

q

p0
Ay (s) = 0;

q

p0
As (s) � �Re

1X
n=1

1

n
[ian (s) + bn (s)℄

�
rei'

�n
= �Re

1X
n=1

1

n
[ian (s) + bn (s)℄ (x + iy)n: (8)

From the 
url in the 
urvilinear system [38℄

Bx (s) =
1

1 + href (s)x

�Ay

�s
� �As

�y
;

By (s) =
href (s)

1 + href (s)x
As +

�As

�x
� 1

1 + href (s)x

�Ax

�s
;

Bs (s) =
�Ax

�y
� �Ay

�x
(9)

one then obtains the 
orresponding �elds

By (s) + iBx (s) = �p0
q

1X
n=1

[ian (s) + bn (s)℄
�
rei'

�n�1
= �p0

q

1X
n=1

[ian (s) + bn (s)℄ (x+ iy)n�1 (10)

valid for href (s) = 0. In the 
ase of dipole magnets n = 1, there are two
natural geometries from an engineering point of view. The above Cartesian

geometry

q

p0
As (s) = �b1 (s) x (11)

and the 
ylindri
al

q

p0
As (s) = �b1 (s)

2

1 + href (s)x

href (s)
(12)

9The ele
tron energy for SLS is � 2:1 GeV 
ompared to a rest mass of only 0.511 MeV.
10Ignoring fringe �elds.
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In the latter 
ase the 
urvature of the lo
al referen
e frame is 
hosen so that

href (s) = b1 (s) � 1

�b (s)
(13)

whi
h has a geometri
al interpretation in the form11

q

p0
= � 1

(B�b)0
(14)

known as the magneti
 rigidity. For pre
ise modeling of dipoles with gradi-
ents see [93℄ for te
hni
al details.

We now apply the adiabati
 approximation by taking advantage of the
fa
t that the syn
hrotron os
illations are in general mu
h slower than the be-
tatron os
illations.12 The momentum deviation 
an in other words be viewed
as a slowly varying parameter rather than a dynami
al variable obeying a
dynami
al law so that the longitudinal motion de
ouples from the transverse.
The Hamiltonian eq. (1) is then expanded to third order in the phase spa
e
variables but keeping the exa
t parametri
 dependen
e in Æ

H3 (x; px; y; py; s)

= � [1 + href (s)x℄

"
1 + Æ � p2x + p2y

2 (1 + Æ)
+

q

p0
As (s)

#
+O (4) (15)

For simpli
ity, we will assume that the magneti
 latti
e 
an be modeled
by a pie
e-wise 
onstant �eld 
onsisting of dipoles with 
ylindri
al geometry
and quadrupoles and sextupoles with Cartesian geometry. This leads to

H4 (x; px; y; py; s)

= [1 + b1 (s) x℄
p2x + p2y
2 (1 + Æ)

� b1 (s) xÆ +
b21 (s)

2
x2

+
b2 (s)

2

�
x2 � y2

�
+
b3 (s)

3

�
x3 � 3xy2

�
+O (4) (16)

Sin
e the lo
al 
urvature href (s) is small for a \medium size" ring13, higher
order kinemati
al terms may be ignored, so that �nally

11Sign 
onvention for ele
trons for whi
h a left handed 
oordinate system is more 
on-
venient.

12The tunes for SLS are: �x � 20; �y � 8 ; and �s � 0:01.
13Roughly, latti
es for whi
h 1=�2b � b2. For SLS: �b � 5 m, and b2 � 3 m�2.
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H5 (x; px; y; py; s)

=
p2x + p2y
2 (1 + Æ)

� b1 (s) xÆ +
b21 (s)

2
x2

+
b2 (s)

2

�
x2 � y2

�
+

b3 (s)

3

�
x3 � 3xy2

�
+O (4) (17)

Note, the ignored terms, in
luding the kinemati
al term

href (s)
p2x + p2y
2 (1 + Æ)

(18)

may 
ontribute signi�
antly to the 
hromati
ity in \small rings" [24, 25℄.

2.3 Hamilton's Equations

The equations of motion are obtained from Hamilton's equations

x0 � dx

ds
=

�H5

�px
=

px
1 + Æ

+O (3) ;

p0x � dpx
ds

= ��H5

�x

= b1 (s) Æ �
�
b21 (s) + b2 (s)

�
x� b3 (s)

�
x2 � y2

�
+O (3) ;

y0 � dy

ds
=

�H5

�py
=

py
1 + Æ

+O (3) ;

p0y � dpy
ds

= ��H5

�y
= b2 (s) y + 2b3 (s) xy +O (3) (19)

2.4 Symple
ti
 Integration

The symple
ti
 map generated by H5 
an be approximated by a symple
ti


integrator.14 A se
ond order symple
ti
 integrator15 is given by [70℄

S2 � e:�LH5: = e:�LHdrift=2:e:�LHki
k:e:�LHdrift=2: +O
�
L3

�
(20)

14An integrator that preserves the internal symmetry of Hamilton's equations.
15A so 
alled ki
k 
ode.
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where

Hdrift =
p2x + p2y
2 (1 + Æ)

;

Hki
k = �b1xÆ + b21
2
x2 +

b2
2

�
x2 � y2

�
+

b3
3

�
x3 � 3xy2

�
(21)

In other words, ea
h magnet is divided into a \drift-ki
k-drift". Moreover,
it 
an be shown that, given a symple
ti
 integrator of order 2n, one may

onstru
t one of order 2n+ 2 by [75℄

S2n+2 (L) = S2n (z1L)S2n (z0L)S2n (z1L) +O
�
L2n+3

�
(22)

where

z0 = � 21=(2n+1)

2� 21=(2n+1)
; z1 =

1

2 � 21=(2n+1)
(23)

A fourth order integrator is hen
e obtained by16 [69, 70, 71, 72, 75℄

e:�LH1: = e:�
1LHdrift:e:�d1LHki
k:e:�
2LHdrift:e:�d2LHki
k:

� e:�
2LHdrift:e:�d1LHki
k:e:�
1LHdrift: +O
�
L5

�
(24)

where


1 =
1

2 (2� 21=3)
; 
2 =

1� 21=3

2 (2� 21=3)
;

d1 =
1

2� 21=3
; d2 = � 21=3

2� 21=3
(25)

Note that while the se
ond drift is \negative"

2 (
1 + 
2) = 1; 2d1 + d2 = 1 (26)

as intuitively expe
ted. The number of integration steps required to 
orre
tly
model a given magnet are determined by numeri
al 
onvergen
e of relevant

omputed quantities as usual, e.g. dynami
al a

eptan
e, but with the extra

onstraint that the tune should be kept 
onstant. All tra
king related to this
work have been done with this model.

16Classi
al radiation is a straightforward modi�
ation of the ki
k [93℄.
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The 
orresponding Taylor expanded transfer maps are obtained to arbi-
trary order by performing pre
isely the same arithmeti
 operations in TPSA.
Computer implementations 
an therefore bene�t substantially by using any
modern obje
t oriented language that supports operator overloading [26℄. In
fa
t, all numeri
al map and related normal form 
al
ulations used in the de-
velopment and 
ross 
he
king of the presented work have been performed by
a beam line 
lass,17 with TPSA based on a polymorphi
 number 
lass with
referen
e 
ounting [27℄, in C++.

2.5 (Generalized Hill's Equations)

For the sake of 
ompleteness, we also present the 
orresponding generalized
Hill's equations. Note however, that they are never referred to in this work.
In any 
ase, they are obtained by 
ombining Hamilton's equations into two
se
ond order ODEs. From eq. (19) one �nds

x00 +
b2 (s) + b21 (s)

1 + Æ
x = b1 (s) Æ � b3 (s)

1 + Æ

�
x2 � y2

�
+O (3) ;

y00 � b2 (s)

1 + Æ
y =

2b3 (s)

1 + Æ
xy +O (3) (27)

3 Linear Beam Opti
s

3.1 Matri
es: Element Des
ription by Linear Sym-
ple
ti
 Maps

The linear equations of motion are obtained from eqs. (19) for b3 (s) = 0

x0 =
px

1 + Æ
+O (2) ;

p0x = b1 (s) Æ �
�
b21 (s) + b2 (s)

�
x +O (2) ;

y0 =
py

1 + Æ
+O (2) ;

p0y = b2 (s) y + 2b3 (s) xy +O (2) (28)

Integration leads to a linear transfer map representing a linear 
oordinate

transformation

~x1 = ~�0!1 (~x0) = M0!1~x0 (29)
17J. Bengtsson and E. Forest unpubl.
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where M0!1 is the well known 4 � 4 transfer matrix a
ting on the phase
spa
e ve
tor ~x = [x; px; y; py℄

T . Con
atenation is performed by ordinary
matrix multipli
ation

M0!2 = M1!2M0!1 (30)

The 
orresponding 4 � 4 matri
es are easily determined by inspe
tion
from the traditional matrix formalism, see e.g. p. 12-14 in ref. [29℄, based on
~x = [x; x0; y; y0℄T sin
e from eq. (28)

x0 =
px

1 + Æ
; y0 =

py
1 + Æ

(31)

and the multipole 
omponents de�ned by eq. (8) have the momentum de-
penden
e

q

p
As =

q

p0

As

1 + Æ
) bn (Æ) =

bn
1 + Æ

= (1 + Æ + � � �) (32)

so that�
x1
x0x1

�
=

�
m11 m12

m21 m22

� �
x0
x0x0

�
$

�
x1
px1

�
=

�
m11

m12

1+Æ

m21 (1 + Æ) m22

� �
x0
px0

�
(33)

These matri
es are symple
ti


MJMT = J (34)

where

J =

24 0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

35 (35)

a re
e
tion of the stru
ture of Hamilton's equations as we shall see in se
tion
4.1.

3.2 The Æ-dependent Fix Point: Dispersion

The linear dispersion fun
tion ~�(1) (s) is de�ned as the momentum dependent
�x point of the linear one-turn map

M0!n~�
(1) (s0) Æ � ~�(1) (s0) Æ (36)

11



where

~�(1) (s) �
h
�(1)x (s) ; �0

(1)
x (s) ; �(1)y (s) ; �0

(1)
y (s)

iT
(37)

whi
h is determined numeri
ally by a 
losed orbit �nder18 sin
e we have
avoided to expand in Æ. The �x point is translated to the origin of phase
spa
e by the transformation

~x (s)! ~x (s) + ~�(1) (s) Æ (38)

3.3 Matrix Diagonalization: Global Properties

The one-turn matrix is diagonalized as usual

M0!n = A (s0)R0!nA
�1 (s0) (39)

where

R0!n =
�
R2 (2��x) [0℄

[0℄ R2 (2��y)

�
; R2 (�) =

�

os� sin�
� sin� 
os�

�
(40)

In the 
ase of mid-plane symmetry19 one �nds, after imposing the Courant
and Snyder 
hoi
e for the phase advan
e, the unique (
anoni
al) transforma-
tion [86℄

A (s) =
�
Ax (s) [0℄
[0℄ Ay (s)

�
; A�1 (s) =

�
A�1x (s) [0℄

[0℄ A�1y (s)

�
(41)

where

Ax (s) =

24
q
�x (s) 0

� �x(s)p
�x(s)

1p
�x(s)

35 ; A�1x (s) =

264
1p
�x(s)

0

�x(s)p
�x(s)

q
�x (s)

375 (42)

and similarly for the verti
al plane.
The one-turn matrix at some arbitrary point k in the latti
e is then given

by

Mk!n+k = M0!kM0!nM
�1
0!k (43)

18The Newton-Raphson method in multidimensions [28℄ is parti
ularly suitable sin
e
the Ja
obian is simply the one-turn matrix.

19No linear 
oupling. In the general 
ase A (s) will 
ontain o�-diagonal elements that
have to be in
luded to 
orre
tly determine what 
an be measured, i.e. the beam size.
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However, it is suÆ
ient to diagonalize M0!N to determine the latti
e fun
-
tions at any arbitrary point sin
e

Mk!n+k = A (sk)R0!kR0!nR
�1
0!kA

�1 (sk)

= M0!kA (s0)R0!nA
�1 (s0)M

�1
0!k (44)

whi
h leads to20

A (sk)R0!k =M0!kA (s0) (45)

They are then 
omputed dire
tly from the matrix elements of A (sk)R0!k

using

�x (sk) = �a11 (sk) a21 (sk)� a12 (sk) a22 (sk) ;

�x (sk) = a211 (sk) + a212 (sk) ;

��x = ar
tan

 
a12 (sk)

a11 (sk)

!
� ar
tan

 
a12 (s0)

a11 (s0)

!
;

~�(1) (sk) = M0!k~�
(1) (s0) (46)

All linear opti
s 
al
ulations required for this work has been done by this
model.

4 Nonlinear Beam Dynami
s

The following treatment is based on a paradigm shift 
urrently taking pla
e in
nonlinear single parti
le beam dynami
s [1, 3, 95℄. It was a
tually 
onje
tured
in a paper by A.J. Dragt and J.M. Finn already ba
k in 1976 [60℄

\It also provides a new approa
h sin
e the 
onne
tion between
symple
ti
 maps, Lie algebras, invariant fun
tions, and Birkho�'s
work has not been previously re
ognized and exploited. It is ex-
pe
ted that the results obtained will be appli
able to the normal
form problem in Hamiltonian me
hani
s, the use of the Poin
ar�e
se
tion map in stability analysis, and the behavior of magneti

�eld lines in a toroidal plasma devi
e."

20Mathemati
ally equivalent to the \Transformation of Twiss parameters" e.g. eq.
[7,100℄ p. 16 in ref. [29℄

13



Indeed, this suggestion has sin
e long materialized.21 Part of the elegan
e of
the developments along these lines originates from the fa
t that, rather than
Fourier expand as 
ustomary and 
onsequently have to deal with in�nite sums
[32, 33℄,22 one pro
eeds more dire
tly to the desired goal. However, these
te
hniques demand for an elementary knowledge of Lie algebra, in reality
not mu
h beyond the level of ordinary quantum me
hani
s, appears to have
been a major obsta
le for them to gain general a

eptan
e. This is somewhat
unfortunate, be
ause one of the new te
hniques' major a
hievements is to
bring nonlinear single parti
le dynami
s ba
k to the spirit of Courant and
Snyder's by now23 elementary linear stability analysis [20℄, based on the one-
turn transfer matrix, i.e. the linear (symple
ti
) one-turn map.24 To quote
the Bologna s
hool [84℄:

\We des
ribe the motion of a parti
le in the latti
e of a hadron
a

elerator using the formalism of symple
ti
 maps. We revisit
the Courant-Snyder's theory and we stress that the redu
tion to
normal form of a symple
ti
 map is just the natural generalization
of the linear theory."

In parti
ular after this �eld's long detour along more or less su

essful at-
tempts to apply te
hniques initially developed, and hen
e more suitable,
for 
elestial me
hani
s.25 Roughly, the 
lassi
al eigenvalue problem and its
elegant solution by matrix diagonalization, is in a straightforward manner
generalized by the introdu
tion of a re
ursive algorithm that order by order
transforms the nonlinear (symple
ti
) map into normal form [84, 86℄ from
whi
h the global properties then easily are extra
ted.

This approa
h is of 
ourse mathemati
ally equivalent to the more tradi-
tional Hamiltonian perturbation theory [5℄, but far more e�e
tive when it

omes to 
arrying out expli
it 
al
ulations, rather than the 
ustomary \In
prin
iple..." for a

elerators. Hen
e with the virtue to free analyti
al models
from unne
essary and often radi
al oversimpli�
ations, and at last allowing

21See for example ref. [3, 30, 63, 65, 72, 85, 86, 94, 95℄.
22Closed forms a
tually exists, see for example [34℄ (but the treatment is in
orre
t sin
e

the the perturbation of the angle variable was missed).
23The reader with a broad interest is invited to make a 
omparison with the 
orrespond-

ing developments in the 
losely related �eld of 
ontrol theory over the last 40 years.
24The Courant-Snyder invariant is more generally known as the a
tion variable in Hamil-

tonian dynami
s: 2Jx = 1
�x(s)

�
x2 +

�
�x (s) px + �x (s)x

2
��

[31℄.
25See for example [32, 33, 34, 35, 36, 37, 38, 39℄.
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the a

elerator physi
ist to 
onstru
t more realisti
 models. We summarize
our point of view by a modest quote from A. Chao [40℄:

\There is a theorem stating when you have only a partial knowl-
edge of the solution to a di�erential equation and do not know
what to do next, make a Fourier transformation."

4.1 Lie Algebrai
 Stru
ture of Hamiltonian Dynami
s

Hamilton's equations 
an be written in the symple
ti
26 form27

_~x = �
 
�H

�~x
J

!T

(47)

where

J =

26664
0 1 0 0 0 0
�1 0 0 0 0 0
0 0 0 1 0 0
0 0 �1 0 0 0
0 0 0 0 0 1
0 0 0 0 �1 0

37775 (48)

De�ning the Poisson bra
ket

[f (~x) ; g (~x)℄ �
nX
i=1

"
�f (~x)

�xi

�g (~x)

�pxi
� �f (~x)

�pxi

�g (~x)

�xi

%
=

�f (~x)

�~x
J

"
�g (~x)

�~x

#T
(49)

allows one to write the total time derivative for any fun
tion f (~x; s) of the
phase spa
e variables and \time" (s) by

df (~x; s)

ds
= � [H; f (~x; s)℄ +

�f (~x; s)

�s
(50)

and in the 
ase of no expli
it s-dependen
e

df (~x)

ds
= � [H; f (~x)℄ (51)

26From greek: intertwined, introdu
ed by H. Weyl 1939.
27Goldstein's [5℄ notation is in
onsistent sin
e ~x is a 
ontravariant- and �H

�~x a 
ovariant
ve
tor as 
orre
tly stated, but the latter should, 
orrespondingly, be represented as the
transpose (dual) ve
tor in the formalism. A so 
alled 1-form. See in parti
ular p. 392.
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whi
h redu
e to Hamilton's equations for f (~x) any of the phase spa
e vari-
ables. Note that the Hamiltonian is simply the generator of an in�nitesimal
(symple
ti
) 
oordinate transformation. The Poisson bra
ket is invariant

under a 
anoni
al transformation, e.g. to a
tion-angle variables
h
J; �

i
[f (~x) ; g (~x)℄~x =

h
f
�
J; �

�
; g

�
J; �

�i
[J;�℄

(52)

Moreover, it has the following three properties:

antisymmetri


[f (~x) ; g (~x)℄ = � [g (~x) ; f (~x)℄ (53)

distributive

[af (~x) + bg (~x) ; h (~x)℄ = a [f (~x) ; h (~x)℄ + b [g (~x) ; h (~x)℄ (54)

Ja
obi's identity

[f (~x) ; [g (~x) ; h (~x)℄℄ + [g (~x) ; [h (~x) ; f (~x)℄℄ + [h (~x) ; [f (~x) ; g (~x)℄℄ = 0 (55)

whi
h de�nes a Lie algebra

If we write the Poisson bra
ket in the Lie operator form

: f (~x) : g (~x) � [f (~x) ; g (~x)℄ (56)

eq. (51) takes the form

df (~x)

ds
= � : H : f (~x) (57)

It 
an be shown that the 
ommutator of two Lie operators

f: f (~x) :; : g (~x) :g �: f (~x) :: g (~x) : � : g (~x) :: f (~x) : (58)

is homomorphi
 to the Poisson bra
ket

f: f (~x) :; : g (~x) :g ! : [f (~x) ; g (~x)℄ : (59)

In other words, that two Lie operators are equal

: f (~x) :=: g (~x) : (60)
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for any two fun
tions that di�er by an arbitrary 
onstant a

f (~x) = g (~x) + a (61)

As 
onsequen
e, the Lie operators also form a Lie algebra.
Sin
e the (fun
tional) map for a Hamiltonian that 
ommutes at di�erent

\times" (s)

f: H (~x; s0) :; : H (~x; s1) :g = 0 (62)

as a byprodu
t, it 
an be formally expressed in the form [62℄

M~�0!1
= exp

�
: �

Z s1

s0
H (s) ds :

�
(63)

Roughly speaking, the problem of integrating the equations of motion has
been redu
ed to algebrai
 manipulations by taking advantage of the underly-
ing Lie algebrai
 stru
ture of the Poisson bra
ket originating from Hamilton's
equations.

As before, we now assume that ea
h element 
an be represented by a pie
e-
wise 
onstant Hamiltonian.28 This is in general a good approximation for
\medium-" and \large rings". When not, they are straightforward to in
lude
into the formalism [91℄. Like for \small rings" or in intera
tion regions. The
map for an element of length L is then simply

M~�0!1
= exp (: �LH :) (64)

4.2 Element Des
ription by Symple
ti
 Maps

Ea
h element is represented by a (fun
tional) mapM~�0!1
a
ting on fun
tions

f (~x) of the phase spa
e ve
tor ~x = [x; px; y; py; Æ; 
t℄
T

f (~x1) =M~�0!1
f (~x0) � f Æ ~�0!1 (~x0) (65)

with 
omposition \Æ" de�ned by

f Æ �0!1 (x0) � f
�
�0!1 (x0)

�
(66)

28Ignoring fringe �elds.
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where ~�0!1 (~x0)

~x1 = ~�0!1 (~x0) (67)

is the 
orresponding transfer map.29 Con
atenation30 is de�ned by

M~�0!1
M~�1!2

�M~�0!2
(68)

We remark that it is of fundamental importan
e to have a 
on
eptually 
lear
understanding of these steps for the following treatment. For example, sin
e

M~�0!2
f = M~�1!2Æ~�0!1

f = f Æ
�
~�1!2 Æ ~�0!1

�
=

�
f Æ ~�1!2

�
Æ ~�0!1

= M~�0!1
M~�1!2

f (69)

it follows that (fun
tional) maps are 
on
atenated in reversed order in 
on-
trast to transfer maps. These maps are said to be symple
ti
 sin
e the 
or-
responding Ja
obian

M0!1 =
�~�0!1 (~x0)

�~x0
(70)

is a symple
ti
 matrix, see eq. (34).

4.3 Parallel Transport and Lumping of Thin Ki
ks

The magneti
 latti
e is now separated into nonlinear thin ki
ks 
onne
ted by
linear maps. The one-turn map has then the following formal form [41℄

M~�0!n
= M~�0!1

e:V1:M~�1!2

e:V2::::e:Vn�1:M~�n�1!n

= M~�0!1

e:V1:M�1~�0!1

M~�0!1

M~�1!2

e:V2::::e:Vn�1:M�1~�0!n�1

M~�0!n�1
M~�n�1!n

= e
:M~�0!1

V1:e
:M~�0!2

V2::::e
:M~�0!n�1

Vn�1:
M~�0!n

= A�10 A0e
:M~�0!1

V1:A�10 A0e
:M~�0!2

V2::::A�10 A0e
:M~�0!n�1

Vn�1:
A�10 R0!nAn

= A�10 e:bV1:e:bV2::::e:bVn�1:R0!nAn (71)

where we have introdu
ed

bVi � A0M~�0!i
Vi = R0!iAiVi (72)

29A 
oordinate transformation. Pre
isely what tra
king 
odes evaluates by dire
t nu-
meri
al integration of the 
orresponding equations of motion. Eqs. (19) in our 
ase.

30Group multipli
ation.
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sin
e for a similarity transformation

Me:f :M�1 = e:Mf : (73)

whereas for linear maps

M~�0!i
= A�10 R0!iAi (74)


orresponding to eq. (45) in the matrix 
ase. In other words, all the thin
ki
ks have been parallel transported31 to the beginning of the latti
e.32 They

an now be lumped into a single thin ki
k by the Baker-Campbell-Hausdor�
(BCH) theorem for non
ommuting operators well known from elementary
quantum me
hani
s

eaeb = ea+b+[a; b℄=2+::: (75)

so that �nally

M~�0!n
� A�10 e:h:R0!nAn

= A�10 exp

0�: NX
i=1

bVi +
1

2

NX
i<j

h bVi; bVj

i
+ � � � :

1AR0!nAn (76)

4.4 Map Normal Form: Global Properties

The global properties of the latti
e in the general nonlinear 
ase33 are deter-
mined by transforming the map into normal form [86℄

M~�0!n
� A�10 e:h(J;�):R0!nA0

?
= A�10 e:�g(J;�):e:k(J):R0!ne

:g(J;�):A0

= A�10 e:�g:e:k:e:R0!ng:R0!nA0

= A�10 e:k�(1�R0!n)g+[k;g℄=2+[k�g;R0!ng℄=2+���:R0!nA0 (77)

so that to �rst order

h(1) = k(1) � (1�R0!n) g
(1) (78)

31Compare with a spa
e translation of a spinning top.
32Re
all that (fun
tional) maps a
ts in reversed order.
33In parti
ular amplitude dependent tune shift, 
hromati
ity and the latti
e fun
tions

parametri
 dependen
e on Æ and multipole strengths. The \unlo
king of Pandora's box"
for reasons that will be
ome 
lear in the following.
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To solve this equation h has to be de
omposed into two parts: one part
independent of the angle variables34 and the remaining

h(1) = h
(1)
Ker

�
J
�
+ h

(1)
Im

�
J; �

�
(79)

so that

k(1) = h
(1)
Ker

�
J
�
; g(1) = � 1

1�R0!n
h
(1)
Im

�
J; �

�
(80)

whi
h leads to

e:h:R0!n = e:�g(J;�):e:k(J):R0!ne
:g(J;�):

= e
: 1
1�R0!n

h
(1)
Im ���:R0!ne

:h
(1)
Ker+h

(2)
Ker�

1
2

h
h
(1)
Im ; 1

1�R0!n
h
(1)
Im

i
Ker

���:

� e
:� 1

1�R0!n
h
(1)
Im ���: (81)

where
h
J; �

i
� [Jx; �x; Jy; �y℄ are the a
tion-angle variables. This 
an stri
tly

speaking only be done for integrable Hamiltonians.35 In other words Hamil-
tonian systems without 
haos. This is typi
ally far from reality in the 
ase
of a

elerators. However, the main goal of a

elerator design, from a math-
emati
al point of view, is to determine a design with a �x point surrounded
by regular motion over an extensive volume of phase spa
e. In other words,
to avoid 
haos. It is hen
e reasonable to assume that if one expands in some
smallness parameter, e.g. the multipole strength, and brings the map pertur-
batively into normal form, the 
orresponding power series expansions should
be able to model the dynami
s in the regular regions of phase spa
e. How-
ever, it 
an be shown that these expansions are only semi
onvergent.36 In
any 
ase, su
h a hypothesis 
an and should of 
ourse always be tested against
tra
king.

The tune shift is then easily obtained from the generator k
�
J
�
by

��x = � 1

2�

�k
�
J
�

�Jx
; ��y = � 1

2�

�k
�
J
�

�Jy
(82)

34The so 
alled kernal of R0!n, i.e. h for whi
h R0!nh
�
J
�
= 0.

35Hamiltonian systems for whi
h the motion is quasi-periodi
 and lies on a n-dimensional
invariant torus in the 2n-dimensional phase spa
e.

36Generally known as the \small denominator problem".
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whereas the 
anoni
al transformation exp (: g :) determines the distortions
of the invariant torus. For example

�xi +��xi =
D
e:g:Rn!iAix

2
E
�
= �xi

D
e:g:Rn!ix

2
E
�

= �xi
D
(1+ : g : + � � �)Rn!ix

2
E
�

(83)

where \hi�" denotes averaging over the angle variables [�x; �y℄.

5 Appli
ation to Sextupoles

In the following will work out analyti
al formula for various dynami
al quan-
tities as expansions in the multipole strength. Order will hen
e refer to order
in multipole strength and NOT order in the phase spa
e variables.37

5.1 Lie Generators: The Driving Terms

The ve
tor potential for a thin sextupole at an arbitrary lo
ation si is

Vi =
q

p0
As (si) = �b3i

3

�
x3 � 3xy2

�
(84)

Noting that

Aix =
q
�xix+ �

(1)
xi Æ (85)

one �nds

1

3
Ai

�
x3 � 3xy2

�
=

1

3

�q
�xix+ �

(1)
xi Æ

�3

�
�q

�xix+ �
(1)
xi Æ

�
�yiy

2

=
q
�xi

�
�
(1)
xi

�2
xÆ2 +

1

3
�
3=2
xi x3 �

q
�xi�yixy

2

+
�
�xix

2 � �yiy
2
�
�
(1)
xi Æ +O

�
Æ3
�

(86)

37For example, a se
ond-order a
hromat refers to a single-pass system for whi
h all
se
ond order terms in the 
orresponding Taylor expanded map have been zeroed. This

orresponds to that the �rst order e�e
ts in sextupole strength have been 
an
eled. We are
in the following, from a general point of view, attempting to design a 
ir
ular a

elerator
based on a magneti
 latti
e 
orresponding to a third-order a
hromat in the single pass

ase [64℄.

21



Introdu
ing the resonan
e basis

h�x �
q
2Jxe

�i�x =
q
2Jx 
os �x � i

q
2Jx sin�x = x� ipx (87)

in other words the eigenfun
tions of the rotation operator R

Ri!jh
�
x = Ri!j

q
2Jxe

�i�x =
q
2Jxe

�i(�x+�i!j;x) = e�i�i!j;xh�x (88)

Correspondingly

x =
q
2Jx 
os�x =

1

2

�
h+x + h�x

�
;

px = �
q
2Jx sin�x = � 1

2i

�
h+x � h�x

�
(89)

In the spirit of eqs. (41,65-67) we obtain

R0!iAi
1

3

�
x3 � 3xy2

�
= R0!i

�q
�xi

�
�
(1)
xi

�2
xÆ2 +

1

3
�
3=2
xi x3 �

q
�xi�yixy

2

+
�
�xix

2 � �yiy
2
�
�
(1)
xi Æ

i
+O

�
Æ2
�

(90)

and

R0!ix =
1

2
R0!i

�
h+x + h�x

�
=

1

2

�
h+x e

i�xi + 
:
:
�
;

R0!ix
2 =

1

4
R0!i

�
h+x + h�x

�2
=

1

4

�
h+2x ei2�xi + 
:
: + 4Jx

�
;

R0!ix
3 =

1

8

�
h+3x ei3�xi + 3h+2x h�x e

i�xi + 
:
:
�
;

R0!ixy
2 =

1

8

�
h+x h

+2
y ei(�xi+2�yi) + h+x h

�2
y ei(�xi�2�yi)

+ 2h+x h
+
y h
�
y e

i�xi + 
:
:
i

(91)

Colle
ting the terms we �nd that the Lie generator : h :, the nonlinear driving
terms, has to �rst order the following generi
 form in the resonan
e basis

h(1) � X
jIj=n

hIh
+i1
x h�i2x h+i3

y h�i4y Æi5 (92)

where I � [i1; i2; i3; i4; i5℄ ;
���I��� � i1 + i2 + i3 + i4 + i5. It may be interpreted

as a mode expansion with ea
h mode driving betatron- or syn
hro-betatron
resonan
es and are summarized below.
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The algebrai
 manipulations required to push on to the se
ond order are
straightforward and preferable automated by 
omputer algebra. The BCH-
theorem eq. (76) was implemented in MATHEMATICA38 to automati
ally
grind out the generator to se
ond order for an arbitrary multipole 
omponent.
The resulting se
ond order terms have the form

h(2) � 1

2

X
i<j

h bVi; bVji
� 1

J�
x J

�
y

X
jIj=jJj=n

hIhJh
+(i1+j1)
x h�(i2+j2)x h+(i3+j3)y h�(i4+j4)y Æi5+j5 (93)

5.1.1 First Order Chromati
 Terms

Quadrupoles will also 
ontribute sin
e from eq. (32)

Vi =
b2

2 (1 + Æ)

�
x2 � y2

�
=

b2
2
(1� Æ)

�
x2 � y2

�
+O

�
Æ2
�

(94)

There are two terms that are independent of the phase variable

h11001 =
1

4

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�xi +O

�
Æ2
�
;

h00111 = �1

4

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�yi +O

�
Æ2
�

(95)

whi
h drive the linear 
hromati
ity, the initial reason for introdu
ing sex-
tupoles into the latti
e. The remaining are

h20001 = h
�

02001 =
1

8

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�xie

i2�xi +O
�
Æ2
�
;

h00201 = h
�

00021 = �1

8

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�yie

i2�yi +O
�
Æ2
�
;

h10002 = h
�

01002 =
1

2

NX
i=1

h
(b2L)i � (b3L)i�

(1)
xi

i
�
(1)
xi

q
�xie

i�xi +O
�
Æ3
�
(96)

where � denotes the 
omplex 
onjugate. h20001 and h00201 drive syn
hro-
betatron resonan
es and generate momentum dependen
e of the beta fun
-
tions, whereas h10002 drive se
ond order dispersion. Unfortunately, this is far

38L. Rivkin priv. 
omm.
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from the end of the story. As we will see in the following, these terms are
followed by a whole swamp of undesirable terms: \the unlo
king of Pandora's
box".

5.1.2 First Order Geometri
 Terms

h21000 = h
�

12000 = �
1

8

NX
i=1

(b3iL) �
3=2
xi ei�xi ;

h30000 = h
�

03000 = �
1

24

NX
i=1

(b3iL) �
3=2
xi ei3�xi ;

h10110 = h
�

01110 =
1

4

NX
i=1

(b3iL)�
1=2
xi �yie

i�xi ;

h10020 = h
�

01200 =
1

8

NX
i=1

(b3iL)�
1=2
xi �yie

i(�xi�2�yi);

h10200 = h
�

01020 =
1

8

NX
i=1

(b3iL)�
1=2
xi �yie

i(�xi+2�yi) (97)

These terms drive �ve di�erent betatron modes with the frequen
ies:

�x; 3�x; �x � 2�y; �x + 2�y (98)

whi
h appears as the well known �rst order harmoni
s in the 
orresponding
Fourier expanded expressions in the old-fashioned approa
h.

5.1.3 Se
ond Order Chromati
 Terms

The terms independent of the angle variables drive the se
ond order 
hro-
mati
ity. But the related formula will be derived by a simpler approa
h, so
they are not needed in the following analysis. The remaining terms drive the
syn
hro-betatron sidebands of the �rst order resonan
es. However, sin
e the
�rst order betatron modes have to be 
an
eled, they 
orresponding sidebands
are expe
ted to be weak and will be ignored in the following analysis.
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5.1.4 Se
ond Order Geometri
 Terms

The terms independent of the angle variables are

(hIhJ)g;Ker = � 1

64
(3h21000h12000 + h30000h03000) (2Jx)

2

+
1

16
(2h21000h01110 + h10020h01200 + h10200h01020) (2Jx)(2Jy)

� 1

64
(4h10110h01110 + h10020h01200 + h10200h01020) (2Jy)

2 (99)

and drive amplitude dependent tune shift. These e�e
ts may be viewed as
originating from an amplitude- or momentum dependent shift of the 
losed
orbit in the sextupoles. The remaining terms are

(hIhJ)g;Im

=
1

64

h
2(h30000h12000)2�x + (h30000h21000)4�x

i
(2Jx)

2

+
1

64

h
2 (h30000h01110 + h21000h10110 + 2h10200h10020)2�x

+ 2 (h10200h12000 + h21000h01200 + 2h10200h01110 + 2h10110h01200)2�y
+ (h21000h10020 + h30000h01020 + 4h10110h10020)2�x�2�y

+ (h30000h01200 + h10200h21000 + 4h10110h10200)2�x+2�y

i
(2Jx)(2Jy)

+
1

64

h
2 (h10200h01110 + h10110h01200)2�y + (h10200h01200)4�y

i
(2Jy)

2

+ 
:
: (100)

and drive 8 di�erent betatron modes with the frequen
ies:

2�x; 4�x; 2�y; 4�y; 2�x � 2�y; 2�x + 2�y (101)

We note that the se
ond order modes appears due to 
ross terms of the �rst
order modes.

5.2 Phenomenology: Latti
e Perturbations

Se
tions 5.1.1-5.1.4 presented the driving terms, i.e. the Hamiltonian. We will
now 
ompute the 
orresponding perturbations on the linear latti
e fun
tions.
In other words, determine perturbative solutions39 to the nonlinear equations
of motion.

39Expanded in the multipole strength.
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5.2.1 Linear Chromati
ity

The linear 
hromati
ity is obtained dire
tly from h
(1)
Ker

�(1)x � ��x
�Æ

�����
Æ=0

= � 1

2�

�h11001
�Jx

; �(1)y � ��y
�Æ

�����
Æ=0

= � 1

2�

�h00111
�Jy

(102)

so that

�(1)x = � 1

4�

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�xi;

�(1)y =
1

4�

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�yi (103)

5.2.2 First Order Perturbations of Latti
e Fun
tions

The one-turn map with a dipole perturbation b1n at the end 
an be written

M~�0!n
= M~�0!n�1

e:b1nx: = A�10 R0!nA0e
:b1nx: = A�10 R0!ne

:b1nA0x:A0

= A�10 R0!ne
:b1n

�p
�xnx+�

(1)
xn Æ

�
:A0 (104)

More generally, the map with a dipole ki
k at an arbitrary lo
ation j observed
at lo
ation i is then

M~�i!n+i
= M�1

~�j!i
M~�j!n+j

M~�j!i

= A�1i R�1j!iRj!n+je
:b1j

�p
�xjx+�

(1)
xj Æ

�
:Rj!iAi (105)

whi
h 
orresponds to eq. (43) in the matrix 
ase. Using eqs. (80) and (81)
to transform into normal form gives

g(1) = � 1

1�Rj!n+j
h
(1)
Im = � 1

1�Rj!n+j
b1j
q
�xjx

= �b1j
2

q
�xj

1

1�Rj!n+j

�
h+x + h�x

�
= �b1j

2

q
�xj

 
h+x

1� ei2��x
+ 
:
:

!
(106)
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and

Rj!iAix =
q
�xiRj!ix + �xiÆ =

1

2

q
�xi

�
h+ei�x;j!i + 
:
:

�
+ �xiÆ (107)

So similar to eq. (83), the 
hange of the 
losed orbit is given by

x
od;i = he:g:Rj!iAixi� = h(1+ : g : + � � �)Rj!iAixi�

=
b1j
q
�xi�xj

2 sin��x

os (�x;j!i � ��x) + �

(1)
xi Æ; i > j (108)

where we have usedh
h+; h�

i
= 2i;

h
h+; h+

i
=
h
h�; h�

i
= 0 (109)

The 
ase i < j is treated similarly and the general 
ase is summarized by

x
od;i =

p
�xi

2 sin��x

NX
j=1

b1j
q
�xj 
os (j�x;i!jj � ��x) + �

(1)
xi Æ (110)

The se
ond order dispersion �(2) is de�ned by

�
(2)
xi � 1

2

�2x
od;i (Æ)

�Æ2

�����
Æ=0

=
��xi (Æ)

�Æ

�����
Æ=0

(111)

Taking into a

ount that the Æ-dependen
e of the multipole 
omponent eq.
(32) leads �nally to

�
(2)
xi = ��(1)xi +

p
�xi

2 sin (��x)

NX
j=1

h
(b2L)j � (b3L)j�

(1)
xj

i
� �

(1)
xj

q
�xj 
os (j�i!j;xj � ��x) (112)

The same algebra 
an now be 
arried out for any multipole 
omponent
and in parti
ular a quadrupole error b2n. De�ning

�
(1)
xi � ��xi

�Æ

�����
Æ=0

; �
(1)
yi � ��yi

�Æ

�����
Æ=0

(113)

for the beta-beat and eq. (83) leads similarly to

�
(1)
xi =

�xi
2 sin (2��x)

NX
j=1

h
(b2L)j � 2(b3L)j�

(1)
xj

i
�xj 
os (j2�i!j;xj � 2��x) ;

�
(1)
yi = �

�yi
2 sin (2��y)

NX
j=1

h
(b2L)j � 2(b3L)j�

(1)
xj

i
�yj 
os (j2�i!j;yj � 2��y) (114)
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5.2.3 Corre
tion of Perturbed Latti
e Fun
tions

Note the similarity of formula (112) and (114) to (4.7) in ref. [20℄ whi
h
des
ribes 
losed orbit distortions due to magnet toleran
es.40 By analogy
then, se
ond order dispersion and beta-beat may be 
orre
ted lo
ally in the
same manner as 
losed orbit distortions whenever desired. In parti
ular, by
solving the linear system

Ax = b (115)

For example in the 
ase of horizontal beta-beat, the matrix 
oeÆ
ients in
the 
orrelation matrix A for 
losed orbit distortions

aij =

q
�xi�xj

2 sin (��x)

os (j�i!j;xj � ��x) (116)

is simply repla
ed by

aij =
�xi�xj

2 sin (2��x)

os

����2�i!j;x

���� 2��x
�

(117)

whereas the undetermined dipole ki
ks b1j in the ve
tor x are repla
ed by the

sextupole ki
ks �2(b3L)j�(1)xj , and the right hand side by the negative 
ontri-
bution to the beta-beat at ea
h observation point i due to the quadrupoles

� �xi
2 sin (2��x)

NX
j=1

(b2L)j�xj 
os (j2�i!j;xj � 2��x) (118)

However, engineering problems des
ribed by su
h systems of linear equations
tend to be overdetermined and 
an only be solved in a least-square sense.
Preferably by singular value de
omposition (SVD), see se
tion 6.2.1.

5.2.4 Se
ond Order Amplitude Dependent Tune Shift

These formula were derived in the author's thesis [38℄ by appli
ation of time
dependent perturbation theory [5℄ and 
omputer algebra. The work was
inspired by a �rst order treatment based on variation of 
onstants by B. Autin
in his pursuit of a sextupole s
heme for ACOL at CERN, who also rederived
them later [39℄. They later prompted J. Irwin at the SSC to on
e again

40The integral is repla
ed by a sum in the 
ase of thin ki
ks, and
y (s) = � (s)� (s) ; f ( ) = �3=2 (s)F (s) ; d 

ds = 1
��(s)
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rederive them, but this time along the lines outlined by E. Forest [41, 42℄.
In fa
t, MACSYMA programs were developed to automati
ally generate a
few thousand lines of FORTRAN 
ode to form an analyti
al model able to
predi
t the short term dynami
s for the SSC. Simply put, hours of tra
king
on a CRAY were repla
ed by a few minutes of numeri
al evaluations of an
analyti
al model on a VAX [30℄.

��x
�Jx

= �
1

16�

NX
j=1

NX
k=1

(b3L)j(b3L)k�
3=2
xj �

3=2
xk

�

"
3 
os (j�j!k;xj � ��x)

sin (��x)
+


os
���3�j!k;x

��� 3��x
�

sin (3��x)

#
;

��x
�Jy

=
��y
�Jx

=
1

8�

NX
j=1

NX
k=1

(b3L)j(b3L)k
p
�xj�xk�yj

�
2�xk 
os (j�j!k;xj � ��x)

sin (��x)

�
�yk 
os [j�j!k;x + 2�j!k;y j � � (�x + 2�y)℄

sin� (�x + 2�y)

+
�yk 
os [j�j!k;x � 2�j!k;y j � � (�x � 2�y)℄

sin� (�x � 2�y)

�
;

��y
�Jy

= �
1

16�

NX
j=1

NX
k=1

(b3L)j(b3L)k
p
�xj�xk�yj�yk

�
4 
os (j�j!k;xj � ��x)

sin (��x)

+

os [j�j!k;x + 2�j!k;y j � � (�x + 2�y)℄

sin� (�x + 2�y)

+

os [j�j!k;x � 2�j!k;y j � � (�x � 2�y)℄

sin� (�x � 2�y)

�
(119)

5.2.5 Se
ond Order Chromati
ity

The amount of algebra required to derive these formula 
an be redu
ed 
on-
siderable by taking advantage of the fa
t that the driving terms were, at least
in theory, not expanded in Æ. The se
ond order 
hromati
ity may hen
e be

al
ulated by 
onsidering the parameter dependen
e in the formula for linear

hromati
ity (95) with respe
t to Æ:
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�(2)x �
1

2

�2�x (Æ)

�Æ2

����
Æ=0

=
1

2

�

�Æ

��x (Æ)

�Æ

����
Æ=0

= �
1

8�

NX
i=1

�
�(b2L)i

�Æ
� 2

�(b3L)i
�Æ

�
(1)
xi

�
�xi

+
1

8�

NX
i=1

�
2(b3L)i

��xi
�Æ

�xi �
h
(b2L)i � 2(b3L)i�

(1)
xi

i ��xi
�Æ

������
Æ=0

(120)

Sin
e the multipole 
omponents have the Æ dependen
e given by eq. (32) we
obtain dire
tly

�(2)x = �
1

2
�(1)x +

1

8�

NX
i=1

n
2(b3L)i�

(2)
xi �xi �

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�
(1)
xi

o
;

�(2)y = �
1

2
�(1)y �

1

8�

NX
i=1

n
2(b3L)i�

(2)
xi �yi +

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�
(1)
yi

o
(121)

The parameter dependen
e of the latti
e fun
tions is 
omputed by formula
(112) and (114) or numeri
al di�erentiation

�(2)x =
1

2

�2x
od (Æ)

�Æ2

�����
Æ=0

=
1

2

��x (Æ)

�Æ

�����
Æ=0

=
1

2

x
od (h)� 2x
od (0) + x
od (�h)
h2

+O
�
h2
�

=
1

2

�x (h)� �x (�h)
2h

+O
�
h2
�
;

�(1) =
��

�Æ

�����
Æ=0

=
� (h)� � (�h)

2h
+O

�
h2
�

(122)

Alternatively, �(2) may evaluated by dire
t numeri
al di�erentiation

�(2) =
1

2

�2� (Æ)

�Æ2

�����
Æ=0

=
1

2

�� (Æ)

�Æ

�����
Æ=0

=
1

2

� (h)� 2� (0) + � (�h)
h2

+O
�
h2
�

=
1

2

� (h)� � (�h)
2h

+O
�
h2
�

(123)
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6 Appli
ation to the Swiss Light Sour
e (SLS)

At this point, we have prepared ourselves with a general linear model41 for
beam opti
s, based in parti
ular on eqs. (29), (30), (33), (36), (38), (39),
(45), (46). Moreover, a nonlinear model based on the expanded Hamiltonian
eq. (17), the multipole expansion eq. (8), and numeri
al evaluation (tra
king)
using a 4th order symple
ti
 integrator eq. (24).42 More generally, a C++
implementation43 allows us to perform the same numeri
al evaluations in
Trun
ated Series Algebra (TPSA),44 and extra
t the 
orresponding Taylor
series one-turn maps to arbitrary order. A numeri
al implementation of the
normal form algorithm also based on TPSA,45 allows us to bring these maps
into normal form eq. (77) and hen
e self-
onsistently46 extra
t the global
properties of the latti
e to arbitrary order. Finally, an analyti
al model
based on eqs. (71), (96), (97), (99), (100), (103), (112), (114), (119), (121)
allows us to get a 
lear insight into the parameter dependen
e of the nonlinear
driving terms and related dynami
al quantities. Note that all the analyti
al
results were obtained by purely algebrai
 manipulations, i.e. we never had
to expli
itly integrate the equations of motion eqs. (19). These formula have
also been 
oded for fast numeri
al evaluation in terms of the linear latti
e
fun
tions. In parti
ular, Simpson's rule [28℄

A =
Z h

0
f (x) dx =

h

6

 
f (0) + 4f

 
h

2

!
+ f (h)

!
+O

 
h5
�4f

�x4

!
(124)

has been used to 
ompute the 
ontribution from quadrupoles, whereas one
thin ki
k is suÆ
ient to model the sextupoles in the SLS latti
e. For eÆ
ien
y,
numeri
al di�erentiation a

ording to formula (122) has been used to obtain
the Æ-dependen
e of the latti
e fun
tions, in parti
ular ��=�Æ and ��=�Æ. So,
we are are �nally ready to very 
arefully but deliberately open \Pandora's
box".

41Not assuming mid-plane symmetry and not expanded in Æ.
42The related 
omputer implementation is based on H. Nishumura's idea to \modify"

N. Wirth's Pas
al-S 
ompiler/interpreter [43, 44℄ enabling us to use Pas
al as 
ommand
language.

43The underlying beam line 
lass was designed in 
ollaboration with E. Forest.
44By interfa
ing to a FORTRAN library originally developed by M. Berz at SSC.
45By interfa
ing to a FORTRAN library developed by E. Forest together with the author.
46Using the same dynami
al model for analyti
al- and numeri
al studies. In parti
ular

when latti
e errors are in
luded.
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6.1 Elementary Design Considerations: Magneti
 Lat-
ti
e Symmetry

As any modern high performan
e syn
hrotron SLS has a magneti
 latti
e
with very strong fo
using and 
onsequently large natural 
hromati
ity.47 This
implies that the beam will o

upy a fairly large area in the tune diagram.
Sin
e magneti
 toleran
es are unavoidable,48 resonan
es will by de�nition be
ex
ited and a�e
t the performan
e. Sextupoles are therefore added to 
an
el
the leading order (linear) 
ontribution. However, as we have already seen,
this is far from the end of the story. In spe
trometer design, high performan
e
imaging systems are traditionally designed by imposing symmetry to 
an
el
undesirable aberrations. There are essentially two di�erent approa
hes [45℄.49

The �rst, see e.g. [96℄, is to pair sextupoles with a mat
hed phase advan
e of
�. In other words, to group the sextupoles in pairs separated by the linear
transfer matrix

M1!2 =
��1 0

0 �1
�

(125)

By su
h an overall arrangement, one may with two independent families of
sextupoles 
an
el the linear 
hromati
ities eqs. (103) driven by h11001 and
h00111 eqs. (95), and all the �rst order geometri
 modes eqs. (97). However,
this pattern may potentially systemati
ally ex
ite the �rst order 
hromati

modes h20001 and h00201 eqs. (96), in fa
t on a level 
omparable to h11001
and h00111. Sin
e they drive the beta-beat eqs. (114), they may generate
a substantial amount of se
ond order 
hromati
ity eq. (121). Furthermore,
the relatively wide separation of the sextupoles tend to make them relatively
strong whi
h may enhan
e the se
ond order e�e
ts. In any 
ase, pra
ti
al
spa
e limitations makes su
h an approa
h a
ademi
 for SLS. One may 
on-
sider interleaved s
hemes, if 
are is taken to 
ontrol the 
ross talk between
the sextupoles, i.e. the se
ond order terms [95℄.

The se
ond approa
h is to design a unit 
ell, repeat it four or more times
to 
reate a ma
ro 
ell, and adjust the total phase advan
e to 2�. The linear

hromati
ity and all the �rst order 
hromati
- as well as geometri
 modes
are then 
an
eled at the end of the stru
ture. This approa
h was pursued

47The natural 
hromati
ities for SLS are: �
(1)
x � �75; �

(1)
y � �22.

48On a fundamental level, pure magneti
 dipoles and quadrupoles are in
onsistent with
Maxwell's equations.

49Brown is using order de�ned in terms of phase spa
e variables.
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su

essfully for the early SLS latti
e. A latti
e was 
onstru
ted by repeat-
ing a unit 
ell with a phase advan
e of about �x = 0:4 and �y = 0:1 5
times whi
h and adding straight se
tions leading to a latti
e with reasonable
dynami
al aperture. In parti
ular after enlarging the number of sextupole
families from two to six [10, 11℄. However, the author 
ould later prove this
result an artifa
t 
aused by in
orre
t powering of the two 
hromati
 families.
Roughly, sin
e the unit 
ell had a sextupole at ea
h end, the �rst and the
last sextupole of the ma
ro 
ell should only be ex
ited with half the strength.
Indeed, the same performan
e 
ould be obtained with only the original two

hromati
 families [12℄. 4 phase trombones and more sextupole families still
had to be added though, to be able to implement the desired 
exibility of
the latti
e from a dynami
al point of view [12℄. This required 33 sextupole
families to avoid breaking the symmetry of the latti
e. A result that re
e
ts
a fundamental problem with this approa
h: how to introdu
e straight se
-
tions. Sin
e the quadrupoles in the straight se
tions will also 
ontribute to
the natural 
hromati
ity, their 
ontribution has to be 
an
eled nonlo
ally50

by the 
hromati
 sextupoles inside the ma
ro 
ell, leading to a violation of
the ni
e 
an
ellation of the �rst order terms at the end of ea
h ma
ro 
ell.
Obviously, one should at least maintain the global symmetry of the latti
e to
avoid unne
essary ex
itation of systemati
 resonan
es. Later, a latti
e based
on a TBA-stru
ture was suggested, pursued and eventually �nalized [13, 14℄.
The following presents work related to a systemati
 design towards its sex-
tupole s
heme. The importan
e of latti
e symmetry 
an be appre
iated by
a glan
e at the formula for the �rst order geometri
 modes eqs. (97). It is

lear that e.g. the sine terms of the driving terms disappears at any point
with mirror symmetry in the latti
e. It would in general take 5 additional
independent51 sextupole families to a
hieve the same result.

6.2 Linear Ve
tor Spa
es: 10 First Order Design Gauges

The �rst order generators for the geometri
 modes eqs. (97) and the 
hromati

eqs. (96) are sums of 
omplex numbers. The 
ontribution from ea
h element
may hen
e be represented as a ve
tor in the 
omplex plane. In
lude the
horizontal- and verti
al 
hromati
ities and we end up with 18 numbers that
ideally should be zeroed. However, this number is redu
ed to 10 at points

50Unless one 
an tolerate a suÆ
ient amount of dispersion in the straights.
51Linearly independent from existing families, something far from trivial as we shall see.
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with mirror symmetry in the latti
e. Sin
e these terms are linear in the
sextupole strength, we have a linear system of equations

Ax = b (126)

where A is a 18�Nb3 matrix with the matrix elements

aij �
NX

k2Nj

�
(i1+i2)=2
xk �

(i3+i4)=2
yk

�
�
(1)
xk

�i5
ei[(i1�i2)�xk+(i3�i4)�yk℄ (127)

for Nb3 sextupole families, x =
h
(b3L)1; � � � ; (b3L)Nb3

iT
and b is a ve
tor


ontaining the ex
itations of the driving terms due quadrupoles

bi �
Nb2X
k=1

(b2L)k�
(i1+i2)=2
xk �

(i3+i4)=2
yk

�
�
(1)
xk

�j5
ei[(i1�i2)�xk+(i3�i4)�yk℄ (128)

This system is likely to be overdetermined so we will use Singular Value
De
omposition (SVD) to determine a solution in a least square sense.

6.2.1 SVD: How to Deal E�e
tively with Linear Equations

There are two essential aspe
ts well worth knowing about matri
es from a
mathemati
al point of view: eigenvalues and singular values. The eigenvalue
point of view is e�e
tively both the foundation and beauty of the Courant
and Snyder paper, and linear 
ontrol theory in general for that matter. The
singular values on the other hand are de�ned by the so 
alled singular value
de
omposition (SVD) of a M �N matrix A into the produ
t [28℄

A = U�V t (129)

where U is aM�N 
olumn orthogonal matrix, U a N�N orthogonal matrix
and � a N �N diagonal matrix with elements � 0

� =

"
�1 0

0 �n

#
(130)

where �i the singular values. The inverse is then simply

A�1 = V ��1U t (131)
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where

��1 =

"
1
�1

0

0 1
�n

#
(132)

The rank of the matrix is given by the number of singular values 6= 0. For
numeri
al 
al
ulations it is useful to introdu
e the 
ondition number de�ned
as the ratio of the largest singular value to the smallest. A problem is said
to be ill-
onditioned if the re
ipro
al of the 
ondition number is 
lose to the

oating point pre
ision of the 
omputer. The system of linear equations
tends to be overdetermined in pra
ti
al problems. In other words, one is
dealing with a linear optimization problem

Ax = b (133)

su
h that the number of free parameters x1; :::xN are less than the number
of 
onstraints b1; :::bN . One may then attempt to solve approximately, in
parti
ular in a least square sense

�2 �
���Ax� b

���2 (134)

All that is needed for 
onstru
ting the 
orresponding inverse matrix is to per-
form a SVD and repla
e re
ipro
al singular values above a 
ertain magnitude
by zero

1

�i
! 0 (135)

This repla
ement in
identally also gives a unique solution with the smallest
magnitude of jxj2 for underdetermined systems!

Note that the nonlinear 
ase

f (x) = a (136)

may be treated similarly by taking a lo
al point of view and linearizing

f (x0 +�x) = f (x0) +M�x +O (2) (137)

where M is the Ja
obian

M =
�f (x)

�x
=

2664
�f1
�x1

� � � �f1
�xN

...
...

�fM
�x1

� � � �fM
�xN

3775 (138)

like Newton-Raphson in multidimensions.
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6.3 A Sextupole S
heme for the TBA Stru
ture

So, by 
hanging to a top down approa
h, a stru
ture based on 12 TBAs
and 12 straight se
tions was eventually found to potentially meet the tight
requirements on the linear opti
s and, in parti
ular with a suÆ
iently small
emittan
e. A required introdu
tion of at least two long straight se
tions

ould potentially redu
e the periodi
ity to 2. One may intuitively argue then
that high performan
e implies lo
al 
orre
tion, sin
e only then is there little
opportunity for the nonlinear perturbations to a

umulate. Some preliminary
studies on a latti
e with four long- and 8 medium straights proved it feasible
to 
an
el all the �rst order terms over three TBAs with 9 sextupole families, 4

hromati
 and 5 geometri
, and by tuning the phase advan
e 
lose to ��x =
4:75 and ��y = 1:75 over 3 TBAs, i.e. from the 
enter of a long straight
se
tion to the next. This 
hoi
e of phase advan
e led to 
an
ellation of the

hromati
 modes h20001 and h00201 over two su
h blo
ks. The 
onstraints on
the phase advan
e o

urs sin
e the 9 sextupole families are not independent.
In fa
t, a Singular Value De
omposition (SVD) of the 
orresponding system
of linear equations, see se
tion 6.2.1, shows that the rank of the system is
only 8; for 9 
onstraints: horizontal- and verti
al 
hromati
ity, 5 geometri
-
and 2 
hromati
 modes. This 
an be understood from eqs. (95) and (96). The
driving term for horizontal 
hromati
ity h11001 be
omes linearly dependent to
the 
hromati
 mode h20001 when 
hromati
 sextupoles from the same family
are separated by ��x � 0:5. This is hard to avoid in a strongly fo
using TBA

ell, and was also the reason to introdu
e phase trombones in the earlier
latti
e. Short straights with a small value of the beta fun
tion, so 
alled
mini-betas, eventually also had to be a

ommodated. Sin
e they tend to add
a 
onsiderable amount of \nonlo
al" 
hromati
ity, their introdu
tion into
the latti
e leads to a 
orresponding degradation in dynami
al a

eptan
e. In
fa
t, after the �rst order terms have been 
an
eled, the dynami
al a

eptan
e
s
ales roughly with the square of the relative 
hromati
ity

b�x � �x
�x

; b�y � �y
�y

(139)

as one would naively expe
t if we are indeed limited by se
ond order terms.
The �nal latti
e 
onsists of a blo
k with 1 long-, 1 medium-, and 2 short
straights and a TBA between ea
h whi
h is repeated 3 times. In other
words, a mirror symmetri
 latti
e with periodi
ity 3. Furthermore, it has 12
sextupole families, 3 
hromati
 and 9 geometri
, and a phase advan
e 
lose
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to ��x = 3:5 and ��y = 1:5 over 2 TBAs. The rank of the 
orresponding
system is of 
ourse 8 as before.

Note that the sextupoles should at least naively be pla
ed where the
linear opti
s fun
tions have weak Æ-dependen
e to avoid to generate se
ond
order 
hromati
ity, see eqs. (112). Furthermore, the beam position monitors
should be pla
ed 
lose52 to the sextupoles, sin
e an orbit in a sextupole
will give a gradient error by feed-down whi
h will globally perturb the beta
fun
tion and phase advan
e, e�e
tively redu
ing the symmetry of the latti
e
resulting in redu
ed performan
e. In other words, as long as the orbit is

entered in the sextupoles dipole and quadrupole errors will be harmless to
the dynami
al a

eptan
e, but the physi
al aperture is of 
ourse redu
ed
sin
e the equilibrium orbit is in general no longer at the 
enter of the beam
pipe.

6.4 Confronting the Se
ond Order: Another 13 Design
Gauges?

After having gained 
ontrol over the �rst order terms, we are ready to 
on-
front the se
ond order. An inventory gives from eqs. (100) 8 se
ond order
betatron modes, (119) se
ond order horizontal- and verti
al 
hromati
ity, and
(121) 3 terms for amplitude dependent tune shift. A total of 21 terms and
13 at points with mirror symmetry. Sin
e the �rst order terms does not have
to be stri
tly 
an
eled, one may attempt a numeri
al optimization based on
a merit fun
tion and attempts to determine suitable weights by tra
king. In
parti
ular by the 
orresponding short term dynami
al a

eptan
e. However,
one soon �nds that the �rst order terms have to be fairly well 
an
eled and
that the se
ond order terms are fairly sti�. Note that the se
ond order modes
appears due to 
ross terms of the �rst order, and one may 
on
lude that lo
al

ontrol of the �rst order terms is essential for 
ontrolling the se
ond order.

52In terms of phase advan
e.
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Figure 1: Zeroing of the First Order Modes.

6.5 So Where is the Cash?

Figure 1 shows a plot of the 
an
ellation of the driving terms in the 
enter
of the medium straight. A 
ir
le indi
ates the residual amplitude. The

hromati
 mode h00201 is weakly ex
ited due to other 
onstraints related to
the linear opti
s. Tra
king for the initial 
onditions Jx = 3:77 � 10�6; �x =
0:0; Jy = 2:07� 10�6; �y = 0:0 is shown in Figure 2. The unperturbed tunes
are

�x = 7:0800; �x = 2:6400 (140)

Fourier analysis of the horizontal and verti
al position gives the a
tual tunes

�x = 7:0906; �x = 2:7189 (141)

Fitting a linear 
ombination of the betatron frequen
ies to the spurious peak
in the horizontal plane

� = �x � 2�y = 1:6528 � 2� 0:3471 = 1:6529 (142)

and similarly for the verti
al

� = 2�x � �y = 1:1462 � 1:4624 (143)

It 
an be shown that it is a signal of the (amplitude) mode [38℄

2�x � 2�x = k (144)
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Figure 2: Tra
king.

Figure 3: Chromati
 E�e
ts.
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on�rming that the �rst order modes have indeed been 
an
eled. Figure
3 shows the 
hromati
 e�e
ts where the solid line represents the 
omputer
model and the dashed the map normal form, i.e. perturbation theory. The
linear horizontal 
hromati
ity has been made positive to redu
e

�x =
�
�(1)x + �(2)x Æ + � � �

�
Æ (145)

rather than �(1)x . However, other 
onsiderations like the head-tail instability
may impose other 
onstraints. A numeri
al map normal form applied to
an 7th order53 one-turn map extra
ted by using a symple
ti
 integrator and
TPSA gives dire
tly

�x (Æ) = 3:32 + 8:88Æ � 6:18� 102Æ2 + 8:72� 103Æ3

+ 2:61� 105Æ4 � 1:04� 107Æ5 +O
�
Æ6
�
;

�y (Æ) = 6:05 + 9:17� 101Æ + 2:40� 102Æ2 � 8:19� 103Æ3 (146)

� 1:43� 104Æ4 + 6:80� 105Æ5 +O
�
Æ6
�
;

�x (Æ) = 7:08 + 1:50Æ + 1:35� 101Æ2 � 5:49� 102Æ3

+ 1:19� 103Æ4 � 2:77� 104Æ5 +O
�
Æ6
�
;

�y (Æ) = 2:64� 5:06� 10�7Æ + 7:08Æ2 � 7:61� 101Æ3

+ 9:96� 102Æ4 � 1:06� 104Æ5 +O
�
Æ6
�

(147)

whereas a least square �t to the data gives

�
�

x (Æ) = 3:27 + 1:32� 101Æ � 3:43� 102Æ2 � 5:29� 103Æ3

+ 1:19� 105Æ4 � 1:52� 107Æ5 +O
�
Æ6
�
;

�
�

y (Æ) = 6:05 + 9:16� 101Æ + 2:44� 102Æ2 � 7:88� 103Æ3

� 1:82� 104Æ4 + 4:82� 105Æ5 +O
�
Æ6
�
;

�
�

x (Æ) = 7:08 + 1:51Æ + 1:34� 101Æ2 � 5:75� 102Æ3

+ 2:46� 103Æ4 � 2:83� 104Æ5 +O
�
Æ6
�
;

�
�

y (Æ) = 2:64 + 3:99� 10�3Æ + 7:14Æ2 � 8:55� 101Æ3

+ 1:03� 103Æ4 � 5:50� 103Æ5 +O
�
Æ6
�

(148)

53In the phase spa
e variables.
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Figure 4: Relative Beta-Beat.

We 
on
lude that perturbation theory works reasonable well within the bound-
ary of regular motion. The poorer agreement in the horizontal plane is re-
lated to the fa
t that the linear opti
s is highly pushed in the horizontal
plane whereas the verti
al plane is more relaxed. Figure 4 and 5 shows the
Æ-dependen
e of the latti
e fun
tions around the latti
e. We are plotting vs.
�x, 2�x, and 2�y sin
e a

ording to eq. (112) and (114) they are modulated
with these frequen
ies. The dynami
al a

eptan
e with syn
hrotron os
illa-
tions and magnet misalignment errors54 is presented in Figure 6. Indeed, by
pla
ing the BPMs 
lose to sextupoles we essentially re
over the dynami
al
a

eptan
e.

7 The Experimentalist's Approa
h: In the

Control Room

This se
tion has been in
luded for pedagogi
al reasons. In parti
ular for
followers of: \Everything in the 
ontrol room is linear",55 whi
h 
learly has
more to do with de�nition than observation. For a model driven 
ontrol

54An input �le to impose 
orrelations due to girders was written by A. Streun.
55There is a saying: \When reality outperforms our models, we instin
tively prefer to

ignore it rather than a
tively seek out how to raise our standards.".
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Figure 5: Se
ond Order Dispersion.

Figure 6: Dynami
al A

eptan
e.
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approa
h and related high pre
ision measurements of the linear aspe
ts, see
for example ref. [38, 46, 47, 48, 49, 50℄.

7.1 The Perturbed Betatron Motion

One may represent a N-turn map as the one-turn raised map to N -th power.
It is easily obtained from the one-turn map in its normal form eq. (77)

MN
~�0!n

= A�10

�
e:h(J;�):R0!n

�N

A0

= A�10 e:�g(J;�):
�
e:k(J):R0!n

�N

e:g(J;�):A0

= A�10 e:�g:e:Nk:RN
0!ne

:g:A0 (149)

The perturbed betatron motion 
an now be determined. For example, the
betatron mode 3�x driven by h30000 in formula (97) has as generator

h(1) = h30000h
+3
x + 
:
: = A30000e

i�30000h+3
x + 
:
:

= A30000

h�
h+3
x + 
:
:

�

os (�30000) + i

�
h+3
x � 
:
:

�
sin (�30000)

i
= 2A30000(2Jx)

3=2 
os (3�x + �30000) (150)

where we have introdu
ed

h30000 � A30000e
i�30000 (151)

The perturbation of the a
tion-angle variables [Jx; �x℄ is given by

Jx (N) =MN
~�0!n

Jx; �x (N) =MN
~�0!n

�x (152)

and it follows that

Jx (N) = eNkRN
0!n (1+ : g : + � � �)A0Jx

= eNkRN
0!n :

�
1� 1

1�R0!n
h3�x + � � �

�
: A0Jx

=
A3�x

2
RN

0!n :

"
1� h+3

x ei�3�x

1� ei6��x
+ 
:
:

#
: h+

x h
�
x +O

�
b23
�
(153)

By using h
h+3
x ; h+

x h
�
x

i
= i6h+3

x (154)
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we �nd in parti
ular

Jx (N) = Jx +
3A3�x(2Jx)

3=2

sin (3��x)

os [�3�x + 3 (�x � ��x +N2��x)℄

+O
�
b23
�

(155)

More generally, applying the same analysis to all the �rst order modes eqs.
(97) gives

Jx (N) = Jx +
A21000(2Jx)

3=2

sin (��x)

os

�b�21000 + �x +N2��x
�

+
A10110

p
2Jx2Jy

sin (��x)

os

�b�10110 + �x +N2��x
�

+
3A30000(2Jx)

3=2

sin (3��x)

os

h b�30000 + 3 (�x +N2��x)
i

+
A10020

p
2Jx2Jy

sin [� (�x � 2�y)℄

os

h b�10020 + �x � 2�y +N2� (�x � 2�y)
i

+
A10200

p
2Jx2Jy

sin [� (�x + 2�y)℄

os

h b�10200 + �x + 2�y +N2� (�x + 2�y)
i

+O
�
b23
�
;

Jy (N) = Jy � 2A10020

p
2Jx2Jy

sin [� (�x � 2�y)℄

os

h b�10020 + �x � 2�y +N2� (�x � 2�y)
i

+
2A10200

p
2Jx2Jy

sin [� (�x + 2�y)℄

os

h b�10200 + �x + 2�y +N2� (�x + 2�y)
i

+O
�
b23
�

(156)

where

b�ijkl0 � �ijkl � � [(i� j) �x + (k � l) �y℄ (157)

7.2 DFT: Elementary Signal Pro
essing

This se
tion has been in
luded to honor E. Asseo, a by now retired, ele
tri
al
engineer in the LEAR group at CERN with a profound understanding of the
Fourier transform and a deep passion for his programmable HP-
al
ulator.
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In fa
t, the whole experimental part of the author's thesis and related im-
provements of the stability of LEAR [38, 55, 57, 58℄ would not exist without
his \Papy-Q" system (papy: fren
h slang for grandpa) [56℄. The versatility
of his interpolation te
hniques for signal pro
essing in
ludes the 
on
eptual
design of the former SSC, see ref. [30℄, p. 119 [95℄. Indeed, we are delighted to
�nd that his work is 
urrently being redis
overed [59℄. The dis
rete Fourier
transform (DFT) is de�ned by56

Xn � 1

N

N�1X
k=0

xke
�i2�k�tn=N ; n = 0; 1; 2; � � � ; N � 1 (158)

where N is the number of samples, whereas Fast Fourier Transform (FFT)
[54℄ is a fast algorithm to evaluate the transform for 
ases where N = 2k; k =
integer. The amplitude distribution for a peak 
entered around the normal-
ized frequen
y � is given by

Ak =

�����sin [� (k �N�)℄

� (k �N�)

�����A� ; k = 0; 1; 2; � � � ; N � 1 (159)

The amplitude resolution 
an be improved by suppressing the sidelobes by
folding the data with a weight fun
tion. For a sine window

xk ! xk sin
k�

N
; 0 < k < N � 1 (160)

with the amplitude distribution

Ak =
1

2�

�����
os � (k �N�)

(k �N�)2 � 1
4

�����A�; k = 0; 1; 2; � � � ; N � 1 (161)

Sin
e the DFT is only de�ned for � = integer so the frequen
y resolution is
only in the order of 1=N . However, the fun
tional form for the amplitude
distribution may be used to derive a nonlinear interpolation formula [55℄57

�
�

=
1

N

"
k � 1 +

2Ak

Ak�1 + Ak
� 1

2

#
; k � 1 � N� � k (162)

56For a so 
alled re
tangular window
57Exa
t for a single peak.
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pushing the resolution to 1=N2 [59℄. The amplitude 
an then be estimated
from

A
�

� =
2�

h
(k �N�)2 � 1

4

i

os � (k �N�)

Ak (163)

Note that the frequen
y resolution is also limited by the Nyquist 
riteria, i.e.
the frequen
ies � and 1�� 
an not be distinguished.58 For the phase, the two
samples on ea
h side of the peak are separated by � with linear interpolation

�
�

= �k �N (� � k)�; k � 1 � N� � k (164)

in the 
ase of a re
tangular window.

7.3 A Purely A
ademi
 Exer
ise

We will now perform a purely a
ademi
 exer
ise whi
h has nothing to do with
reality sin
e we have so far only a 
on
eptual design and no REAL a

eler-
ator, no 
ontrol room, et
. And, the entire paper is too mathemati
al, too
abstra
t and too theory oriented anyway. Simply put, too many equations...
In any 
ase, we will deliberately power three modes a

ording to eqs. (165)
and tra
k a single parti
le for 512 turns and by Fourier analysis and elemen-
tary signal pro
essing determine the 
orresponding amplitudes and phases in
the frequen
y spe
trum of the betatron motion. We deliberately ex
ite the
�rst order modes with the following values

A30000 = 6:944; �30000 = �1:8 deg;
A10020 = 16:10; �10020 = 54:0 deg;

A10200 = 8:26; �10200 = �70:2 deg (165)

An easy 
al
ulation with formula (156) for the initial 
onditions

Jx = 1:5� 10�7; �x = 0:0; Jy = 1:0� 10�7; �y = 90:0Æ (166)

gives the spe
trum

f Ax �x Ay �y
3�x 5:0� 10�9 �45:0 deg � �

�x � 2�y 3:0� 10�9 90:0 deg 6:0� 10�9 �90:0 deg
�x + 2�y 1:0� 10�9 45:0 deg 2:0� 10�9 45:0 deg

(167)

58So 
alled aliasing. It is a re
e
tion of the sampling theorem stating that to be able to
resolve a frequen
y f one has to sample with at least 2f .
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Figure 7: Perturbation of the A
tion Variables.

Figure 7 shows the tra
king results. Fourier analysis and interpolation of the
tra
king data gives

f A
�

x �
�

x A
�

y �
�

y

3�x 5:3� 10�9 �45:1 deg � �
�x � 2�y 2:9� 10�9 �82:6 deg 5:8� 10�9 94:6 deg
�x + 2�y 1:0� 10�9 49:6 deg 1:9� 10�9 49:0 deg

(168)

The phase of � = �x � 2�y appears with the wrong sign sin
e it is 1 � �
that appears in the spe
trum due to aliasing. Let us simply point out then,
that one may in the 
ontrol room measure the �rst order modes, 
ompute the
required in
rements in sextupole strength to obtain the same ex
itation (with
a minus sign), and apply it as a 
orre
tion to 
an
el the �rst order modes.
Sin
e we have already shown that the se
ond order modes are driven by

ross terms of the �rst order terms, their lo
al 
an
ellation e�e
tively means
indire
t 
ontrol of the se
ond order. We have already illustrated what this
means in terms of performan
e. The 
omplementary aspe
t, how to measure
and 
ontrol the redu
tion of performan
e related to symmetry breaking due
to engineering toleran
es have already been operationally established, see ref.
[38, 51, 52, 53℄.
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8 Con
lusions

We have summarized how modern te
hniques for single parti
le Hamiltonian
dynami
s allows one to easily implement an a

urate and self-
onsistent 
om-
puter model for numeri
al evaluation as well as analyti
al studies. A 4th
order symple
ti
 integrator that preserves the symple
ti
 stru
ture of Hamil-
ton's equations allows for a

urate long term tra
king and extra
tion of the

orresponding Taylor series maps to arbitrary order by repla
ing the related

oating point arithmeti
 by Trun
ated Power Series Algebra (TPSA). More-
over, TPSA also makes it feasible to implement a map normal form algorithm
to arbitrary order. The derivation of analyti
al formula to obtain insight into
the parameter dependen
e of various dynami
al properties is simpli�ed 
on-
siderable by taking advantage of the Lie algebrai
 stru
ture of Hamilton's
equations. These te
hniques allowed us to pursue a systemati
 design to-
wards a sextupole s
heme for the Swiss Light Sour
e (SLS). In the pro
ess
we also 
on�rmed that perturbation theory works fairly well for the regions
of phase spa
e where the motion is regular, hen
e allowing us to model and
redu
e the e�e
t of the nonlinear perturbations.
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