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Abstrat

We have applied modern tehniques for single partile Hamiltonian dynamis
to be able to pursue self-onsistent modeling for both numerial evaluation
and analytial studies. These tehniques made it feasible to pursue a system-
ati approah in the design towards a sextupole sheme for the Swiss Light
Soure (SLS). The derivation of analytial formula to obtain insight into the
parameter dependene of various dynamial properties was simpli�ed onsid-
erable by the use of map normal form rather than traditional Hamiltonian
perturbation theory. In the proess we also veri�ed that perturbation theory
works fairly well for regions of phase spae where the motion is regular, hene
allowing us to model and redue the e�es of the nonlinear perturbations.
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1 Introdution

We would like to start by informing the reader that a ritial point of view
will be taken in the following presentation. In partiular when ontrasting
here applied state of the art tehniques against more old-fashioned. The
main reason originates from the observation that the sienti� proess is not
always as rational it likes to presume. We also prefer to view the many models
appearing in this �eld, inluding our owns, as little more than temporary
approximations, eventually to be replaed when more sophistiated methods
appears on the horizon. Furthermore, often heard laims like: \Existing
aelerator works." or \Everything in the ontrol room is linear." have of
ourse little sienti� ontent due to their inherent lak of preision.

In any ase, a ritial presentation an only aid to larify matters for the
skeptial yet open-minded reader that prefers to draw his own onlusions
based on his own judgment. In partiular, any newomer to a �eld that has
to onfront suh a broad range of physial phenomena. And yet, often unne-
essarily obsured by an individual tendeny to overemphasize di�erenes in
tehniques rather than �rst establishing the ommon ground, rarely beyond
lassial eletrodynamis, from whih the various advantages of the di�erent
tehniques would emerge in broad daylight. We therefore partly sympathize
with the slow aeptane among the many potential users that ould bene�t
from these new methods. See ref. [1℄ for an exellent general sienti� review,
ref. [2℄1 for the more typial subjetive, and ref. [3℄ for an attempt to reah
a oherent presentation from the experts.

In fat, we hallenge the mathematially inlined reader to try to extrat
a oherent piture2 from the presentations in these publiations noting that
they are, apart from the quantum utuations in synhrotron radiation, ap-
pliations of lassial eletrodynamis [4℄. On time sales where the e�et
of synhrotron radiation an be ignored, the guiding priniples for the vari-
ous tehniques presented in these papers may be summarized as: relativisti
single partile Hamiltonian dynamis [5℄ taking advantage of the underlying

1The following referenes may serve as a set of papers omplementing eah other for
the reader interested in aquiring a somewhat broader point of view: basi Lie algebrai
tehniques for aelerators [60, 61, 62, 63, 64, 65℄, generating funtion tehniques [66,
67, 68℄, sympleti integrators [69, 70, 71, 72, 73, 74, 75, 76, 77℄, trunated Power Series
Algebra (TPSA) [78, 79, 80, 81, 82℄, map normal form [83, 84, 85, 86℄, synhrotron radiation
[87, 88, 89, 90, 92℄, aelerator modeling and design [91, 92, 93, 94, 95, 96, 97, 98℄.

2Ref. [1, 90℄ are two exeptions that may be viewed as a \proof of priniple".
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Lie algebrai struture of Hamilton's equations to numerially integrate or,
by using Trunated Power Series Algebra (TPSA) [6℄ for Automati Di�er-
entiation (AD) [7℄, evaluate, onatenate, extrat and bring perturbatively
into normal form [8, 9℄ the orresponding sympleti maps.

We emphasize that even though the presented work was arried out for
the Swiss Light Soure (SLS), the applied methodology is ompletely general
and suitable for any synhrotron. We will in the following therefore view
SLS as an example. Like any modern high performane synhrotron, it has
a magneti lattie with very strong fousing and large natural hromatiity
whih as usual is ompensated by hromati sextupoles. Sine these then also
are relatively strong, the stability is governed by the orresponding nonlinear
dynamis.3

We are from a general point of view dealing with a on�nement problem.
The study is ompliated by the fat that di�erent dynamial proesses are
important on di�erent time sales. They may be lassi�ed roughly as:

� First-turn: injetion, �rst turn (single-pass) and losed orbit.

� Short-term: a few synhrotron osillations, typially 102 turns; betatron-
and synhro-betatron motion and related resonanes.

� Medium-term: one damping time, typially 104 turns; synhrotron ra-
diation (lassial radiation, quantum utuations determining the equi-
librium emittane), and wake-�eld e�ets.

� Long-term: typially 109 turns; residual gas sattering, Toushek sat-
tering, and beam-beam interation.

These are traditionally addressed by a step-wise proess where one �rst es-
tablishes a lattie with reasonable short term stability. The other time sales
an then be analyzed, often by models parameterized in terms of global prop-
erties of the short-term dynamis [16, 17, 18, 19℄. Re�ned onsiderations for

3SLS is a third generation synhrotron light soure with state of the art brightness
primarily obtained by pushing the emittane. The linear optis design for suh a soure,
is a nontrivial nonlinear optimization problem whih will not be addressed here. This
an to some degree be appreiated by the elementary fat that even though in itself a
linear stability problem, a realisti lattie design requires areful tailoring of related lattie
funtions with strong nonlinear dependene on the magnet strengths. For these aspets see
[10, 11, 12, 13, 14℄. The �nally adopted lattie, based on a triple-bend-ahromat struture
[15℄ was developed by A. Streun [13, 14℄
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the injetion proess or estimated life times may lead to new requirements
on some of the global properties and the lattie design beomes an iterative
proess.

A fundamental problem for a systemati searh of a solution for the on-
�nement problem, is the lak of a omplete theory for stability in the non-
linear ase. The elegane and simpliity of linear ontrol theory originates
from the fat that stability, ontrollability- and observability of a system an
be determined diretly from ertain algebrai properties of the mathematial
model. In partiular, the eigenvalues of the state matrix4 and the rank of
the ontrollability and observability matrix.5 For the nonlinear ase, stabil-
ity depends in general also on the initial onditions, and one is fored to
study the stability of individual trajetories for given initial onditions by
numerial integration, so alled traking.

Appliation of sophistiated mathematial methods has led to the well
known KAM-theorem [22℄, stating roughly that a system with periodi so-
lutions has quasi-periodi solutions for suÆiently small perturbations. But
this theorem is unfortunately rather aademi, i.e. solution exists..., and has
found little use in quantitative aelerator design, the rux originating from
the de�nition of a suÆiently small perturbation.6 We therefore have to rely
on a more intuitive approah, arguing that the long term stability ought be
improved by reduing the leading order nonlinear perturbations, sine this
brings the equations of motion loser to the linear approximation for whih
linear stability has been established in the proess of linear lattie design.
The argument an be made somewhat sharper by onsidering the parametri
variation of the tune with for example the momentum deviation Æ. If one
onsiders an ensemble of partiles over Æ, one may expet stability problems
for partiles with an atual tune lose to any betatron resonane driven by
the magneti lattie. For eletrons, one may of ourse argue that stability
over one damping time should be suÆient for stability over all times. But
this is naive sine the eletrons will in general be slowly rossing resonanes

4First applied to the alternating gradient synhrotron by Courant and Snyder [20℄ by
analyzing the state matrix (the one-turn transport matrix).

5See any textbook on the subjet or [21℄ for a straightforward appliation to Hill's
equation.

6To quote I. Perival [23℄: \In fat H�enon showed Arnold's proof only applies if the
perturbation is less than 10�333 and Moser's if it is less than 10�48, in appropriate units.
The latter is less than the gravitation perturbation of a football in Spain by the motion
of a baterium in Australia!"
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in their trajetories of damped betatron osillations towards the equilibrium
orbit. In partiular just after injetion and a Toushek event.

Systemati aelerator design relies on the fat that modern tehniques
allows one to easily and self-onsistently7 test suh a hypothesis against nu-
merial simulations based on preise models that desribes the single partile
dynamis on the short- and medium-term time sales. E�etively, the ael-
erator physiist's eonomy version of the aerodynamiist's \wind tunnel". At
large, feasible of ourse due to the relative simpliity of dynamis for systems
desribed by ordinary- rather than partial di�erential equations.

2 The Equations of Motion

The e�et of synhrotron radiation an be negleted in the following treat-
ment sine we are primarily onerned about ontrol of the short term dy-
namis. This approximation is pursued for simpliity, sine lassial radiation
an be aommodated in the underlying theoretial framework by generaliz-
ing from a Hamiltonian ow to a vetor �eld whenever required [3℄.

2.1 The Relativisti Hamiltonian
The Hamiltonian for a harged partile in an external eletromagneti �eld
transformed into the loal omoving frame ustomarily used for aelerators
is given by [5, 20℄

H1 (x; px; y; py;�pt; t; s) = �
�
1 + href (s)x

�
�

(
q

p0
As (s) +

r
1�

2

�
pt + p2t �

h
px �

q

p0
Ax (s)

i2
�

h
py �

q

p0
Ay (s)

i2)
(1)

where

pt � �E � E0

p0
; href (s) � 1

�ref (s)
; � � v


(2)

7Using the same dynamial model for analytial- and numerial studies. In partiular
when lattie errors are inluded.
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and t the absolute time of ight. �ref is the loal radius of urvature along the
referene urve followed by the omoving frame8. The momentum deviation

Æ � p� p0
p0

(3)

is introdued by the anonial transformation

F2 =
t

�

�
1�

q
1 + �2 (2Æ + Æ2)

�
; H2 = H1 +

�F2

�s
= H1;

�T =
�F2

�Æ
= � � (1 + Æ) tq

1 + �2 (2Æ + Æ2)
;

pt =
�F2

� (t)
=

1

�

�
1�

q
1 + �2 (2Æ + Æ2)

�
(4)

leading to the Hamiltonian

H2 (x; px; y; py; Æ; t; s) = �
�
1 + href (s) x

�
�

(
q

p0
As (s) +

r
(1 + Æ)2 �

h
px �

q

p0
Ax (s)

i2
�

h
py �

q

p0
Ay (s)

i2)
(5)

Note that T , formally de�ned as the onjugate oordinate to Æ, is not equal
to the time of ight t, now given by

t = T

q
1 + �2 (2Æ + Æ2)

� (1 + Æ)
(6)

2.2 The Expanded Hamiltonian

We now introdue a sequene of justi�able approximations with the goal to
obtain a simple but still aurate dynamial model. In the ultrarelativisti

limit when � ! 1

pt ! �Æ; t! T (7)

8We emphasize that the referene urve is in theory ompletely arbitrary. From a
pratial point of view, it is hosen primarily from engineering onsiderations, in partiular
the shape of the ideal losed orbit. A orresponding magneti guiding �eld with trajetories
of proper geometrial shape for ideal initial onditions is then determined.
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This limit will be assumed in the following.9 Note that at low energies, it
is more suitable to use the momentum onjugate to the time of ight t, i.e.
the energy deviation pt de�ned by eq. (2). The multipole expansion of the
vetor potential [4℄ in the soure-free environment of the beam an for the
piee-wise onstant ase10 be written

q

p0
Ax (s) = 0;

q

p0
Ay (s) = 0;

q

p0
As (s) � �Re

1X
n=1

1

n
[ian (s) + bn (s)℄

�
rei'

�n
= �Re

1X
n=1

1

n
[ian (s) + bn (s)℄ (x + iy)n: (8)

From the url in the urvilinear system [38℄

Bx (s) =
1

1 + href (s)x

�Ay

�s
� �As

�y
;

By (s) =
href (s)

1 + href (s)x
As +

�As

�x
� 1

1 + href (s)x

�Ax

�s
;

Bs (s) =
�Ax

�y
� �Ay

�x
(9)

one then obtains the orresponding �elds

By (s) + iBx (s) = �p0
q

1X
n=1

[ian (s) + bn (s)℄
�
rei'

�n�1
= �p0

q

1X
n=1

[ian (s) + bn (s)℄ (x+ iy)n�1 (10)

valid for href (s) = 0. In the ase of dipole magnets n = 1, there are two
natural geometries from an engineering point of view. The above Cartesian

geometry

q

p0
As (s) = �b1 (s) x (11)

and the ylindrial

q

p0
As (s) = �b1 (s)

2

1 + href (s)x

href (s)
(12)

9The eletron energy for SLS is � 2:1 GeV ompared to a rest mass of only 0.511 MeV.
10Ignoring fringe �elds.
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In the latter ase the urvature of the loal referene frame is hosen so that

href (s) = b1 (s) � 1

�b (s)
(13)

whih has a geometrial interpretation in the form11

q

p0
= � 1

(B�b)0
(14)

known as the magneti rigidity. For preise modeling of dipoles with gradi-
ents see [93℄ for tehnial details.

We now apply the adiabati approximation by taking advantage of the
fat that the synhrotron osillations are in general muh slower than the be-
tatron osillations.12 The momentum deviation an in other words be viewed
as a slowly varying parameter rather than a dynamial variable obeying a
dynamial law so that the longitudinal motion deouples from the transverse.
The Hamiltonian eq. (1) is then expanded to third order in the phase spae
variables but keeping the exat parametri dependene in Æ

H3 (x; px; y; py; s)

= � [1 + href (s)x℄

"
1 + Æ � p2x + p2y

2 (1 + Æ)
+

q

p0
As (s)

#
+O (4) (15)

For simpliity, we will assume that the magneti lattie an be modeled
by a piee-wise onstant �eld onsisting of dipoles with ylindrial geometry
and quadrupoles and sextupoles with Cartesian geometry. This leads to

H4 (x; px; y; py; s)

= [1 + b1 (s) x℄
p2x + p2y
2 (1 + Æ)

� b1 (s) xÆ +
b21 (s)

2
x2

+
b2 (s)

2

�
x2 � y2

�
+
b3 (s)

3

�
x3 � 3xy2

�
+O (4) (16)

Sine the loal urvature href (s) is small for a \medium size" ring13, higher
order kinematial terms may be ignored, so that �nally

11Sign onvention for eletrons for whih a left handed oordinate system is more on-
venient.

12The tunes for SLS are: �x � 20; �y � 8 ; and �s � 0:01.
13Roughly, latties for whih 1=�2b � b2. For SLS: �b � 5 m, and b2 � 3 m�2.
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H5 (x; px; y; py; s)

=
p2x + p2y
2 (1 + Æ)

� b1 (s) xÆ +
b21 (s)

2
x2

+
b2 (s)

2

�
x2 � y2

�
+

b3 (s)

3

�
x3 � 3xy2

�
+O (4) (17)

Note, the ignored terms, inluding the kinematial term

href (s)
p2x + p2y
2 (1 + Æ)

(18)

may ontribute signi�antly to the hromatiity in \small rings" [24, 25℄.

2.3 Hamilton's Equations

The equations of motion are obtained from Hamilton's equations

x0 � dx

ds
=

�H5

�px
=

px
1 + Æ

+O (3) ;

p0x � dpx
ds

= ��H5

�x

= b1 (s) Æ �
�
b21 (s) + b2 (s)

�
x� b3 (s)

�
x2 � y2

�
+O (3) ;

y0 � dy

ds
=

�H5

�py
=

py
1 + Æ

+O (3) ;

p0y � dpy
ds

= ��H5

�y
= b2 (s) y + 2b3 (s) xy +O (3) (19)

2.4 Sympleti Integration

The sympleti map generated by H5 an be approximated by a sympleti

integrator.14 A seond order sympleti integrator15 is given by [70℄

S2 � e:�LH5: = e:�LHdrift=2:e:�LHkik:e:�LHdrift=2: +O
�
L3

�
(20)

14An integrator that preserves the internal symmetry of Hamilton's equations.
15A so alled kik ode.
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where

Hdrift =
p2x + p2y
2 (1 + Æ)

;

Hkik = �b1xÆ + b21
2
x2 +

b2
2

�
x2 � y2

�
+

b3
3

�
x3 � 3xy2

�
(21)

In other words, eah magnet is divided into a \drift-kik-drift". Moreover,
it an be shown that, given a sympleti integrator of order 2n, one may
onstrut one of order 2n+ 2 by [75℄

S2n+2 (L) = S2n (z1L)S2n (z0L)S2n (z1L) +O
�
L2n+3

�
(22)

where

z0 = � 21=(2n+1)

2� 21=(2n+1)
; z1 =

1

2 � 21=(2n+1)
(23)

A fourth order integrator is hene obtained by16 [69, 70, 71, 72, 75℄

e:�LH1: = e:�1LHdrift:e:�d1LHkik:e:�2LHdrift:e:�d2LHkik:

� e:�2LHdrift:e:�d1LHkik:e:�1LHdrift: +O
�
L5

�
(24)

where

1 =
1

2 (2� 21=3)
; 2 =

1� 21=3

2 (2� 21=3)
;

d1 =
1

2� 21=3
; d2 = � 21=3

2� 21=3
(25)

Note that while the seond drift is \negative"

2 (1 + 2) = 1; 2d1 + d2 = 1 (26)

as intuitively expeted. The number of integration steps required to orretly
model a given magnet are determined by numerial onvergene of relevant
omputed quantities as usual, e.g. dynamial aeptane, but with the extra
onstraint that the tune should be kept onstant. All traking related to this
work have been done with this model.

16Classial radiation is a straightforward modi�ation of the kik [93℄.
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The orresponding Taylor expanded transfer maps are obtained to arbi-
trary order by performing preisely the same arithmeti operations in TPSA.
Computer implementations an therefore bene�t substantially by using any
modern objet oriented language that supports operator overloading [26℄. In
fat, all numerial map and related normal form alulations used in the de-
velopment and ross heking of the presented work have been performed by
a beam line lass,17 with TPSA based on a polymorphi number lass with
referene ounting [27℄, in C++.

2.5 (Generalized Hill's Equations)

For the sake of ompleteness, we also present the orresponding generalized
Hill's equations. Note however, that they are never referred to in this work.
In any ase, they are obtained by ombining Hamilton's equations into two
seond order ODEs. From eq. (19) one �nds

x00 +
b2 (s) + b21 (s)

1 + Æ
x = b1 (s) Æ � b3 (s)

1 + Æ

�
x2 � y2

�
+O (3) ;

y00 � b2 (s)

1 + Æ
y =

2b3 (s)

1 + Æ
xy +O (3) (27)

3 Linear Beam Optis

3.1 Matries: Element Desription by Linear Sym-
pleti Maps

The linear equations of motion are obtained from eqs. (19) for b3 (s) = 0

x0 =
px

1 + Æ
+O (2) ;

p0x = b1 (s) Æ �
�
b21 (s) + b2 (s)

�
x +O (2) ;

y0 =
py

1 + Æ
+O (2) ;

p0y = b2 (s) y + 2b3 (s) xy +O (2) (28)

Integration leads to a linear transfer map representing a linear oordinate

transformation

~x1 = ~�0!1 (~x0) = M0!1~x0 (29)
17J. Bengtsson and E. Forest unpubl.
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where M0!1 is the well known 4 � 4 transfer matrix ating on the phase
spae vetor ~x = [x; px; y; py℄

T . Conatenation is performed by ordinary
matrix multipliation

M0!2 = M1!2M0!1 (30)

The orresponding 4 � 4 matries are easily determined by inspetion
from the traditional matrix formalism, see e.g. p. 12-14 in ref. [29℄, based on
~x = [x; x0; y; y0℄T sine from eq. (28)

x0 =
px

1 + Æ
; y0 =

py
1 + Æ

(31)

and the multipole omponents de�ned by eq. (8) have the momentum de-
pendene

q

p
As =

q

p0

As

1 + Æ
) bn (Æ) =

bn
1 + Æ

= (1 + Æ + � � �) (32)

so that�
x1
x0x1

�
=

�
m11 m12

m21 m22

� �
x0
x0x0

�
$

�
x1
px1

�
=

�
m11

m12

1+Æ

m21 (1 + Æ) m22

� �
x0
px0

�
(33)

These matries are sympleti

MJMT = J (34)

where

J =

24 0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

35 (35)

a reetion of the struture of Hamilton's equations as we shall see in setion
4.1.

3.2 The Æ-dependent Fix Point: Dispersion

The linear dispersion funtion ~�(1) (s) is de�ned as the momentum dependent
�x point of the linear one-turn map

M0!n~�
(1) (s0) Æ � ~�(1) (s0) Æ (36)
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where

~�(1) (s) �
h
�(1)x (s) ; �0

(1)
x (s) ; �(1)y (s) ; �0

(1)
y (s)

iT
(37)

whih is determined numerially by a losed orbit �nder18 sine we have
avoided to expand in Æ. The �x point is translated to the origin of phase
spae by the transformation

~x (s)! ~x (s) + ~�(1) (s) Æ (38)

3.3 Matrix Diagonalization: Global Properties

The one-turn matrix is diagonalized as usual

M0!n = A (s0)R0!nA
�1 (s0) (39)

where

R0!n =
�
R2 (2��x) [0℄

[0℄ R2 (2��y)

�
; R2 (�) =

�
os� sin�
� sin� os�

�
(40)

In the ase of mid-plane symmetry19 one �nds, after imposing the Courant
and Snyder hoie for the phase advane, the unique (anonial) transforma-
tion [86℄

A (s) =
�
Ax (s) [0℄
[0℄ Ay (s)

�
; A�1 (s) =

�
A�1x (s) [0℄

[0℄ A�1y (s)

�
(41)

where

Ax (s) =

24
q
�x (s) 0

� �x(s)p
�x(s)

1p
�x(s)

35 ; A�1x (s) =

264
1p
�x(s)

0

�x(s)p
�x(s)

q
�x (s)

375 (42)

and similarly for the vertial plane.
The one-turn matrix at some arbitrary point k in the lattie is then given

by

Mk!n+k = M0!kM0!nM
�1
0!k (43)

18The Newton-Raphson method in multidimensions [28℄ is partiularly suitable sine
the Jaobian is simply the one-turn matrix.

19No linear oupling. In the general ase A (s) will ontain o�-diagonal elements that
have to be inluded to orretly determine what an be measured, i.e. the beam size.
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However, it is suÆient to diagonalize M0!N to determine the lattie fun-
tions at any arbitrary point sine

Mk!n+k = A (sk)R0!kR0!nR
�1
0!kA

�1 (sk)

= M0!kA (s0)R0!nA
�1 (s0)M

�1
0!k (44)

whih leads to20

A (sk)R0!k =M0!kA (s0) (45)

They are then omputed diretly from the matrix elements of A (sk)R0!k

using

�x (sk) = �a11 (sk) a21 (sk)� a12 (sk) a22 (sk) ;

�x (sk) = a211 (sk) + a212 (sk) ;

��x = artan

 
a12 (sk)

a11 (sk)

!
� artan

 
a12 (s0)

a11 (s0)

!
;

~�(1) (sk) = M0!k~�
(1) (s0) (46)

All linear optis alulations required for this work has been done by this
model.

4 Nonlinear Beam Dynamis

The following treatment is based on a paradigm shift urrently taking plae in
nonlinear single partile beam dynamis [1, 3, 95℄. It was atually onjetured
in a paper by A.J. Dragt and J.M. Finn already bak in 1976 [60℄

\It also provides a new approah sine the onnetion between
sympleti maps, Lie algebras, invariant funtions, and Birkho�'s
work has not been previously reognized and exploited. It is ex-
peted that the results obtained will be appliable to the normal
form problem in Hamiltonian mehanis, the use of the Poinar�e
setion map in stability analysis, and the behavior of magneti
�eld lines in a toroidal plasma devie."

20Mathematially equivalent to the \Transformation of Twiss parameters" e.g. eq.
[7,100℄ p. 16 in ref. [29℄

13



Indeed, this suggestion has sine long materialized.21 Part of the elegane of
the developments along these lines originates from the fat that, rather than
Fourier expand as ustomary and onsequently have to deal with in�nite sums
[32, 33℄,22 one proeeds more diretly to the desired goal. However, these
tehniques demand for an elementary knowledge of Lie algebra, in reality
not muh beyond the level of ordinary quantum mehanis, appears to have
been a major obstale for them to gain general aeptane. This is somewhat
unfortunate, beause one of the new tehniques' major ahievements is to
bring nonlinear single partile dynamis bak to the spirit of Courant and
Snyder's by now23 elementary linear stability analysis [20℄, based on the one-
turn transfer matrix, i.e. the linear (sympleti) one-turn map.24 To quote
the Bologna shool [84℄:

\We desribe the motion of a partile in the lattie of a hadron
aelerator using the formalism of sympleti maps. We revisit
the Courant-Snyder's theory and we stress that the redution to
normal form of a sympleti map is just the natural generalization
of the linear theory."

In partiular after this �eld's long detour along more or less suessful at-
tempts to apply tehniques initially developed, and hene more suitable,
for elestial mehanis.25 Roughly, the lassial eigenvalue problem and its
elegant solution by matrix diagonalization, is in a straightforward manner
generalized by the introdution of a reursive algorithm that order by order
transforms the nonlinear (sympleti) map into normal form [84, 86℄ from
whih the global properties then easily are extrated.

This approah is of ourse mathematially equivalent to the more tradi-
tional Hamiltonian perturbation theory [5℄, but far more e�etive when it
omes to arrying out expliit alulations, rather than the ustomary \In
priniple..." for aelerators. Hene with the virtue to free analytial models
from unneessary and often radial oversimpli�ations, and at last allowing

21See for example ref. [3, 30, 63, 65, 72, 85, 86, 94, 95℄.
22Closed forms atually exists, see for example [34℄ (but the treatment is inorret sine

the the perturbation of the angle variable was missed).
23The reader with a broad interest is invited to make a omparison with the orrespond-

ing developments in the losely related �eld of ontrol theory over the last 40 years.
24The Courant-Snyder invariant is more generally known as the ation variable in Hamil-

tonian dynamis: 2Jx = 1
�x(s)

�
x2 +

�
�x (s) px + �x (s)x

2
��

[31℄.
25See for example [32, 33, 34, 35, 36, 37, 38, 39℄.
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the aelerator physiist to onstrut more realisti models. We summarize
our point of view by a modest quote from A. Chao [40℄:

\There is a theorem stating when you have only a partial knowl-
edge of the solution to a di�erential equation and do not know
what to do next, make a Fourier transformation."

4.1 Lie Algebrai Struture of Hamiltonian Dynamis

Hamilton's equations an be written in the sympleti26 form27

_~x = �
 
�H

�~x
J

!T

(47)

where

J =

26664
0 1 0 0 0 0
�1 0 0 0 0 0
0 0 0 1 0 0
0 0 �1 0 0 0
0 0 0 0 0 1
0 0 0 0 �1 0

37775 (48)

De�ning the Poisson braket

[f (~x) ; g (~x)℄ �
nX
i=1

"
�f (~x)

�xi

�g (~x)

�pxi
� �f (~x)

�pxi

�g (~x)

�xi

%
=

�f (~x)

�~x
J

"
�g (~x)

�~x

#T
(49)

allows one to write the total time derivative for any funtion f (~x; s) of the
phase spae variables and \time" (s) by

df (~x; s)

ds
= � [H; f (~x; s)℄ +

�f (~x; s)

�s
(50)

and in the ase of no expliit s-dependene

df (~x)

ds
= � [H; f (~x)℄ (51)

26From greek: intertwined, introdued by H. Weyl 1939.
27Goldstein's [5℄ notation is inonsistent sine ~x is a ontravariant- and �H

�~x a ovariant
vetor as orretly stated, but the latter should, orrespondingly, be represented as the
transpose (dual) vetor in the formalism. A so alled 1-form. See in partiular p. 392.
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whih redue to Hamilton's equations for f (~x) any of the phase spae vari-
ables. Note that the Hamiltonian is simply the generator of an in�nitesimal
(sympleti) oordinate transformation. The Poisson braket is invariant

under a anonial transformation, e.g. to ation-angle variables
h
J; �

i
[f (~x) ; g (~x)℄~x =

h
f
�
J; �

�
; g

�
J; �

�i
[J;�℄

(52)

Moreover, it has the following three properties:

antisymmetri

[f (~x) ; g (~x)℄ = � [g (~x) ; f (~x)℄ (53)

distributive

[af (~x) + bg (~x) ; h (~x)℄ = a [f (~x) ; h (~x)℄ + b [g (~x) ; h (~x)℄ (54)

Jaobi's identity

[f (~x) ; [g (~x) ; h (~x)℄℄ + [g (~x) ; [h (~x) ; f (~x)℄℄ + [h (~x) ; [f (~x) ; g (~x)℄℄ = 0 (55)

whih de�nes a Lie algebra

If we write the Poisson braket in the Lie operator form

: f (~x) : g (~x) � [f (~x) ; g (~x)℄ (56)

eq. (51) takes the form

df (~x)

ds
= � : H : f (~x) (57)

It an be shown that the ommutator of two Lie operators

f: f (~x) :; : g (~x) :g �: f (~x) :: g (~x) : � : g (~x) :: f (~x) : (58)

is homomorphi to the Poisson braket

f: f (~x) :; : g (~x) :g ! : [f (~x) ; g (~x)℄ : (59)

In other words, that two Lie operators are equal

: f (~x) :=: g (~x) : (60)
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for any two funtions that di�er by an arbitrary onstant a

f (~x) = g (~x) + a (61)

As onsequene, the Lie operators also form a Lie algebra.
Sine the (funtional) map for a Hamiltonian that ommutes at di�erent

\times" (s)

f: H (~x; s0) :; : H (~x; s1) :g = 0 (62)

as a byprodut, it an be formally expressed in the form [62℄

M~�0!1
= exp

�
: �

Z s1

s0
H (s) ds :

�
(63)

Roughly speaking, the problem of integrating the equations of motion has
been redued to algebrai manipulations by taking advantage of the underly-
ing Lie algebrai struture of the Poisson braket originating from Hamilton's
equations.

As before, we now assume that eah element an be represented by a piee-
wise onstant Hamiltonian.28 This is in general a good approximation for
\medium-" and \large rings". When not, they are straightforward to inlude
into the formalism [91℄. Like for \small rings" or in interation regions. The
map for an element of length L is then simply

M~�0!1
= exp (: �LH :) (64)

4.2 Element Desription by Sympleti Maps

Eah element is represented by a (funtional) mapM~�0!1
ating on funtions

f (~x) of the phase spae vetor ~x = [x; px; y; py; Æ; t℄
T

f (~x1) =M~�0!1
f (~x0) � f Æ ~�0!1 (~x0) (65)

with omposition \Æ" de�ned by

f Æ �0!1 (x0) � f
�
�0!1 (x0)

�
(66)

28Ignoring fringe �elds.
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where ~�0!1 (~x0)

~x1 = ~�0!1 (~x0) (67)

is the orresponding transfer map.29 Conatenation30 is de�ned by

M~�0!1
M~�1!2

�M~�0!2
(68)

We remark that it is of fundamental importane to have a oneptually lear
understanding of these steps for the following treatment. For example, sine

M~�0!2
f = M~�1!2Æ~�0!1

f = f Æ
�
~�1!2 Æ ~�0!1

�
=

�
f Æ ~�1!2

�
Æ ~�0!1

= M~�0!1
M~�1!2

f (69)

it follows that (funtional) maps are onatenated in reversed order in on-
trast to transfer maps. These maps are said to be sympleti sine the or-
responding Jaobian

M0!1 =
�~�0!1 (~x0)

�~x0
(70)

is a sympleti matrix, see eq. (34).

4.3 Parallel Transport and Lumping of Thin Kiks

The magneti lattie is now separated into nonlinear thin kiks onneted by
linear maps. The one-turn map has then the following formal form [41℄

M~�0!n
= M~�0!1

e:V1:M~�1!2

e:V2::::e:Vn�1:M~�n�1!n

= M~�0!1

e:V1:M�1~�0!1

M~�0!1

M~�1!2

e:V2::::e:Vn�1:M�1~�0!n�1

M~�0!n�1
M~�n�1!n

= e
:M~�0!1

V1:e
:M~�0!2

V2::::e
:M~�0!n�1

Vn�1:
M~�0!n

= A�10 A0e
:M~�0!1

V1:A�10 A0e
:M~�0!2

V2::::A�10 A0e
:M~�0!n�1

Vn�1:
A�10 R0!nAn

= A�10 e:bV1:e:bV2::::e:bVn�1:R0!nAn (71)

where we have introdued

bVi � A0M~�0!i
Vi = R0!iAiVi (72)

29A oordinate transformation. Preisely what traking odes evaluates by diret nu-
merial integration of the orresponding equations of motion. Eqs. (19) in our ase.

30Group multipliation.
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sine for a similarity transformation

Me:f :M�1 = e:Mf : (73)

whereas for linear maps

M~�0!i
= A�10 R0!iAi (74)

orresponding to eq. (45) in the matrix ase. In other words, all the thin
kiks have been parallel transported31 to the beginning of the lattie.32 They
an now be lumped into a single thin kik by the Baker-Campbell-Hausdor�
(BCH) theorem for nonommuting operators well known from elementary
quantum mehanis

eaeb = ea+b+[a; b℄=2+::: (75)

so that �nally

M~�0!n
� A�10 e:h:R0!nAn

= A�10 exp

0�: NX
i=1

bVi +
1

2

NX
i<j

h bVi; bVj

i
+ � � � :

1AR0!nAn (76)

4.4 Map Normal Form: Global Properties

The global properties of the lattie in the general nonlinear ase33 are deter-
mined by transforming the map into normal form [86℄

M~�0!n
� A�10 e:h(J;�):R0!nA0

?
= A�10 e:�g(J;�):e:k(J):R0!ne

:g(J;�):A0

= A�10 e:�g:e:k:e:R0!ng:R0!nA0

= A�10 e:k�(1�R0!n)g+[k;g℄=2+[k�g;R0!ng℄=2+���:R0!nA0 (77)

so that to �rst order

h(1) = k(1) � (1�R0!n) g
(1) (78)

31Compare with a spae translation of a spinning top.
32Reall that (funtional) maps ats in reversed order.
33In partiular amplitude dependent tune shift, hromatiity and the lattie funtions

parametri dependene on Æ and multipole strengths. The \unloking of Pandora's box"
for reasons that will beome lear in the following.
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To solve this equation h has to be deomposed into two parts: one part
independent of the angle variables34 and the remaining

h(1) = h
(1)
Ker

�
J
�
+ h

(1)
Im

�
J; �

�
(79)

so that

k(1) = h
(1)
Ker

�
J
�
; g(1) = � 1

1�R0!n
h
(1)
Im

�
J; �

�
(80)

whih leads to

e:h:R0!n = e:�g(J;�):e:k(J):R0!ne
:g(J;�):

= e
: 1
1�R0!n

h
(1)
Im ���:R0!ne

:h
(1)
Ker+h

(2)
Ker�

1
2

h
h
(1)
Im ; 1

1�R0!n
h
(1)
Im

i
Ker

���:

� e
:� 1

1�R0!n
h
(1)
Im ���: (81)

where
h
J; �

i
� [Jx; �x; Jy; �y℄ are the ation-angle variables. This an stritly

speaking only be done for integrable Hamiltonians.35 In other words Hamil-
tonian systems without haos. This is typially far from reality in the ase
of aelerators. However, the main goal of aelerator design, from a math-
ematial point of view, is to determine a design with a �x point surrounded
by regular motion over an extensive volume of phase spae. In other words,
to avoid haos. It is hene reasonable to assume that if one expands in some
smallness parameter, e.g. the multipole strength, and brings the map pertur-
batively into normal form, the orresponding power series expansions should
be able to model the dynamis in the regular regions of phase spae. How-
ever, it an be shown that these expansions are only semionvergent.36 In
any ase, suh a hypothesis an and should of ourse always be tested against
traking.

The tune shift is then easily obtained from the generator k
�
J
�
by

��x = � 1

2�

�k
�
J
�

�Jx
; ��y = � 1

2�

�k
�
J
�

�Jy
(82)

34The so alled kernal of R0!n, i.e. h for whih R0!nh
�
J
�
= 0.

35Hamiltonian systems for whih the motion is quasi-periodi and lies on a n-dimensional
invariant torus in the 2n-dimensional phase spae.

36Generally known as the \small denominator problem".
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whereas the anonial transformation exp (: g :) determines the distortions
of the invariant torus. For example

�xi +��xi =
D
e:g:Rn!iAix

2
E
�
= �xi

D
e:g:Rn!ix

2
E
�

= �xi
D
(1+ : g : + � � �)Rn!ix

2
E
�

(83)

where \hi�" denotes averaging over the angle variables [�x; �y℄.

5 Appliation to Sextupoles

In the following will work out analytial formula for various dynamial quan-
tities as expansions in the multipole strength. Order will hene refer to order
in multipole strength and NOT order in the phase spae variables.37

5.1 Lie Generators: The Driving Terms

The vetor potential for a thin sextupole at an arbitrary loation si is

Vi =
q

p0
As (si) = �b3i

3

�
x3 � 3xy2

�
(84)

Noting that

Aix =
q
�xix+ �

(1)
xi Æ (85)

one �nds

1

3
Ai

�
x3 � 3xy2

�
=

1

3

�q
�xix+ �

(1)
xi Æ

�3

�
�q

�xix+ �
(1)
xi Æ

�
�yiy

2

=
q
�xi

�
�
(1)
xi

�2
xÆ2 +

1

3
�
3=2
xi x3 �

q
�xi�yixy

2

+
�
�xix

2 � �yiy
2
�
�
(1)
xi Æ +O

�
Æ3
�

(86)

37For example, a seond-order ahromat refers to a single-pass system for whih all
seond order terms in the orresponding Taylor expanded map have been zeroed. This
orresponds to that the �rst order e�ets in sextupole strength have been aneled. We are
in the following, from a general point of view, attempting to design a irular aelerator
based on a magneti lattie orresponding to a third-order ahromat in the single pass
ase [64℄.
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Introduing the resonane basis

h�x �
q
2Jxe

�i�x =
q
2Jx os �x � i

q
2Jx sin�x = x� ipx (87)

in other words the eigenfuntions of the rotation operator R

Ri!jh
�
x = Ri!j

q
2Jxe

�i�x =
q
2Jxe

�i(�x+�i!j;x) = e�i�i!j;xh�x (88)

Correspondingly

x =
q
2Jx os�x =

1

2

�
h+x + h�x

�
;

px = �
q
2Jx sin�x = � 1

2i

�
h+x � h�x

�
(89)

In the spirit of eqs. (41,65-67) we obtain

R0!iAi
1

3

�
x3 � 3xy2

�
= R0!i

�q
�xi

�
�
(1)
xi

�2
xÆ2 +

1

3
�
3=2
xi x3 �

q
�xi�yixy

2

+
�
�xix

2 � �yiy
2
�
�
(1)
xi Æ

i
+O

�
Æ2
�

(90)

and

R0!ix =
1

2
R0!i

�
h+x + h�x

�
=

1

2

�
h+x e

i�xi + ::
�
;

R0!ix
2 =

1

4
R0!i

�
h+x + h�x

�2
=

1

4

�
h+2x ei2�xi + :: + 4Jx

�
;

R0!ix
3 =

1

8

�
h+3x ei3�xi + 3h+2x h�x e

i�xi + ::
�
;

R0!ixy
2 =

1

8

�
h+x h

+2
y ei(�xi+2�yi) + h+x h

�2
y ei(�xi�2�yi)

+ 2h+x h
+
y h
�
y e

i�xi + ::
i

(91)

Colleting the terms we �nd that the Lie generator : h :, the nonlinear driving
terms, has to �rst order the following generi form in the resonane basis

h(1) � X
jIj=n

hIh
+i1
x h�i2x h+i3

y h�i4y Æi5 (92)

where I � [i1; i2; i3; i4; i5℄ ;
���I��� � i1 + i2 + i3 + i4 + i5. It may be interpreted

as a mode expansion with eah mode driving betatron- or synhro-betatron
resonanes and are summarized below.
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The algebrai manipulations required to push on to the seond order are
straightforward and preferable automated by omputer algebra. The BCH-
theorem eq. (76) was implemented in MATHEMATICA38 to automatially
grind out the generator to seond order for an arbitrary multipole omponent.
The resulting seond order terms have the form

h(2) � 1

2

X
i<j

h bVi; bVji
� 1

J�
x J

�
y

X
jIj=jJj=n

hIhJh
+(i1+j1)
x h�(i2+j2)x h+(i3+j3)y h�(i4+j4)y Æi5+j5 (93)

5.1.1 First Order Chromati Terms

Quadrupoles will also ontribute sine from eq. (32)

Vi =
b2

2 (1 + Æ)

�
x2 � y2

�
=

b2
2
(1� Æ)

�
x2 � y2

�
+O

�
Æ2
�

(94)

There are two terms that are independent of the phase variable

h11001 =
1

4

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�xi +O

�
Æ2
�
;

h00111 = �1

4

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�yi +O

�
Æ2
�

(95)

whih drive the linear hromatiity, the initial reason for introduing sex-
tupoles into the lattie. The remaining are

h20001 = h
�

02001 =
1

8

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�xie

i2�xi +O
�
Æ2
�
;

h00201 = h
�

00021 = �1

8

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�yie

i2�yi +O
�
Æ2
�
;

h10002 = h
�

01002 =
1

2

NX
i=1

h
(b2L)i � (b3L)i�

(1)
xi

i
�
(1)
xi

q
�xie

i�xi +O
�
Æ3
�
(96)

where � denotes the omplex onjugate. h20001 and h00201 drive synhro-
betatron resonanes and generate momentum dependene of the beta fun-
tions, whereas h10002 drive seond order dispersion. Unfortunately, this is far

38L. Rivkin priv. omm.
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from the end of the story. As we will see in the following, these terms are
followed by a whole swamp of undesirable terms: \the unloking of Pandora's
box".

5.1.2 First Order Geometri Terms

h21000 = h
�

12000 = �
1

8

NX
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xi ei�xi ;
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1
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NX
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3=2
xi ei3�xi ;
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�

01110 =
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4
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i=1

(b3iL)�
1=2
xi �yie

i�xi ;

h10020 = h
�

01200 =
1

8

NX
i=1

(b3iL)�
1=2
xi �yie

i(�xi�2�yi);

h10200 = h
�

01020 =
1

8

NX
i=1

(b3iL)�
1=2
xi �yie

i(�xi+2�yi) (97)

These terms drive �ve di�erent betatron modes with the frequenies:

�x; 3�x; �x � 2�y; �x + 2�y (98)

whih appears as the well known �rst order harmonis in the orresponding
Fourier expanded expressions in the old-fashioned approah.

5.1.3 Seond Order Chromati Terms

The terms independent of the angle variables drive the seond order hro-
matiity. But the related formula will be derived by a simpler approah, so
they are not needed in the following analysis. The remaining terms drive the
synhro-betatron sidebands of the �rst order resonanes. However, sine the
�rst order betatron modes have to be aneled, they orresponding sidebands
are expeted to be weak and will be ignored in the following analysis.
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5.1.4 Seond Order Geometri Terms

The terms independent of the angle variables are

(hIhJ)g;Ker = � 1

64
(3h21000h12000 + h30000h03000) (2Jx)

2

+
1

16
(2h21000h01110 + h10020h01200 + h10200h01020) (2Jx)(2Jy)

� 1

64
(4h10110h01110 + h10020h01200 + h10200h01020) (2Jy)

2 (99)

and drive amplitude dependent tune shift. These e�ets may be viewed as
originating from an amplitude- or momentum dependent shift of the losed
orbit in the sextupoles. The remaining terms are

(hIhJ)g;Im

=
1

64

h
2(h30000h12000)2�x + (h30000h21000)4�x

i
(2Jx)

2

+
1

64

h
2 (h30000h01110 + h21000h10110 + 2h10200h10020)2�x

+ 2 (h10200h12000 + h21000h01200 + 2h10200h01110 + 2h10110h01200)2�y
+ (h21000h10020 + h30000h01020 + 4h10110h10020)2�x�2�y

+ (h30000h01200 + h10200h21000 + 4h10110h10200)2�x+2�y

i
(2Jx)(2Jy)

+
1

64

h
2 (h10200h01110 + h10110h01200)2�y + (h10200h01200)4�y

i
(2Jy)

2

+ :: (100)

and drive 8 di�erent betatron modes with the frequenies:

2�x; 4�x; 2�y; 4�y; 2�x � 2�y; 2�x + 2�y (101)

We note that the seond order modes appears due to ross terms of the �rst
order modes.

5.2 Phenomenology: Lattie Perturbations

Setions 5.1.1-5.1.4 presented the driving terms, i.e. the Hamiltonian. We will
now ompute the orresponding perturbations on the linear lattie funtions.
In other words, determine perturbative solutions39 to the nonlinear equations
of motion.

39Expanded in the multipole strength.
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5.2.1 Linear Chromatiity

The linear hromatiity is obtained diretly from h
(1)
Ker

�(1)x � ��x
�Æ

�����
Æ=0

= � 1

2�

�h11001
�Jx

; �(1)y � ��y
�Æ

�����
Æ=0

= � 1

2�

�h00111
�Jy

(102)

so that

�(1)x = � 1

4�

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�xi;

�(1)y =
1

4�

NX
i=1

h
(b2L)i � 2(b3L)i�

(1)
xi

i
�yi (103)

5.2.2 First Order Perturbations of Lattie Funtions

The one-turn map with a dipole perturbation b1n at the end an be written

M~�0!n
= M~�0!n�1

e:b1nx: = A�10 R0!nA0e
:b1nx: = A�10 R0!ne

:b1nA0x:A0

= A�10 R0!ne
:b1n

�p
�xnx+�

(1)
xn Æ

�
:A0 (104)

More generally, the map with a dipole kik at an arbitrary loation j observed
at loation i is then

M~�i!n+i
= M�1

~�j!i
M~�j!n+j

M~�j!i

= A�1i R�1j!iRj!n+je
:b1j

�p
�xjx+�

(1)
xj Æ

�
:Rj!iAi (105)

whih orresponds to eq. (43) in the matrix ase. Using eqs. (80) and (81)
to transform into normal form gives

g(1) = � 1

1�Rj!n+j
h
(1)
Im = � 1

1�Rj!n+j
b1j
q
�xjx

= �b1j
2

q
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�
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q
�xj

 
h+x

1� ei2��x
+ ::

!
(106)
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and

Rj!iAix =
q
�xiRj!ix + �xiÆ =

1

2

q
�xi

�
h+ei�x;j!i + ::

�
+ �xiÆ (107)

So similar to eq. (83), the hange of the losed orbit is given by

xod;i = he:g:Rj!iAixi� = h(1+ : g : + � � �)Rj!iAixi�

=
b1j
q
�xi�xj

2 sin��x
os (�x;j!i � ��x) + �

(1)
xi Æ; i > j (108)

where we have usedh
h+; h�

i
= 2i;

h
h+; h+

i
=
h
h�; h�

i
= 0 (109)

The ase i < j is treated similarly and the general ase is summarized by

xod;i =

p
�xi

2 sin��x

NX
j=1

b1j
q
�xj os (j�x;i!jj � ��x) + �

(1)
xi Æ (110)

The seond order dispersion �(2) is de�ned by

�
(2)
xi � 1

2

�2xod;i (Æ)

�Æ2

�����
Æ=0

=
��xi (Æ)

�Æ

�����
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(111)

Taking into aount that the Æ-dependene of the multipole omponent eq.
(32) leads �nally to

�
(2)
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p
�xi

2 sin (��x)
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(1)
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q
�xj os (j�i!j;xj � ��x) (112)

The same algebra an now be arried out for any multipole omponent
and in partiular a quadrupole error b2n. De�ning

�
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xi � ��xi

�Æ

�����
Æ=0

; �
(1)
yi � ��yi

�Æ

�����
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for the beta-beat and eq. (83) leads similarly to
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2 sin (2��x)
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5.2.3 Corretion of Perturbed Lattie Funtions

Note the similarity of formula (112) and (114) to (4.7) in ref. [20℄ whih
desribes losed orbit distortions due to magnet toleranes.40 By analogy
then, seond order dispersion and beta-beat may be orreted loally in the
same manner as losed orbit distortions whenever desired. In partiular, by
solving the linear system

Ax = b (115)

For example in the ase of horizontal beta-beat, the matrix oeÆients in
the orrelation matrix A for losed orbit distortions

aij =

q
�xi�xj

2 sin (��x)
os (j�i!j;xj � ��x) (116)

is simply replaed by

aij =
�xi�xj

2 sin (2��x)
os

����2�i!j;x

���� 2��x
�

(117)

whereas the undetermined dipole kiks b1j in the vetor x are replaed by the

sextupole kiks �2(b3L)j�(1)xj , and the right hand side by the negative ontri-
bution to the beta-beat at eah observation point i due to the quadrupoles

� �xi
2 sin (2��x)

NX
j=1

(b2L)j�xj os (j2�i!j;xj � 2��x) (118)

However, engineering problems desribed by suh systems of linear equations
tend to be overdetermined and an only be solved in a least-square sense.
Preferably by singular value deomposition (SVD), see setion 6.2.1.

5.2.4 Seond Order Amplitude Dependent Tune Shift

These formula were derived in the author's thesis [38℄ by appliation of time
dependent perturbation theory [5℄ and omputer algebra. The work was
inspired by a �rst order treatment based on variation of onstants by B. Autin
in his pursuit of a sextupole sheme for ACOL at CERN, who also rederived
them later [39℄. They later prompted J. Irwin at the SSC to one again

40The integral is replaed by a sum in the ase of thin kiks, and
y (s) = � (s)� (s) ; f ( ) = �3=2 (s)F (s) ; d 

ds = 1
��(s)
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rederive them, but this time along the lines outlined by E. Forest [41, 42℄.
In fat, MACSYMA programs were developed to automatially generate a
few thousand lines of FORTRAN ode to form an analytial model able to
predit the short term dynamis for the SSC. Simply put, hours of traking
on a CRAY were replaed by a few minutes of numerial evaluations of an
analytial model on a VAX [30℄.
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(119)

5.2.5 Seond Order Chromatiity

The amount of algebra required to derive these formula an be redued on-
siderable by taking advantage of the fat that the driving terms were, at least
in theory, not expanded in Æ. The seond order hromatiity may hene be
alulated by onsidering the parameter dependene in the formula for linear
hromatiity (95) with respet to Æ:
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Sine the multipole omponents have the Æ dependene given by eq. (32) we
obtain diretly
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The parameter dependene of the lattie funtions is omputed by formula
(112) and (114) or numerial di�erentiation
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Alternatively, �(2) may evaluated by diret numerial di�erentiation

�(2) =
1

2

�2� (Æ)

�Æ2

�����
Æ=0

=
1

2

�� (Æ)

�Æ

�����
Æ=0

=
1

2

� (h)� 2� (0) + � (�h)
h2

+O
�
h2
�

=
1

2

� (h)� � (�h)
2h

+O
�
h2
�

(123)
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6 Appliation to the Swiss Light Soure (SLS)

At this point, we have prepared ourselves with a general linear model41 for
beam optis, based in partiular on eqs. (29), (30), (33), (36), (38), (39),
(45), (46). Moreover, a nonlinear model based on the expanded Hamiltonian
eq. (17), the multipole expansion eq. (8), and numerial evaluation (traking)
using a 4th order sympleti integrator eq. (24).42 More generally, a C++
implementation43 allows us to perform the same numerial evaluations in
Trunated Series Algebra (TPSA),44 and extrat the orresponding Taylor
series one-turn maps to arbitrary order. A numerial implementation of the
normal form algorithm also based on TPSA,45 allows us to bring these maps
into normal form eq. (77) and hene self-onsistently46 extrat the global
properties of the lattie to arbitrary order. Finally, an analytial model
based on eqs. (71), (96), (97), (99), (100), (103), (112), (114), (119), (121)
allows us to get a lear insight into the parameter dependene of the nonlinear
driving terms and related dynamial quantities. Note that all the analytial
results were obtained by purely algebrai manipulations, i.e. we never had
to expliitly integrate the equations of motion eqs. (19). These formula have
also been oded for fast numerial evaluation in terms of the linear lattie
funtions. In partiular, Simpson's rule [28℄
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Z h

0
f (x) dx =

h

6

 
f (0) + 4f

 
h

2
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+ f (h)

!
+O

 
h5
�4f

�x4

!
(124)

has been used to ompute the ontribution from quadrupoles, whereas one
thin kik is suÆient to model the sextupoles in the SLS lattie. For eÆieny,
numerial di�erentiation aording to formula (122) has been used to obtain
the Æ-dependene of the lattie funtions, in partiular ��=�Æ and ��=�Æ. So,
we are are �nally ready to very arefully but deliberately open \Pandora's
box".

41Not assuming mid-plane symmetry and not expanded in Æ.
42The related omputer implementation is based on H. Nishumura's idea to \modify"

N. Wirth's Pasal-S ompiler/interpreter [43, 44℄ enabling us to use Pasal as ommand
language.

43The underlying beam line lass was designed in ollaboration with E. Forest.
44By interfaing to a FORTRAN library originally developed by M. Berz at SSC.
45By interfaing to a FORTRAN library developed by E. Forest together with the author.
46Using the same dynamial model for analytial- and numerial studies. In partiular

when lattie errors are inluded.
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6.1 Elementary Design Considerations: Magneti Lat-
tie Symmetry

As any modern high performane synhrotron SLS has a magneti lattie
with very strong fousing and onsequently large natural hromatiity.47 This
implies that the beam will oupy a fairly large area in the tune diagram.
Sine magneti toleranes are unavoidable,48 resonanes will by de�nition be
exited and a�et the performane. Sextupoles are therefore added to anel
the leading order (linear) ontribution. However, as we have already seen,
this is far from the end of the story. In spetrometer design, high performane
imaging systems are traditionally designed by imposing symmetry to anel
undesirable aberrations. There are essentially two di�erent approahes [45℄.49

The �rst, see e.g. [96℄, is to pair sextupoles with a mathed phase advane of
�. In other words, to group the sextupoles in pairs separated by the linear
transfer matrix

M1!2 =
��1 0

0 �1
�

(125)

By suh an overall arrangement, one may with two independent families of
sextupoles anel the linear hromatiities eqs. (103) driven by h11001 and
h00111 eqs. (95), and all the �rst order geometri modes eqs. (97). However,
this pattern may potentially systematially exite the �rst order hromati
modes h20001 and h00201 eqs. (96), in fat on a level omparable to h11001
and h00111. Sine they drive the beta-beat eqs. (114), they may generate
a substantial amount of seond order hromatiity eq. (121). Furthermore,
the relatively wide separation of the sextupoles tend to make them relatively
strong whih may enhane the seond order e�ets. In any ase, pratial
spae limitations makes suh an approah aademi for SLS. One may on-
sider interleaved shemes, if are is taken to ontrol the ross talk between
the sextupoles, i.e. the seond order terms [95℄.

The seond approah is to design a unit ell, repeat it four or more times
to reate a maro ell, and adjust the total phase advane to 2�. The linear
hromatiity and all the �rst order hromati- as well as geometri modes
are then aneled at the end of the struture. This approah was pursued

47The natural hromatiities for SLS are: �
(1)
x � �75; �

(1)
y � �22.

48On a fundamental level, pure magneti dipoles and quadrupoles are inonsistent with
Maxwell's equations.

49Brown is using order de�ned in terms of phase spae variables.
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suessfully for the early SLS lattie. A lattie was onstruted by repeat-
ing a unit ell with a phase advane of about �x = 0:4 and �y = 0:1 5
times whih and adding straight setions leading to a lattie with reasonable
dynamial aperture. In partiular after enlarging the number of sextupole
families from two to six [10, 11℄. However, the author ould later prove this
result an artifat aused by inorret powering of the two hromati families.
Roughly, sine the unit ell had a sextupole at eah end, the �rst and the
last sextupole of the maro ell should only be exited with half the strength.
Indeed, the same performane ould be obtained with only the original two
hromati families [12℄. 4 phase trombones and more sextupole families still
had to be added though, to be able to implement the desired exibility of
the lattie from a dynamial point of view [12℄. This required 33 sextupole
families to avoid breaking the symmetry of the lattie. A result that reets
a fundamental problem with this approah: how to introdue straight se-
tions. Sine the quadrupoles in the straight setions will also ontribute to
the natural hromatiity, their ontribution has to be aneled nonloally50

by the hromati sextupoles inside the maro ell, leading to a violation of
the nie anellation of the �rst order terms at the end of eah maro ell.
Obviously, one should at least maintain the global symmetry of the lattie to
avoid unneessary exitation of systemati resonanes. Later, a lattie based
on a TBA-struture was suggested, pursued and eventually �nalized [13, 14℄.
The following presents work related to a systemati design towards its sex-
tupole sheme. The importane of lattie symmetry an be appreiated by
a glane at the formula for the �rst order geometri modes eqs. (97). It is
lear that e.g. the sine terms of the driving terms disappears at any point
with mirror symmetry in the lattie. It would in general take 5 additional
independent51 sextupole families to ahieve the same result.

6.2 Linear Vetor Spaes: 10 First Order Design Gauges

The �rst order generators for the geometri modes eqs. (97) and the hromati
eqs. (96) are sums of omplex numbers. The ontribution from eah element
may hene be represented as a vetor in the omplex plane. Inlude the
horizontal- and vertial hromatiities and we end up with 18 numbers that
ideally should be zeroed. However, this number is redued to 10 at points

50Unless one an tolerate a suÆient amount of dispersion in the straights.
51Linearly independent from existing families, something far from trivial as we shall see.

33



with mirror symmetry in the lattie. Sine these terms are linear in the
sextupole strength, we have a linear system of equations

Ax = b (126)

where A is a 18�Nb3 matrix with the matrix elements

aij �
NX

k2Nj

�
(i1+i2)=2
xk �

(i3+i4)=2
yk

�
�
(1)
xk

�i5
ei[(i1�i2)�xk+(i3�i4)�yk℄ (127)

for Nb3 sextupole families, x =
h
(b3L)1; � � � ; (b3L)Nb3

iT
and b is a vetor

ontaining the exitations of the driving terms due quadrupoles

bi �
Nb2X
k=1

(b2L)k�
(i1+i2)=2
xk �

(i3+i4)=2
yk

�
�
(1)
xk

�j5
ei[(i1�i2)�xk+(i3�i4)�yk℄ (128)

This system is likely to be overdetermined so we will use Singular Value
Deomposition (SVD) to determine a solution in a least square sense.

6.2.1 SVD: How to Deal E�etively with Linear Equations

There are two essential aspets well worth knowing about matries from a
mathematial point of view: eigenvalues and singular values. The eigenvalue
point of view is e�etively both the foundation and beauty of the Courant
and Snyder paper, and linear ontrol theory in general for that matter. The
singular values on the other hand are de�ned by the so alled singular value
deomposition (SVD) of a M �N matrix A into the produt [28℄

A = U�V t (129)

where U is aM�N olumn orthogonal matrix, U a N�N orthogonal matrix
and � a N �N diagonal matrix with elements � 0

� =

"
�1 0

0 �n

#
(130)

where �i the singular values. The inverse is then simply

A�1 = V ��1U t (131)
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where

��1 =

"
1
�1

0

0 1
�n

#
(132)

The rank of the matrix is given by the number of singular values 6= 0. For
numerial alulations it is useful to introdue the ondition number de�ned
as the ratio of the largest singular value to the smallest. A problem is said
to be ill-onditioned if the reiproal of the ondition number is lose to the
oating point preision of the omputer. The system of linear equations
tends to be overdetermined in pratial problems. In other words, one is
dealing with a linear optimization problem

Ax = b (133)

suh that the number of free parameters x1; :::xN are less than the number
of onstraints b1; :::bN . One may then attempt to solve approximately, in
partiular in a least square sense

�2 �
���Ax� b

���2 (134)

All that is needed for onstruting the orresponding inverse matrix is to per-
form a SVD and replae reiproal singular values above a ertain magnitude
by zero

1

�i
! 0 (135)

This replaement inidentally also gives a unique solution with the smallest
magnitude of jxj2 for underdetermined systems!

Note that the nonlinear ase

f (x) = a (136)

may be treated similarly by taking a loal point of view and linearizing

f (x0 +�x) = f (x0) +M�x +O (2) (137)

where M is the Jaobian

M =
�f (x)

�x
=

2664
�f1
�x1

� � � �f1
�xN

...
...

�fM
�x1

� � � �fM
�xN

3775 (138)

like Newton-Raphson in multidimensions.
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6.3 A Sextupole Sheme for the TBA Struture

So, by hanging to a top down approah, a struture based on 12 TBAs
and 12 straight setions was eventually found to potentially meet the tight
requirements on the linear optis and, in partiular with a suÆiently small
emittane. A required introdution of at least two long straight setions
ould potentially redue the periodiity to 2. One may intuitively argue then
that high performane implies loal orretion, sine only then is there little
opportunity for the nonlinear perturbations to aumulate. Some preliminary
studies on a lattie with four long- and 8 medium straights proved it feasible
to anel all the �rst order terms over three TBAs with 9 sextupole families, 4
hromati and 5 geometri, and by tuning the phase advane lose to ��x =
4:75 and ��y = 1:75 over 3 TBAs, i.e. from the enter of a long straight
setion to the next. This hoie of phase advane led to anellation of the
hromati modes h20001 and h00201 over two suh bloks. The onstraints on
the phase advane ours sine the 9 sextupole families are not independent.
In fat, a Singular Value Deomposition (SVD) of the orresponding system
of linear equations, see setion 6.2.1, shows that the rank of the system is
only 8; for 9 onstraints: horizontal- and vertial hromatiity, 5 geometri-
and 2 hromati modes. This an be understood from eqs. (95) and (96). The
driving term for horizontal hromatiity h11001 beomes linearly dependent to
the hromati mode h20001 when hromati sextupoles from the same family
are separated by ��x � 0:5. This is hard to avoid in a strongly fousing TBA
ell, and was also the reason to introdue phase trombones in the earlier
lattie. Short straights with a small value of the beta funtion, so alled
mini-betas, eventually also had to be aommodated. Sine they tend to add
a onsiderable amount of \nonloal" hromatiity, their introdution into
the lattie leads to a orresponding degradation in dynamial aeptane. In
fat, after the �rst order terms have been aneled, the dynamial aeptane
sales roughly with the square of the relative hromatiity

b�x � �x
�x

; b�y � �y
�y

(139)

as one would naively expet if we are indeed limited by seond order terms.
The �nal lattie onsists of a blok with 1 long-, 1 medium-, and 2 short
straights and a TBA between eah whih is repeated 3 times. In other
words, a mirror symmetri lattie with periodiity 3. Furthermore, it has 12
sextupole families, 3 hromati and 9 geometri, and a phase advane lose
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to ��x = 3:5 and ��y = 1:5 over 2 TBAs. The rank of the orresponding
system is of ourse 8 as before.

Note that the sextupoles should at least naively be plaed where the
linear optis funtions have weak Æ-dependene to avoid to generate seond
order hromatiity, see eqs. (112). Furthermore, the beam position monitors
should be plaed lose52 to the sextupoles, sine an orbit in a sextupole
will give a gradient error by feed-down whih will globally perturb the beta
funtion and phase advane, e�etively reduing the symmetry of the lattie
resulting in redued performane. In other words, as long as the orbit is
entered in the sextupoles dipole and quadrupole errors will be harmless to
the dynamial aeptane, but the physial aperture is of ourse redued
sine the equilibrium orbit is in general no longer at the enter of the beam
pipe.

6.4 Confronting the Seond Order: Another 13 Design
Gauges?

After having gained ontrol over the �rst order terms, we are ready to on-
front the seond order. An inventory gives from eqs. (100) 8 seond order
betatron modes, (119) seond order horizontal- and vertial hromatiity, and
(121) 3 terms for amplitude dependent tune shift. A total of 21 terms and
13 at points with mirror symmetry. Sine the �rst order terms does not have
to be stritly aneled, one may attempt a numerial optimization based on
a merit funtion and attempts to determine suitable weights by traking. In
partiular by the orresponding short term dynamial aeptane. However,
one soon �nds that the �rst order terms have to be fairly well aneled and
that the seond order terms are fairly sti�. Note that the seond order modes
appears due to ross terms of the �rst order, and one may onlude that loal
ontrol of the �rst order terms is essential for ontrolling the seond order.

52In terms of phase advane.
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Figure 1: Zeroing of the First Order Modes.

6.5 So Where is the Cash?

Figure 1 shows a plot of the anellation of the driving terms in the enter
of the medium straight. A irle indiates the residual amplitude. The
hromati mode h00201 is weakly exited due to other onstraints related to
the linear optis. Traking for the initial onditions Jx = 3:77 � 10�6; �x =
0:0; Jy = 2:07� 10�6; �y = 0:0 is shown in Figure 2. The unperturbed tunes
are

�x = 7:0800; �x = 2:6400 (140)

Fourier analysis of the horizontal and vertial position gives the atual tunes

�x = 7:0906; �x = 2:7189 (141)

Fitting a linear ombination of the betatron frequenies to the spurious peak
in the horizontal plane

� = �x � 2�y = 1:6528 � 2� 0:3471 = 1:6529 (142)

and similarly for the vertial

� = 2�x � �y = 1:1462 � 1:4624 (143)

It an be shown that it is a signal of the (amplitude) mode [38℄

2�x � 2�x = k (144)
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Figure 2: Traking.

Figure 3: Chromati E�ets.
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on�rming that the �rst order modes have indeed been aneled. Figure
3 shows the hromati e�ets where the solid line represents the omputer
model and the dashed the map normal form, i.e. perturbation theory. The
linear horizontal hromatiity has been made positive to redue

�x =
�
�(1)x + �(2)x Æ + � � �

�
Æ (145)

rather than �(1)x . However, other onsiderations like the head-tail instability
may impose other onstraints. A numerial map normal form applied to
an 7th order53 one-turn map extrated by using a sympleti integrator and
TPSA gives diretly

�x (Æ) = 3:32 + 8:88Æ � 6:18� 102Æ2 + 8:72� 103Æ3

+ 2:61� 105Æ4 � 1:04� 107Æ5 +O
�
Æ6
�
;

�y (Æ) = 6:05 + 9:17� 101Æ + 2:40� 102Æ2 � 8:19� 103Æ3 (146)

� 1:43� 104Æ4 + 6:80� 105Æ5 +O
�
Æ6
�
;

�x (Æ) = 7:08 + 1:50Æ + 1:35� 101Æ2 � 5:49� 102Æ3

+ 1:19� 103Æ4 � 2:77� 104Æ5 +O
�
Æ6
�
;

�y (Æ) = 2:64� 5:06� 10�7Æ + 7:08Æ2 � 7:61� 101Æ3

+ 9:96� 102Æ4 � 1:06� 104Æ5 +O
�
Æ6
�

(147)

whereas a least square �t to the data gives

�
�

x (Æ) = 3:27 + 1:32� 101Æ � 3:43� 102Æ2 � 5:29� 103Æ3

+ 1:19� 105Æ4 � 1:52� 107Æ5 +O
�
Æ6
�
;

�
�

y (Æ) = 6:05 + 9:16� 101Æ + 2:44� 102Æ2 � 7:88� 103Æ3

� 1:82� 104Æ4 + 4:82� 105Æ5 +O
�
Æ6
�
;

�
�

x (Æ) = 7:08 + 1:51Æ + 1:34� 101Æ2 � 5:75� 102Æ3

+ 2:46� 103Æ4 � 2:83� 104Æ5 +O
�
Æ6
�
;

�
�

y (Æ) = 2:64 + 3:99� 10�3Æ + 7:14Æ2 � 8:55� 101Æ3

+ 1:03� 103Æ4 � 5:50� 103Æ5 +O
�
Æ6
�

(148)

53In the phase spae variables.
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Figure 4: Relative Beta-Beat.

We onlude that perturbation theory works reasonable well within the bound-
ary of regular motion. The poorer agreement in the horizontal plane is re-
lated to the fat that the linear optis is highly pushed in the horizontal
plane whereas the vertial plane is more relaxed. Figure 4 and 5 shows the
Æ-dependene of the lattie funtions around the lattie. We are plotting vs.
�x, 2�x, and 2�y sine aording to eq. (112) and (114) they are modulated
with these frequenies. The dynamial aeptane with synhrotron osilla-
tions and magnet misalignment errors54 is presented in Figure 6. Indeed, by
plaing the BPMs lose to sextupoles we essentially reover the dynamial
aeptane.

7 The Experimentalist's Approah: In the

Control Room

This setion has been inluded for pedagogial reasons. In partiular for
followers of: \Everything in the ontrol room is linear",55 whih learly has
more to do with de�nition than observation. For a model driven ontrol

54An input �le to impose orrelations due to girders was written by A. Streun.
55There is a saying: \When reality outperforms our models, we instintively prefer to

ignore it rather than atively seek out how to raise our standards.".
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Figure 5: Seond Order Dispersion.

Figure 6: Dynamial Aeptane.
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approah and related high preision measurements of the linear aspets, see
for example ref. [38, 46, 47, 48, 49, 50℄.

7.1 The Perturbed Betatron Motion

One may represent a N-turn map as the one-turn raised map to N -th power.
It is easily obtained from the one-turn map in its normal form eq. (77)

MN
~�0!n

= A�10

�
e:h(J;�):R0!n

�N

A0

= A�10 e:�g(J;�):
�
e:k(J):R0!n

�N

e:g(J;�):A0

= A�10 e:�g:e:Nk:RN
0!ne

:g:A0 (149)

The perturbed betatron motion an now be determined. For example, the
betatron mode 3�x driven by h30000 in formula (97) has as generator

h(1) = h30000h
+3
x + :: = A30000e

i�30000h+3
x + ::

= A30000

h�
h+3
x + ::

�
os (�30000) + i

�
h+3
x � ::

�
sin (�30000)

i
= 2A30000(2Jx)

3=2 os (3�x + �30000) (150)

where we have introdued

h30000 � A30000e
i�30000 (151)

The perturbation of the ation-angle variables [Jx; �x℄ is given by

Jx (N) =MN
~�0!n

Jx; �x (N) =MN
~�0!n

�x (152)

and it follows that

Jx (N) = eNkRN
0!n (1+ : g : + � � �)A0Jx

= eNkRN
0!n :

�
1� 1

1�R0!n
h3�x + � � �

�
: A0Jx

=
A3�x

2
RN

0!n :

"
1� h+3

x ei�3�x

1� ei6��x
+ ::

#
: h+

x h
�
x +O

�
b23
�
(153)

By using h
h+3
x ; h+

x h
�
x

i
= i6h+3

x (154)
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we �nd in partiular

Jx (N) = Jx +
3A3�x(2Jx)

3=2

sin (3��x)
os [�3�x + 3 (�x � ��x +N2��x)℄

+O
�
b23
�

(155)

More generally, applying the same analysis to all the �rst order modes eqs.
(97) gives

Jx (N) = Jx +
A21000(2Jx)

3=2

sin (��x)
os

�b�21000 + �x +N2��x
�

+
A10110

p
2Jx2Jy

sin (��x)
os

�b�10110 + �x +N2��x
�

+
3A30000(2Jx)

3=2

sin (3��x)
os

h b�30000 + 3 (�x +N2��x)
i

+
A10020

p
2Jx2Jy

sin [� (�x � 2�y)℄
os

h b�10020 + �x � 2�y +N2� (�x � 2�y)
i

+
A10200

p
2Jx2Jy

sin [� (�x + 2�y)℄
os

h b�10200 + �x + 2�y +N2� (�x + 2�y)
i

+O
�
b23
�
;

Jy (N) = Jy � 2A10020

p
2Jx2Jy

sin [� (�x � 2�y)℄
os

h b�10020 + �x � 2�y +N2� (�x � 2�y)
i

+
2A10200

p
2Jx2Jy

sin [� (�x + 2�y)℄
os

h b�10200 + �x + 2�y +N2� (�x + 2�y)
i

+O
�
b23
�

(156)

where

b�ijkl0 � �ijkl � � [(i� j) �x + (k � l) �y℄ (157)

7.2 DFT: Elementary Signal Proessing

This setion has been inluded to honor E. Asseo, a by now retired, eletrial
engineer in the LEAR group at CERN with a profound understanding of the
Fourier transform and a deep passion for his programmable HP-alulator.
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In fat, the whole experimental part of the author's thesis and related im-
provements of the stability of LEAR [38, 55, 57, 58℄ would not exist without
his \Papy-Q" system (papy: frenh slang for grandpa) [56℄. The versatility
of his interpolation tehniques for signal proessing inludes the oneptual
design of the former SSC, see ref. [30℄, p. 119 [95℄. Indeed, we are delighted to
�nd that his work is urrently being redisovered [59℄. The disrete Fourier
transform (DFT) is de�ned by56

Xn � 1

N

N�1X
k=0

xke
�i2�k�tn=N ; n = 0; 1; 2; � � � ; N � 1 (158)

where N is the number of samples, whereas Fast Fourier Transform (FFT)
[54℄ is a fast algorithm to evaluate the transform for ases where N = 2k; k =
integer. The amplitude distribution for a peak entered around the normal-
ized frequeny � is given by

Ak =

�����sin [� (k �N�)℄

� (k �N�)

�����A� ; k = 0; 1; 2; � � � ; N � 1 (159)

The amplitude resolution an be improved by suppressing the sidelobes by
folding the data with a weight funtion. For a sine window

xk ! xk sin
k�

N
; 0 < k < N � 1 (160)

with the amplitude distribution

Ak =
1

2�

�����os � (k �N�)

(k �N�)2 � 1
4

�����A�; k = 0; 1; 2; � � � ; N � 1 (161)

Sine the DFT is only de�ned for � = integer so the frequeny resolution is
only in the order of 1=N . However, the funtional form for the amplitude
distribution may be used to derive a nonlinear interpolation formula [55℄57

�
�

=
1

N

"
k � 1 +

2Ak

Ak�1 + Ak
� 1

2

#
; k � 1 � N� � k (162)

56For a so alled retangular window
57Exat for a single peak.
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pushing the resolution to 1=N2 [59℄. The amplitude an then be estimated
from

A
�

� =
2�

h
(k �N�)2 � 1

4

i
os � (k �N�)

Ak (163)

Note that the frequeny resolution is also limited by the Nyquist riteria, i.e.
the frequenies � and 1�� an not be distinguished.58 For the phase, the two
samples on eah side of the peak are separated by � with linear interpolation

�
�

= �k �N (� � k)�; k � 1 � N� � k (164)

in the ase of a retangular window.

7.3 A Purely Aademi Exerise

We will now perform a purely aademi exerise whih has nothing to do with
reality sine we have so far only a oneptual design and no REAL aeler-
ator, no ontrol room, et. And, the entire paper is too mathematial, too
abstrat and too theory oriented anyway. Simply put, too many equations...
In any ase, we will deliberately power three modes aording to eqs. (165)
and trak a single partile for 512 turns and by Fourier analysis and elemen-
tary signal proessing determine the orresponding amplitudes and phases in
the frequeny spetrum of the betatron motion. We deliberately exite the
�rst order modes with the following values

A30000 = 6:944; �30000 = �1:8 deg;
A10020 = 16:10; �10020 = 54:0 deg;

A10200 = 8:26; �10200 = �70:2 deg (165)

An easy alulation with formula (156) for the initial onditions

Jx = 1:5� 10�7; �x = 0:0; Jy = 1:0� 10�7; �y = 90:0Æ (166)

gives the spetrum

f Ax �x Ay �y
3�x 5:0� 10�9 �45:0 deg � �

�x � 2�y 3:0� 10�9 90:0 deg 6:0� 10�9 �90:0 deg
�x + 2�y 1:0� 10�9 45:0 deg 2:0� 10�9 45:0 deg

(167)

58So alled aliasing. It is a reetion of the sampling theorem stating that to be able to
resolve a frequeny f one has to sample with at least 2f .
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Figure 7: Perturbation of the Ation Variables.

Figure 7 shows the traking results. Fourier analysis and interpolation of the
traking data gives

f A
�

x �
�

x A
�

y �
�

y

3�x 5:3� 10�9 �45:1 deg � �
�x � 2�y 2:9� 10�9 �82:6 deg 5:8� 10�9 94:6 deg
�x + 2�y 1:0� 10�9 49:6 deg 1:9� 10�9 49:0 deg

(168)

The phase of � = �x � 2�y appears with the wrong sign sine it is 1 � �
that appears in the spetrum due to aliasing. Let us simply point out then,
that one may in the ontrol room measure the �rst order modes, ompute the
required inrements in sextupole strength to obtain the same exitation (with
a minus sign), and apply it as a orretion to anel the �rst order modes.
Sine we have already shown that the seond order modes are driven by
ross terms of the �rst order terms, their loal anellation e�etively means
indiret ontrol of the seond order. We have already illustrated what this
means in terms of performane. The omplementary aspet, how to measure
and ontrol the redution of performane related to symmetry breaking due
to engineering toleranes have already been operationally established, see ref.
[38, 51, 52, 53℄.
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8 Conlusions

We have summarized how modern tehniques for single partile Hamiltonian
dynamis allows one to easily implement an aurate and self-onsistent om-
puter model for numerial evaluation as well as analytial studies. A 4th
order sympleti integrator that preserves the sympleti struture of Hamil-
ton's equations allows for aurate long term traking and extration of the
orresponding Taylor series maps to arbitrary order by replaing the related
oating point arithmeti by Trunated Power Series Algebra (TPSA). More-
over, TPSA also makes it feasible to implement a map normal form algorithm
to arbitrary order. The derivation of analytial formula to obtain insight into
the parameter dependene of various dynamial properties is simpli�ed on-
siderable by taking advantage of the Lie algebrai struture of Hamilton's
equations. These tehniques allowed us to pursue a systemati design to-
wards a sextupole sheme for the Swiss Light Soure (SLS). In the proess
we also on�rmed that perturbation theory works fairly well for the regions
of phase spae where the motion is regular, hene allowing us to model and
redue the e�et of the nonlinear perturbations.
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