Calculate statistical error in Tao beam-size calculation
See AS slides 26 September 2022
See also /home/critten/bss/readme_beam.
Sextupole 12W
The centroid of the $\boldsymbol{p}_{\boldsymbol{x}}$ distribution upstream is $\mathbf{8 . 9 2} \times \mathbf{1 0}^{\mathbf{- 7}}$ radians and the RMS width $\boldsymbol{\sigma}_{\boldsymbol{p}_{\boldsymbol{x}}}$ is 1.50×10^{-4} radians.
The centroid of the $\boldsymbol{p}_{\boldsymbol{x}}$ distribution downstream is $4.28 \times \mathbf{1 0}^{\mathbf{- 7}}$ radians and the RMS width $\boldsymbol{\sigma}_{p_{x}}$ is again 1.50×10^{-4} radians.

The statistical error in each centroid is $\boldsymbol{\delta}\left(<\boldsymbol{p}_{\boldsymbol{x}}>\right)=\sigma_{\boldsymbol{p}_{x}} / \sqrt{\boldsymbol{N}}$, where $\mathrm{N}=2000$ positrons.

$$
\begin{equation*}
\delta\left(<p_{x}>\right)=1.50 \times 10^{-4} / \sqrt{2000}=3.35 \times 10^{-6} \text { radians } \tag{1}
\end{equation*}
$$

Already we see the problem that the error is much larger than the angle change with $\boldsymbol{\Delta} \boldsymbol{K}_{\mathbf{2}} \boldsymbol{L}$, so the error in our result for $\boldsymbol{\sigma}_{\boldsymbol{x}}$ will be larger than its value. Since we get the right answer for the beam size, this means that the values for the phase space coordinates are not randomly distributed. Tao's particle tracking is deterministic. David S. can explain this.

We continue with the statistical error analysis for illustration purposes. Now that we have the values for the statistical uncertainties in the centroid values, we can propagate them to the error in the difference.

$$
\begin{align*}
\delta^{2}\left(<p_{x}^{\mathrm{up}}>-<p_{x}^{\mathrm{down}}>\right) & =\delta^{2}\left(<p_{x}^{\mathrm{up}}>\right)+\delta^{2}\left(<p_{x}^{\text {down }}>\right)> \tag{2}\\
& =2\left(3.35 \times 10^{-6}\right)^{2} \text { radians }^{2} \tag{3}
\end{align*}
$$

The RMS widths do not change when we change $\boldsymbol{K}_{\mathbf{2}}$, so this error in the centroid difference also does not change. Again we apply the propogation rule for differences and get for the angle change caused by the $\boldsymbol{K}_{\mathbf{2}}$ change

$$
\begin{equation*}
\Delta p_{x}=<p_{x}^{\text {after }}>-<p_{x}^{\text {before }}> \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta^{2}\left(\Delta p_{x}\right)=4\left(3.35 \times 10^{-6}\right)^{2} \text { radians }^{2} \tag{5}
\end{equation*}
$$

Since the beam size squared is

$$
\begin{equation*}
\sigma_{x}^{2}=-2 \Delta p_{x} / \Delta K_{2} L \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\delta\left(\sigma_{x}^{2}\right)=-2 \delta\left(\Delta p_{x}\right) / \Delta K_{2} L \tag{7}
\end{equation*}
$$

Now apply the chain rule to get the error $\boldsymbol{\delta}\left(\boldsymbol{\sigma}_{\boldsymbol{x}}\right)$:

$$
\begin{equation*}
\delta\left(\sigma_{x}^{2}\right)=2 \sigma_{x} \delta\left(\sigma_{x}\right) \tag{8}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\delta\left(\sigma_{x}\right)=\delta\left(\sigma_{x}^{2}\right) /\left(2 \sigma_{x}\right) \tag{9}
\end{equation*}
$$

with $\sigma_{x}=1.59 \mathrm{~mm}$. The final result is

$$
\begin{equation*}
\sigma_{x}=1.6 \pm 11.4 \mathrm{~mm} \tag{10}
\end{equation*}
$$

