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Abstract

We report on measurements and modeling studies performed from 2021 to 2024
on the 76 sextupole magnets in the Cornell Electron-positron Storage Ring
CESR. Beam-based, magnet-specific calibrations (K2 value versus excitation
current) were measured, replacing the common value obtained from transverse
field measurements and longitudinal modeling from the late 1990’s. The method
consists of defining a custom closed bump for each sextupole and measuring the
slope of the betatron tune change as a function of horizontal beam position. It
was found that the new calibrations differ by an average of 3.1% with an RMS
spread of 12%. The uncertainties in the calibration correction factors average
1.7% with an RMS spread of 1.0%.

Sextupole alignment values relative to the reference orbit were measured by
combining the measured beam position with the quadrupole and skew quadrupole
terms caused by a sextupole strength change ∆K2. High accuracy was achieved
by fitting to difference phase and coupling functions as K2 was varied. The
horizontal (vertical) average offset values were found to be -0.01 (0.03) mm
with RMS spread of 1.1 (0.9) mm with some exceptionally large values of a few
millimeters. Typical uncertainties are 0.01-0.02 mm.

The above measurements were motivated by the precision required in mea-
suring horizontal beam size at each sextupole. A precision of 10% for a 1-mm
beam size requires uncertainties of better than 0.1 µradian in the horizon-
tal angle change produced in the sextupole for a typical strength change of
∆K2 L = 1 m−2, where L is the length of the sextupole, as well as 10% in the
difference of the squared horizontal and vertical beam positions relative to the
center of the sextupole. These precision values were achieved by the analysis
of difference functions. However, a small source of horizontal angle change of
unknown origin, independent of the sextupole strength, requires a sextupole
strength range larger than now available to measure accurately the typical hor-
izontal beam size at CESR.
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1. Introduction

The sextupole field components qL
p0
BX = K2Lxy and qL

p0
BY = 1

2K2L(x2 − y2)
can be used to derive expressions for the quadrupole kick ∆b1, the skew quadrupole
kick ∆a1 and the orbit angle changes ∆pX and ∆pY caused by a change in sex-
tupole strength ∆K2L as follows. Assuming initial K2 = 0 and including the
parabolic and cubic terms,

∆b1 = ∆K2L (X0 + ∆x) (1)

∆a1 = ∆K2L (Y0 + ∆y) (2)

∆pY = ∆K2L (X0 + ∆x) (Y0 + ∆y) (3)

∆pX = 1
2∆K2L

[
(Y0 + ∆y)

2
+ σ2

Y − (X0 + ∆x)
2 − σ2

X

]
, (4)

where we have integrated the Lorentz force over the transverse Gaussian bunch
distribution of widths σX and σY. The quantities X0 and Y0 denote the ini-
tial horizontal and vertical positions of the beam relative to the center of the
sextupole prior to the strength change. The sign of the horizontal orbit kick
is given by the convention that it is positive toward the outside of the ring.
Including only terms linear in ∆K2L, we have

σ2
X − σ2

Y = −2
∆pX

∆K2L
+ Y 2

0 −X2
0 . (5)

The generalization of this derivation to non-zero initial K2 values is given in
Sec. 5.

Our method for measuring beam sizes in sextupole magnets was inspired
by a private communication,1 and has not, to our knowledge, been developed
elsewhere.

Since early 2021, we have performed a set of measurements of increasing so-
phistication and precision at the Cornell Electron-positron Storage Ring CESR,
presenting the results in Refs. [1], [2], and [3]. A web site describing the develop-
ment of this project is available [4]. Here we summarize our investigations into
the contributions to the precision of our beam size calculations. The require-
ments of micron- and sub-microradian-level orbit measurement accuracy entail
a detailed model of the CESR optics, including horizontal and vertical sextupole
alignment values. Accurate determination of the sextupole calibration factors
is important, as we have shown that the value obtained for the beam size is
proportional to the value of K2 (Eq. (5)).

Throughout the analysis we employ a method for estimating measurement
errors by 1) observing the reproducibility of the measurements, and 2) setting
the residual weights in polynomial fits so as to obtain χ2/NDF=1 [5, 6]. In each

1Reinhard Brinkman, private communication to Georg Hoffstaetter (2001)
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case, we argue that the assumption that the uncertainties are independent of
K2 is reasonable in the relevant range.

We introduce CESR and the lattice optics in Sect. 2.
Section 3 covers the history of sextupole calibration values in use at CESR

since the late 1990’s, the measurement procedures in use since 2002, and the
improved analysis methods introduced in 2022.

Section 4 describes the measurement procedures used to obtain the sextupole
alignment values and the data analysis techniques. The results are presented
in Section 4.7, together with the error estimates. Section 4.8 discusses conse-
quences for optics corrections of the misalignments at the observed level.

Section 5 presents the full first-order derivation of the beam size, generalized
to include K2 changes where the initial value is not zero. Since the calculation
of beam size requires the dependence of the angle change on the K2 change, in
addition to the quadrupole and skew quadrupole kicks, the means of determining
the angle change is discussed, including error estimates. The results for the beam
size values and uncertainties concludes this section.

Finally, Sec. 6 presents discussions of the results and precision values ob-
tained for the calibration factors, alignment determinations, and horizontal
beam size values.

2. The Cornell Electron-positron Storage Ring

The Cornell Electron-positron Storage Ring was commissioned in 1979 and
ran at an energy of 5.289 GeVuntil June of 2001, at the υ (4s) resonance, above
the threshold of the production of bound states of bottom quarks. The pe-
riod and its pre-history are chronicled in Ref. [7]. In 2003, the storage ring
operated at 1.9 GeV, collecting data on rare decays of bound states of charm
quarks. CESR was converted in 2008 to a test accelerator (CESRTA) [8] for
the damping rings required by the proposed International Linear Collider. Fol-
lowing the termination of the CESRTA program, CESR resumed operation at
5.289 GeVas a X-ray light source using both the electron and positron beams.
Following extensive modifications to the ring to convert to single-beam positron
operations [9], the CHESS-U project began in 2019. One sixth of the ring was
replaced, removing the straight section accommodating the detector studying
electron-positron collisions (1979-2008) and improving the emittance by a fac-
tor of four. The investigations described here were performed during this era of
CESR operation. The lattice parameters for CHESS-U operation are shown in
Table 1.

The data recorded for the present study used a single bunch of 0.7 mA
(1.1 ×1010e), which avoided any saturation effects in the beam position monitor
readout system. The turn-by-turn readout capability developed for CESRTA
operations played an important role in our project.

A number of sextupole magnets served a dual purpose, including windings
for either vertical steerings or skew quadrupoles. These contributions to the
deflection of the positron beam were subtracted when fitting the dependence on
sextupole strength change.
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Table 1: Lattice parameters for the CESR ring operating for CHESS-U.

Beam energy (GeV) 6.000

Circumference (m) 768.44

Bunch current (mA) 2.2

Number of bunches 45

Beam current (mA) 100

RF frequency (MHz) 500

Energy loss per turn (MeV) 1.7

Momentum compaction (10−3) 5.7

Bunch length (mm) 17.1

Energy spread (10−4) 8.2

Horizontal tune 16.5557

Vertical tune 12.6357

Synchrotron tune 0.0336

Horizontal emittance (nm) 28

Vertical emittance (nm) 0.1

We adopt the numbering convention for the CESR sextupoles, which in-
creases in the positron flight direction from the western end of the south arc
(which has no sextupole magnets and comprises the undulators producing the
X-ray beams), 9AW, 10W, 10AW, 12W, ..., to 47W in the north, continuing
with 47E to 11E, 10AE, 9AE at the eastern beginning of the south arc. The
sextupoles 9AW, 10W, 10AW, 10AE and 9AE are harmonic sextupoles, i.e. the
dispersion is designed to be zero at these sextupoles. We also use the monotonic
numerical scheme 8, 9, 10, ..., 88, 89, 91. We use the sextupole 10AW as the
example in our analysis procedures.

3. Measurement of Sextupole Calibration Factors

3.1. Values in Use Prior to 2023

Prior to the calibration procedures described here, the values used were
taken from transverse finite-element modeling and field measurements and 3D
modeling for the field integrals [10, 11]. Field uniformity was improved by
redesigned pole faces in the late 1990’s to accommodate operation with electron
and positron beams sharing the 9-cm-wide beam pipe. The value used was
1.736× 10−4 m−3/cu for a beam energy of 5.289 GeV, where cu are “computer
units,” i.e. the digital command values issued to the power supply controllers.
The controllers provided a maximum current of 12.5 A for 32k cu. The 27.2-cm-
long sextupoles have a field integral of 10.65 Tm at X = 1 cm at that current.

3.2. Calibration Measurements 2002 - 2015

The procedure developed for obtaining the calibration of each sextupole
consisted of measuring the horizontal and vertical tune changes for a given
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change in K2 for five beam positions set by a closed bump. This analysis neglects
corrections arising from the beam motion consequential to the horizontal beam
size. These are typically less than 0.1 mm. A linear dependence of tune on the
quadrupole error introduced by the sextupole strength change is also assumed,
justified at our desired level of accuracy by running at a horizontal tune at least
25 kHz above the half-integer resonance at 195 kHz [12, 13, 14]. The calibration
correction factors were generally used to find polarity errors and shorted coils.
They were not implemented in the CESR control system. During this period
the sextupole calibration procedures were incorporated into the CESR modeling
program CESRV based on the Bmad library [15] used during operations.

3.3. Calibration Measurements 2022-2023 with Updated Analysis

A comprehensive re-calibration of the sextupoles was resumed in 2022 for
the purposes of this beam-size measurement project. Two improvements were
made:

• A closed bump design specific to each sextupole was introduced, calculated
on the fly during the tune-shift measurements. This required a model
for the CESR optics which was obtained via the optimization procedure
described in Sec. 4.4.

• The tune measurement and closed bump data were extracted from CESRV
and subjected to a linear fit using the procedure described in Sec. 1.

The example of such measurements shown in Fig. 1 uses the method of
estimating uncertainties in the slope determinations by adjusting the residual
weights. The slopes are of opposite sign and approximately in the ratio of the
beta values, modulo a coupling contribution (e.g. vertical sextupole offset.)

The calibration correction factors were obtained by using the beta-weighted
difference of the horizontal and vertical tune shifts, which is insensitive to skew
contributions and thus largely independent of vertical offset of the sextupole as
can be inferred from the full 2D derivation of the tune shifts presented in the
Sec. 4.

Also shown in Fig. 1 as green points are the X positions where the fit crosses
zero, giving the horizontal sextupole offset in the BPM coordinate system. These
were compared to the more accurate method discussed in Sec. 4 and found to
have typical uncertainties of 0.1-0.3 mm. This method of reconstructing the
beam position used only the two nearest BPMs, whereas the method in Sec. 4
used all available BPMs in the ring.

Horizontal and vertical tunes were measured by shaking the beam and lock-
ing to the tune [16]. Thirty-two single-pole-filtered 60-Hz samples were averaged,
resulting in tune measurement RMS fluctuations between about 20 and 200 Hz.
Those values are 174 Hz (horizontal) and 69 Hz (vertical) in the example shown
in the previous section. This procedure required about 3 minutes per sextupole.
The accuracy was shown to improve when additional 1-second averaging was
included. For an additional 16 measurements, the tune accuracy improved by
nearly a factor of four and the duration increased from three to ten minutes.
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Figure 1: Example of the measurement and analysis procedure to obtain the calibration
correction factor. See text for details.
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The calibration correction factor is derived from a measured/theory ratio for
the beta-weighted tune shift differences [2], where the theory value assumes the
nominal calibration value used for the sextupoles during operations. A rough
estimate of 5% for the variations due to construction tolerances was made during
the initial field measurements in 1998 [11].

The measured calibration correction factors for the 76 sextupoles in the east
and west arcs of the CESR ring shown in Fig. 2. A total of 155 calibration data

Figure 2: Results for the calibration correction factor for each of the 76 CESR sextupoles. A
total of 155 calibration data sets were recorded to measure repeatability and improve precision.
The final values were determined using error-weighted averages.

sets were recorded to measure repeatability and improve precision. The final
values were determined using error-weighted averages.The assumed polarity for
sextupole 91 was discovered to be incorrect.

Our measurements show an RMS deviation of 12.5% with a mean value
of 0.969, as observed in Fig. 3, where the sign of the factor for sextupole 9AE
(91) has been corrected.
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Figure 3: Results for the calibration correction factor for each of the 76 CESR sextupoles.
The RMS spread in correction factors is 12.5% with an average value of 0.969.
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Figure 4 shows the distribution in the uncertainty in the calibration correc-

Figure 4: Distribution in the uncertainties in the calibration correction factor measurements.
The uncertainties average 1.7% with an RMS spread of 1.0%.

tion factor determination. The uncertainties average 1.7% with an RMS spread
of 1.0%.

4. Measurement of Sextupole Alignment Values

4.1. Introduction

We calculate sextupole alignment values from the difference of the distance of
the beam from the sextupole center, denoted X0 and Y0, and the beam position
at the longitudinal center of the sextupole in the reference system defined by
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the quadrupole centers, denoted Xsext and Ysext.

Xoffset = Xsext −X0 (6)

Yoffset = Ysext − Y0 (7)

We begin with the first-order 2D analysis of betatron tune changes caused
by the normal (b1) and skew quad (a1) terms arising from a sextupole strength
K2L [2]. We use the sextupole field components ql

p0
Bx = K2Lxy and ql

p0
By =

1
2K2L(x2 − y2) and define the normal and skew quad multipole coefficients,

b1 =
qL

P0

∆BY

∆x
= K2Lx (8)

a1 =
qL

P0

∆BX

∆x
= K2Ly (9)

we have the familiar results for the tune shifts from the normal quad term:

∆µx = −∆b1βx/2 (10)

∆µy = ∆b1βy/2 (11)

The tune shifts from the skew quad terms can be shown [17] to be

∆µx = −(∆a1)2 βxβy sinµy
4 (cosµx − cosµy)

(12)

∆µy = (∆a1)2 βxβy sinµx
4 (cosµx − cosµy)

(13)

Superposing the two contributions to the tunes and isolating a1 and b1, we
obtain their values as functions of known quantities when the tune shifts are
measured:

sinµx∆µx + sinµy∆µy =
−∆b1

2
(βx sinµx − βy sinµy) (14)

βy∆µx + βx∆µy = (∆a1)2 βxβy (βx sinµx − βy sinµy)

4 (cosµx − cosµy)
(15)

The second equation shows that

∆b1 =
∆µy
βy
− ∆µx

βx
(16)

is more independent of a1 than b1 derived from either ∆µx or ∆µy alone.
The 2D calculations of b1 and a1 are sensitive to cancellation divergences.

The values of the initial tunes are such that sinµx ' −0.4 and sinµy ' −0.8.
Thus the formula for b1 and a1 both diverge for βx ' 2βy.
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For simplicity of presentation, we have used here the approximation

cos (µ+ ∆µ)− cosµ ' ∆µ sinµ. (17)

This approximation breaks down near the half-integer resonance. In fact, the
quadratic term in Fig. 1 of Ref. [1] was later shown to arise from this approxima-
tion, rather than from the quadratic term ∆K2L ∆x. With this approximation
removed, the quadratic term is consistent with the horizontal beam motion aris-
ing from the sextupole strength term. Our choice, however, is to use only linear
terms in the calculation of beam size, since these are much more accurately
determined.

4.2. Modeling Studies for Sextupole Alignment Analysis

Nonlinear effects, such as beam motion in sextupoles arising from strength
change in the studied sextupole, perturb the linear analysis presented below in
Sec. 4.6.2. Modeling studies are necessary to quantify the magnitudes of such
effects. A model was developed [18], tracking 2000 beam positrons through
the CESR design lattice. A 1 mm horizontal misalignment in CESR sextupole
10AW was put in the model. Choosing eleven K2 settings, we write out tunes
and sextupole attributes including beam coordinate centroid and RMS values
at the sextupole. To reconstruct X0, we use the method of subtracting beta-
weighted horizontal and vertical tune changes to remove coupling contributions
(see Sec. 4.6.3 and Eqs. 16 and 18). Figure 5 shows the value of the quadrupole

Figure 5: The quadrupole term ∆K1L calculated from the tune shifts as a function of the
sextupole 10AW strength change modeled by tracking 2000 beam particles through the CESR
design lattice. The simulated 1-mm offset on the sextupole is reconstructed with an inaccuracy
of 4 microns. The uncertainties given the for the coefficients are due to machine accuracy in
the modeling.

term ∆K1L as a function of the sextupole strength change. This model also
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shows that our approximation using the beta-weighted tune difference is suffi-
ciently accurate. Since the beam is on-axis, aside from the small beam motion
in the sextupole, we recover the 1-mm offset with an inaccuracy of 4 microns.

4.3. Measurement Procedure

For each K2 setting, multiple measurements of phase, orbit and coupling
functions are recorded [19]. At least three such measurements are taken in all
cases. Studies of the uncertainty dependence on the number of measurements
have also been performed. It was found, for example, that five K2 settings
are insufficient to determine accurately the quadratic coefficients, which require
nine K2 settings to achieve a precision of 10% or better.

4.4. Optimizations for Reference Functions

The model for the optics reference functions (∆K2 = 0 m−3) was obtained by
varying the steering, quadrupole and skew quadrupole magnet settings in the
model to best match the measured phase, orbit and coupling measurements.
Prior to the optimization, geometrical misalignments obtained from periodic
laser alignment measurements of dipole magnet roll values were included in
the model. The horizontal and vertical sextupole magnet offsets measured as
described below in Sec. 4.6 were also included. Finally, it was found that loading
the sextupole magnet settings recorded in the measurement file improved the
ultimate merit function achieved. Since these values are recorded in computer
units, the calibration values described in Sec. 3.3 were required.

Each BPM contributes five constraints contributing to the merit function:
horizontal and vertical phase, horizontal and vertical orbit, and coupling. There
are typically 295 variables and 380 constraints in the final iteration of the op-
timization. The iterative procedure consisted of rejecting anomalous contribu-
tions to the merit function, then rerunning the optimization.

Since phase, coupling, orbits and tunes are fit simultaneously, the relative
weights for constraints are important. These were obtained using the optimiza-
tion for difference functions, as described in Secs. 4.6.2 and 5.3. The weights
used correspond to precision values of 0.1 mm for the orbits, 0.02◦ for the phase
functions, 0.02 for the coupling C̄12, and 0.001 for the tune Q. The precision
in the coupling measurements was assumed to be the same as for the phase
function, since the residual analysis for the quadrupole and skew quadrupole
terms obtained similar values (see Sec. 4.6). In the case of the orbit precision,
the precision values of a few microns were found in the fits to the difference
functions 5.3. The weights for the optimizations for the reference functions
were increased to 0.1 mm to account for systematics in the determination of the
BPM offsets relative to the quadrupole centers and for contributions from the
button gain measurements. The latter were found to depend on the thermal
state of the machine, varying over 12 hours after the begin of full-current oper-
ation. The sextupole scan data was obtained in the cold state of the machine.

The means of estimating appropriate weights for the contributions of phase,
orbit and coupling functions to the merit functions are discussed below.
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4.4.1. Orbit Residuals Analysis

The example of the K2 scan result for orbit dependence on the 10AW sex-
tupole strength change are shown below in Figs. 27 and 28 in Sec. 4.6.3, where
the contributions to the uncertainties in the misalignment value determinations
are discussed. The RMS variation in the average of three measurements was
found to be 3.3 µm (0.8 µm) for the horizontal (vertical) orbit measurement at
each K2 setting. For the results for all sextupoles and all scans, see Figs. 6, 7,
and 8. Typical values for the uncertainty in the horizontal (vertical) position

Figure 6: Distributions in the precision in the determination of the horizontal (σOrbX) and
vertical (σOrbY) orbit changes caused by the sextupole strength change ∆K2 for all scans.

is found to be less than 6 µm (4 µm). The tail results in the distribution RMS
value of 7 µm (7 µm). However, due to a variety of systematic effects in the
BPM data acquisition mentioned in Sec. 4.4, a value of 0.1 mm was used for the
weights in the calculation of the merit function.
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Figure 7: The uncertainties in the determination of the horizontal and vertical orbit changes
caused by the sextupole strength change ∆K2 versus sextupole number.

15



Figure 8: The uncertainties in the determination of the horizontal and vertical orbit changes
caused by the sextupole strength change ∆K2 versus scan number.
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4.4.2. Phase Function Residuals Analysis

Examples of the phase function change ∆ΦX as a function of the sextupole
strength change ∆K2 from the 10AW scan 85 are shown in Figs. 9 and 10. The

Figure 9: The change in the horizontal phase at sextupole 10AW induced by the change in
sextupole strength ∆K2. Adjusting the assumed uncertainty in each point to give χ2/NDF
to unity results in a value for the RMS variation in the average of three measurements of
0.0025 degrees.

RMS precision in the average of three measurements was found to be 0.0025◦

(0.0068◦) for the horizontal (vertical) phase measurement at each K2 setting.
These values are smaller than typical. For the results for all sextupoles and
all scans, see Figs. 11, 12, and 13. Typical values for the uncertainty in the
horizontal (vertical) phase change are found to be less than 0.014◦ (0.016◦). The
tail results in the distribution RMS value of 15◦ (13◦).

The observed level of repeatability of about 0.01◦ for the average of three
measurements is somewhat better than the value 0.05◦ cited in Ref. [19] for
single phase measurements. Many improvements have been introduced in the
BPM data acquisition system since that time. The weight assumed for the
contribution to the merit function in the fit to the reference phase function is
0.02◦.

4.5. Optimizations for Difference Functions

The optimizations for the difference functions use four variables: quadrupole,
skew quadrupole, and and horizontal and vertical dipole terms superposed on
the sextupole, caused by the change in sextupole strength ∆K2. The typical
number of constraints for these fit was about 380 phase, coupling and orbit
measurements.

The precision in the quadrupole term ∆b1 and the skew quadrupole term
∆a1 are discussed in Sects. 4.6.3 and 4.6.4 on the measurement of sextupole
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Figure 10: The change in the vertical phase at sextupole 10AW induced by the change in
sextupole strength ∆K2. Adjusting the assumed uncertainty in each to give χ2/NDF to unity
results in a value for the RMS variation in the average of three measurements of 0.0068 degrees.

misalignments. The horizontal and vertical dipole terms resulting from the
sextupole strength change are not used directly in the calculation of the beam
size, however, together with the quadrupole and skew quadrupole terms, they
give the orbit angle changes in the sextupole which are used in the beam size
determination.

4.6. Analysis Procedure for Difference Functions

The orbit, phase, and coupling difference functions were obtained from three
repetitive measurements at each sextupole strength setting. The averages of the
three were then subjected to the polynomial fit procedure described below.

4.6.1. Scatter Plots

The value of the scatter plots is two-fold: 1) an order-of-magnitude estimate
of the precision of the measurements can be gleaned from the observed repeata-
bility, and 2) the occasional anomalous failed optimization is easily identified.
Our more accurate method of determining measurement precision is presented
below in Sec. 4.6.2.

Figures 14 and 15 show scatter plots in ∆b1 and ∆a1 for the example of scan
85, recorded for sextupole 10AW on the 23rd of October, 2021. Three phase,
orbit and coupling measurements were made at each of eleven K2 settings. The
observed repeatability of better than 0.4 mm−1 suffices for our desired precision,
as shown below in Sec. 4.6.2.

4.6.2. Polynomial Fits and Error Analysis

The sections 4.6.3 and 4.6.4 below describe the polynomial fits to the de-
pendence of quadrupole and skew quadrupole terms arising from changes in
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Figure 11: Distributions in the precision in the determination of the horizontal (σΦX) and
vertical (σΦY) phase changes caused by the sextupole strength change ∆K2 for all scans.
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Figure 12: The uncertainties in the determination of the horizontal and vertical phase function
changes caused by the sextupole strength change ∆K2 versus sextupole number.
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Figure 13: The uncertainties in the determination of the horizontal and vertical phase function
changes caused by the sextupole strength change ∆K2 versus scan number.
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Figure 14: Scatter plots for the three difference measurements at eleven K2 values for the
quadrupole term ∆b1 induced by the change in sextupole strength ∆K2. The repeatability is
observed to be better than about 0.4 mm−1.

Figure 15: Scatter plots for the three difference measurements at eleven K2 values for the
quadrupole term ∆a1 induced by the change in sextupole strength ∆K2. The repeatability is
observed to be better than about 0.2 mm−1.

22



sextupole strength. The precision of our measurements allows very good de-
termination of the linear term and often good determination of the quadratic
coefficient. At this level of precision, no significant cubic term is observed, as
expected from the linear analysis (Eqs. 1 and 2). This observation encourages
the approximation that nonlinear effects such as those mentioned in 4.2 are
small.

4.6.3. Quadrupole Term

Tune Measurements. Our first method of determining X0, the horizontal dis-
tance of the beam from the center of the sextupole prior to changing the strength
of the sextupole K2, is to derive the ∆K1 value from the beta-weighted differ-
ence of horizontal and vertical tune measurements according to

∆K1L =
∆µy
βy
− ∆µx

βx
(18)

derived in Ref. [2]. This calculation is more insensitive to skew quadrupole
contributions than the value derived from either ∆µx or ∆µy alone.

Our tune measurements derive from two sources: 1) we operate the Digi-
tal Tune Tracker [16] continuously during the measurements, obtaining about
20 measurements at intervals of 3 seconds for each sextupole setting, 2) following
three phase function measurements at each sextupole setting, we record turn-by-
turn orbit data, 32k revolutions for each of 126 beam position monitors (BPMs).
This data is post-processed to obtain tune measurements with an accuracy of
about one part in 104. The combination of these two tune measurement meth-
ods provides an accuracy of about 0.003%. Figure 16 shows an example of ten

Figure 16: Quadrupole kick values K1 derived from betatron tune changes as a function of
sextupole strength change for the example of scan 85.

difference measurements obtained from eleven sextupole settings. We employ a
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method for estimating uncertainties in the polynomial coefficients by adjusting
the residual weights to obtain χ2/NDF=1. The linear term provides us with a
value for X0 of −2.3219± 0.0091 mm. The estimate for the ∆K1L uncertainty
in each point is 0.030 mm−1.

Difference Phase Functions. A second, independent, means of determining X0

is to record phase function and orbit measurements at each sextupole setting,
then to fit the difference functions with multipole values b1, a1 and horizontal
and vertical dipole kicks superposed on the sextupole. We choose to distinguish
these two methods by denoting the kick ∆K1L for the case of the tune change
and ∆b1 for the case of the difference phase function. We show below that the
two methods provide consistent results with ∼< 0.1 mm precision.

Figure 17 shows the results for the quadrupole term ∆b1 obtained from the

Figure 17: Example of scan 85 for the polynomial fit results for the quadrupole term ∆b1
induced by the change in sextupole strength ∆K2. Quadrupole kick values ∆b1 at the sex-
tupole caused by a change in sextupole strength ∆K2. These are determined using a fit to
phase function, coupling function and orbit differences while varying ∆b1, a skew quadrupole
kick ∆a1, and horizontal and vertical dipole kicks.

fit to the difference phase, orbit and coupling functions. The polynomial fit
procedure described in Sec. 1 provides a value for X0 of −2.383± 0.010 mm.

The precision of each ∆b1 point obtained from setting χ2/NDF=1 for this
scan is 0.030 mm−1. This value is typical of the scans. Figure 18 shows the
distribution in precision values for all scans. The average value is 0.029 mm−1

and the RMS is 0.019 mm−1. The values obtained from all scans are shown for
each sextupole in Fig. 19. The values obtained from all scans are shown as a
function of scan number in Fig. 20.

These two methods for determining X0 are compared in the correlation plot
in Fig. 21 which includes all measurements to date. The RMS of the difference
distribution, shown in Fig. 22, is 0.11 mm (excluding anomalies), showing suf-
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Figure 18: Distribution in precision values for the quadrupole term change σ∆b1 for all scans.

Figure 19: Precision values for the quadrupole term change σ∆b1 for each sextupole.
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Figure 20: Precision values for the quadrupole term change σ∆b1 for each K2 scan.

ficient precision for measuring beam sizes of 1-2-mm. The mean uncertainty
for the X0 values determined from the K1L values from the tune shifts is
0.044 mm.The mean uncertainty for the X0 values determined from the ∆b1
values is 0.015 mm. The significance of the good agreement between the local
kick result and the ring-wide tune measurement is that the underlying assump-
tion of linear optics is sufficiently accurate for our purposes.

The horizontal misalignment Xoffset of the sextupole relative to the BPM
coordinate system, which defines the origin as the centers of the quadrupole
magnets, can now be found by determining the horizontal orbit position mea-
surement prior to the sextupole strength change. The full statistical power of
the measurements at eleven sextupole settings is shown in Fig. 27

4.6.4. Skew Quadrupole Term from Difference Coupling Functions

Figure 23 shows the dependence of the skew quadrupole kick dependence
on the sextupole strength in sextupole 10AW measured during scan 85. The
value of Y0 is determined with a precision of 3 µm. The statistical uncertainty
in the average of three measurements of ∆a1 is found to be 0.010 mm−1. This
value is typical, as seen in Fig. 24, which shows the result for all 158 scans. The
average value is 24 µm; the RMS of the distribution is 21 µm. Such values are
sufficiently precise for the measurement of beam size and generally smaller than
the contribution of the measurement precision of the horizontal angle change.

Figures 25, and 26 show the values of the precision in ∆a1 for each sextupole
and each scan.

4.6.5. Determination of the Beam Position in the Sextupole

The value for x at K2 = 0 of −0.7123± 0.0013 mm yields a value for the
horizontal misalignment Xoffset = 1.671± 0.0010 mm. This means of determin-
ing the horizontal misalignment has two advantages over the method presented
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Figure 21: Degree of correlation obtained from the values for X0 derived from tune changes
and from fits to phase function, orbit, and coupling differences for the change in the quadrupole
term ∆b1.
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Figure 22: Difference distribution for the X0 values determined from the K1L values from the
tune shifts and the ∆b1 values measured using the difference functions. These measurements
were found to be uncorrelated by comparing their uncertain values, so the RMS value allows
the determination of an upper bound on the precision of the X0 measurements.
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Figure 23: Example of a polynomial fit result for the change in the skew quadrupole term
∆a1 induced by the change in sextupole strength ∆K2. This example is for the K2 scan 85
of sextupole 10AW. The vertical position of the beam relative to the center of the sextupole
is measured to be Y0 = −0.406 ± 0.003 mm.

Figure 24: Distribution in precision values for the skew quadrupole term change ∆a1 for all
scans.
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Figure 25: Precision values for the skew quadrupole term change ∆a11 for each sextupole.

Figure 26: Precision values for the skew quadrupole term change ∆a1 for each K2 scan.
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Figure 27: The horizontal orbit change ∆x as a function of sextupole strength change
measured in scan 85 for sextupole 10AW. The unconstrained fit value at K2 = 0 has
been subtracted. This zero-constrained fit shows the beam position at K2 = 0 to be
Xsext = −0.7123 ± 0.0013 mm.

in Ref. [2], which entailed measuring tune changes with sextupole strength at
prescribed orbit positions. The first is precision, since the present method uses
multi-parameter fits to the entire-ring phase functions and orbit. Secondly, this
method can also be used to determine vertical misalignments. Just as Eq. (1)
was used above for finding the values of X0, Eq. (2) can be used to find the value
for Y0. The corresponding analysis is shown in Fig. 23. The vertical distance of
the beam from the center of the sextupole is found to be −0.406± 0.003 mm.

The measurement of the change in the vertical position of the beam in the
sextupole is shown in Fig. 28 The value for y at K2 = 0 of 0.01507± 0.00038 mm
yields a value for the vertical misalignment Yoffset = 0.391±0.003 mm, the error
dominated by the error in the determination of Y0 (see Fig. 23).

4.7. Results for the Determination of Misalignments

We have recorded 158 sextupole strength scans for 71 of the 76 sextupoles in
the ring. The error-weighted averages of all measurements are shown in Fig. 29.
The distributions in the weighted averages of misalignment values and associated
uncertainties are shown in Figs. 30 and 31. Typical values for the horizontal
misalignments are 1-2 mm. The vertical misalignments are generally smaller,
less than 1 mm, but with a number of exceptions up to 4 mm. The statistical
uncertainties in their determination are typically 0.01 to 0.1 mm. Since beam
position dependence on ∆K2 will lead to deviations from the assumption of
linear optics implicit in our derivations, these misalignments must be included
in an accurate model of the ring optics.
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Figure 28: The vertical orbit change ∆y as a function of sextupole strength change ∆K2L
measured in scan 85 for sextupole 10AW.

4.8. Effects of Sextupole Misalignments

The procedure to estimate the consequences of the sextupole offsets for the
optics was:

• Perform the optimization on a reference data set as per Sec. 4.4. The
example of one of the three reference measurements for scan 85 was chosen.

• Set the modeled sextupole offsets to zero sequentially. The optics become
unstable if the tunes are not adjusted reset to the measured value after
each setting change.

• Observe the change in the phase, orbit and coupling caused by removing
the offsets.

The horizontal (vertical) RMS phase deviation from the design value around the
ring was found to increase to 1.74 (1.45) degrees. The coupling RMS increased
to 0.044. These errors are easily compensated by the quadrupole and skew
quadrupole magnets within their operating ranges. The RMS changes in the
horizontal and vertical orbits was less than 0.1 mm. The horizontal (vertical)
chromaticity changed from 0.980 to 1.09 (1.00 to 0.95).

It has also been shown via modeling that the effect of the sextupole offsets
on dynamic aperture is minor [20].

5. Beam Size Calculations

5.1. Derivations

Here we generalize the derivation presented in Sec. 1 to the case of non-zero
initial sextupole setting, initially in a single transverse dimension. The variation
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Figure 29: Weighted averages of horizontal and vertical sextupole misalignment values derived
from 158 sets of sextupole strength scan data for 71 sextupoles.
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Figure 30: Distribution in the weighted averages using multiple measurements of horizontal
and vertical sextupole misalignments values.
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Figure 31: Distributions in the uncertainties in the determination of horizontal and vertical
sextupole misalignment values.
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of a sextupole strength by an amount ∆K2L in a storage ring introduces

1. a quadrupole kick ∆K1L

∆K1L = X0 ∆K2L+ (K2L+ ∆K2L) ∆x, (19)

and

2. a horizontal angle change ∆pX

∆pX =
1

2

(
X2

0 + σ2
X

)
∆K2L

+
1

2

(
2 X0 ∆x+ ∆x2

)
(K2L+ ∆K2L) , (20)

where L is the length of the sextupole, ∆x is the change of the beam position
from its original position relative to the center of the sextupole X0, and σx is
the beam size.

The two equations permit the elimination of the unknown value X0 to de-
termine the beam size from the measured values of ∆K1L

∆K2L
and ∆x

∆K2L
:

σ2
X =

4 tan(πQ)

β

∆x

∆K2L
−
(

∆K1L

∆K2L

)2

+ (K2L
∆x

∆K2L
)2

(
1 +

∆K2L

K2L

)
, (21)

where the values prior to the variation are the tuneQ, the sextupole strengthK2L,
and the twiss function β at the sextupole. We note that no terms have been
neglected in this derivation.

The judicious choice for the initial value of the sextupole strength K2L = 0,
together with the fact that a kick ∆pX causes a closed orbit change at the
location of the kick ∆x given by

∆x =
β cot(πQ)

2
∆pX , (22)

results in the simple relationship

σ2
X = 2

∆pX
∆K2L

−
(

∆K1L

∆K2L

)2

. (23)

Extending the analysis to the two transverse dimensions ([1], [2]), we de-
rive the quadrupole kick ∆K1L and the angle changes ∆pX and ∆pY from
a change in sextupole strength ∆K2L using the sextupole field components
qL
p0
Bx = K2Lxy and qL

p0
By = 1

2K2L(x2 − y2), we obtain three equations with
four unknowns:

∆K1L = ∆K2L (X0 + ∆x) (24)

∆pY = ∆K2L (X0 + ∆x) (Y0 + ∆y) (25)
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2 ∆pX = ∆K2L

[(
∆pY

∆K2L

)2(
∆K1L

∆K2L

)−2

+ σ2
Y −

(
∆K1L

∆K2L

)2

− σ2
X

]
(26)

We note that these quantities are differences, not differentials. The equations
are exact; there is no expansion. Typical vertical beam sizes are approximately
0.05 mm, too small to measure using our method. We neglect their small con-
tribution the calculation of horizontal beam size, which is typically 1-2-mm.

Assuming initial K2L = 0 and including all terms:

σ2
X − σ2

Y = −2
∆pX

∆K2L
+

(
∆pY

∆K2L

)2(
∆K1L

∆K2L

)−2

−
(

∆K1L

∆K2L

)2

(27)

Including only terms linear in ∆K2L, we have:

σ2
X − σ2

Y = −2
∆pX

∆K2L
+ Y 2

0 −X2
0 , (28)

where X0, Y0 is the initial position of the beam relative to the center of the
sextupole. The is the two-dimensional generalization of Eq. 5 in our IPAC21
paper [1].

5.2. Modeling for Beam Size Measurement

For the beam size calculation, we need the angle change in the sextupole ∆pX
as well as the quadrupole termX0 calculated in Sec. 4.2. This is shown in Fig. 32.
The value for the linear coefficient -1.076 µrad/m−2 gives a reconstructed beam
size value of 1.070 mm via Eq. 5. The value of the horizontal RMS spread of
the tracked beam particles at the sextupole is consistent at 1.062 mm.

The quadrupole term was also calculated from the difference phase function,
as described in Sec. 4.6.3 for the analysis of the K2 scan data. The resulting
values of ∆b1/∆K2L and ∆pX/∆K2L for the ten values of ∆K2L are shown in
Fig.33 Nonlinear effects are observed to be small relative to the accuracy of the
beam size calculation. The reconstructed beam size shows little dependence on
the magnitude of the change in K2.

Following the above study using beam particle tracking, we realized that
a simpler test of the model can be made by superposing on the sextupole the
dipole term expected from the beam size, b0 = 1

2∆K2 L σ
2
X, and reconstructing

the beam size by our method using the tune change and the angle change caused
by the change in the closed orbit. This method was tested using a toy FODO
lattice with a single sextupole. Figures 34 and 35 show the modeled results
for the ∆pX dependence on sextupole strength change for the cases with no
sextupole offset and with a sextupole offset of 1 mm.

The modeled results for the beam size calculation are shown in Figs. 36
and 37.
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Figure 32: The angle change ∆pX as a function of the sextupole 10AW strength change ∆K2,
calculated by tracking 2000 beam particles through the CESR design lattice. The value for
the linear coefficient -1.076 µrad/m−2 gives a reconstructed beam size value of 1.070 mm via
Eq. 5. The value of the horizontal RMS spread of the tracked beam particles at the sextupole
is 1.062 mm. The uncertainties given the for the coefficients are due to machine accuracy in
the modeling. The weighting to obtain χ2/NDF=1 also results in rounding errors at machine
accuracy.

5.3. Analysis Procedure for the Difference Angle Change Functions

5.3.1. Scatter Plots

Figure 38 shows the scatter plot in the horizontal orbit angle change in the
sextupole 10AW for the three measurements at each of the eleven K2 settings
in scan 85. The repeatability is observed to be less than a few tenths of a
degree for a full range of angle change of ±6 degrees providing for a precise
measurement of the linear term in the polynomial fit described in Sec. 5.3.2.
The linear coefficient is the most consequential parameter in the calculation of
beam size.

The corresponding plots for the vertical angle change are shown in Fig. 39,
exhibiting a data quality similar to that observed for the horizontal angle change
measurement.

5.3.2. Polynomial Fits and Error Analysis

5.3.3. Horizontal Angle Change

Figure 40 show the results for horizontal angle change dependence on the
K2 change for the example of the K2 scan for sextupole 10AW. The data show a
clear need for a cubic term, as expected from Eqs. 3 and 4. The lack of necessity
for a quartic term at our level of precision encourages the approximation that
nonlinear effects are small.

Given the values of X0 and Y0 obtained for this scan in Secs. 4.6.3 and 4.6.4
of −2.383±0.010 and 0.406±0.003, this value for ∆pX/∆K2L of −4.670±0.100
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Figure 33: The values of ∆b1/∆K2L and ∆pX/∆K2L for the ten values of ∆K2L are shown
in the top two plots. The third plot shows in red the dependence of the reconstructed beam
size on the K2 change. The blue points show the horizontal RMS spread of the tracked beam
particles at the sextupole. The value reconstructed for the beam size shows little dependence
on the magnitude of the change in K2.
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Figure 34: Modeled results for the angle change ∆pX dependence on sextupole strength
change for the case with no sextupole offset. The linear coefficient value of -0.9902 µrad/m−2

gives the expected value for the beam size of 1.4 mm via σ2
x = −2∆pX/∆K2L. The cubic

coefficient arises from the term 1
2

(∆x)2 ∆K2L as seen in Eq. 20. The uncertainties given the
for the coefficients are due to machine accuracy in the modeling.
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Figure 35: Modeled results for the angle change ∆pX dependence on sextupole strength change
for the case with a sextupole offset of 1 mm. The linear coefficient value of -1.542 µrad/m−2

gives the expected value for the beam size of 1.4 mm via σ2
x = −2∆pX/∆K2L − X2

0 . For
this value of X0 = 1 mm, the quadratic term in Eq. 20, X0 ∆x ∆K2L, dominates over the
cubic term. The uncertainties given the for the coefficients are due to machine accuracy in
the modeling.
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Figure 36: Modeled results for the beam size calculation dependence on sextupole strength
change for the case of no sextupole offset. The dependence for both the quadrupole slope and
the horizontal angle slope are very weak.
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Figure 37: Modeled results for the beam size calculation dependence on sextupole strength
change for the case with a sextupole offset of 1 mm.
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Figure 38: Scatter plots for the three difference measurements at eleven K2 values for the
horizontal angle change ∆px induced by the change in sextupole strength ∆K2. This example
is scan 85 for sextupole 10AW.

Figure 39: Scatter plots for the three difference measurements at eleven K2 values for the
vertical angle change ∆py induced by the change in sextupole strength ∆K2. This example
is scan 85 for sextupole 10AW.
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Figure 40: Polynomial fit results for the horizontal angle change ∆px induced by the change
in sextupole strength ∆K2.

results in a beam size determination of 1.956± 0.053 mm, much larger than the
value expected from the optics, 1.09 mm. We will see below that this is a
problem common among the K2 scans. The precision in the determination of
this linear coefficient is good enough to measure a 1-mm beam size with 10%
accuracy, but the systematic error is much larger.

The distribution in precision values for the horizontal change ∆pX for all
scans is shown in Fig. 41. Typical values are 0.1-0.2 µrad, which is sufficiently
accurate for a precision of about 30% for a 1-mm beam size. Figures 42 and
43. show the precision values for each sextupole and each scan.

5.3.4. Vertical Angle Change

Figure 44 shows that the precision in determining the vertical angle change
is similar to that for the horizontal angle change. The need for a cubic term (see
Eq. 3) is clearly determined at −0.311±0.067µrad. The precision in determining
∆pY is found to be 0.17 µrad. This is a fairly typical value for all scans, as is
seen in Fig. 45. The average value is 0.167 µrad and the RMS value of the
distribution is 0.154 µrad.

The values in the precision of the ∆pY determination for each sextupole and
each scan are shown in Figs. 46 and 47.

5.3.5. Error Analysis for Beam Size Calculation

We recall Eq. 5, neglecting the small contribution from the vertical beam
size,

σ2
X = −2

∆pX

∆K2L
+ Y 2

0 −X2
0 . (29)
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Figure 41: Distribution in precision values for the horizontal orbit angle change ∆pX for all
scans.

Figure 42: Precision values for the horizontal orbit angle change σ∆pX
for each sextupole.
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Figure 43: Precision values for the horizontal orbit angle change σ∆pX
for each K2 scan.

Figure 44: Polynomial fit results for the vertical orbit angle change ∆pY induced by the
change in sextupole strength ∆K2 for the case of scan 85.
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Figure 45: Distribution in precision values for the vertical angle change σ∆pY
for all scans.

Figure 46: Precision values for the vertical orbit angle change σ∆pY
for each sextupole.
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Figure 47: Precision values for the vertical orbit angle change σ∆pY
for each K2 scan.

So the uncertainty in the squared beam size calculation, δσ2
X

, is then given by

δσ2
X

= 4

[(
δ ∆pX

∆K2L

)2

+ (Y0 δY0
)
2

+ (X0 δX0
)
2

]
, (30)

where δ ∆pX
∆K2L

, δY0
, and δX0

are the uncertainties in the the measured quantities.

The uncertainty in the beam size is given by

δσX
=

δσ2
X

2 σX
(31)

See Figs. 48 and 49 for the three contributions to the precision of the beam
size calculation.

Since the uncertainty in the linear term in horizontal angle change depen-
dence on the sextupole strength change is typically less than 0.3 µrad/m−2, the
resulting contribution to the error in a 1 mm beam size measurement is 30%.
To this precision the analysis described above can be considered acceptable for
measuring the beam size at each sextupole magnet in CESR. The contributions
by the uncertainties in X0 and Y0 of typically less than 0.05 mm are small in
comparison.

Figure 50 shows the distribution of beam size precision values. Typical values
are 0.05 to 0.15 mm.

5.3.6. Results of the Beam Size Calculation

Recalling the equation for the beam size (Eq. 29), we plot the determinations
of the three contributions X0, Y0 and ∆pX/∆K2L in Figs. 51 and 52 for each
sextupole. Multiple scans were made for a number of sextupoles. The calculated
values may be different for each scan, since the beam position relative to the
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Figure 48: Distribution in the precision values for the horizontal angle change slope ∆pX
∆K2L

.
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Figure 49: Distribution in precision values for X0 and Y0.
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Figure 50: Distribution in beam size measurement precision values propagated from the three
contributions to its calculation.
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Figure 51: Results of the fits to difference functions for the linear terms in the dependence
of quadrupole kick b1 and skew quadrupole kick a1 on sextupole strength. These terms are
equal to the horizontal (vertical) distance of the beam from the center of the sextupole X0

(Y0). These values, together with the linear term in the horizontal angle change dependence
on sextupole strength, suffice to calculate the horizontal beam size for each scan.
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Figure 52: Results of the fits to difference functions for the linear term in the horizontal angle
change dependence on sextupole strength for all scans. These can differ for each scan, since
the beam position relative to the center of the sextupole differs. However, in general, these
terms are found to be too negative to be consistent with the beam size.
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sextupole center may differ from scan to scan. For the same beam size and Y0

value, a larger value of X0 requires a larger horizontal angle change with ∆K2.
Figure 53 shows the values for the squared beam size and the beam size

Figure 53: Results for the beam size calculation for each sextupole. Note the multiple entries
and repeatability. The beam size is shown as zero for the cases where the squared beam size
is negative.

for all scans for each sextupole magnet. Note that the finite measurement
precision can result in negative values for the squared beam size. There are
then shown as zeroes in the plot of beam size. In general, we see that the values
for ∆pX/∆K2L tend to be too negative to be consistent with the value for the
beam size expected from the optics, as shown in Fig. 54.

Discussion of Systematic Error in Beam Size Calculation. Figure 55 shows the
example of the contributions to the beam size calculation for the sextupole
10AW scan 85. This is the example K2 scan used in the sections above. The
optical functions in the CESR model predict a horizontal beam size of 1.09 mm
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Figure 54: Comparison of the beam size calculations to the beam size values expected from
the optical functions and dispersion.
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Figure 55: The dependence of the contributions to the beam size calculation on the sextupole
strength change ∆K2. No dependence for ∆b1/∆K2L is observed within uncertainties. There
is a clear dependence on ∆K2 observed for ∆pX/∆K2L. It results in the calculated value for
the beam size approaching the value expected from the optics for larger changes in K2.
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at this sextupole. The contribution from Y0 ' −0.4 mm is omitted because its
contribution is small compared to that ofX0. A dependence on ∆K2 is observed,
and results in a dependence of the calculated beam size on the magnitude of the
sextupole strength change ∆K2. No such dependence is observed for ∆b1/∆K2L
(X0). The beam size calculated from the K2 scan is observed become more
precise and to approach the value expected from the optics for larger strength
changes. The beam size dependence on K2 arises from a contribution to the
horizontal angle change which appears to be non-sextupole in nature.

Figure 56 shows that the vertical angle change has a similar, but opposite,

Figure 56: The values for the vertical angle change slope show a dependence on ∆K2 opposite
to that for the horizontal angle change slope. It is plausible that the vertical angle change
could be used to correct the horizontal angle to correct for the apparently non-sextupole
contribution.

dependence on the change in sextupole strength. It has been shown for this case
that an ad hoc assumption that the non-sextupole contribution to ∆pX is half
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its contribution to ∆pY reduces the difference between the calculated beam size
and the value expected from the optics from 20 σ to 1.7 σ [21], however without
knowing the source of this non-sextupole contribution, such an assumption is
not justifiable.

It is plausible that the non-sextupole contribution to ∆pY

∆pnonsext
Y = ∆pmeas

Y −∆K2L X0 Y0 (32)

could be used to calculate the non-sextupole contribution to ∆pX

∆pnonsext
X = ∆pmeas

X − 1

2
∆K2L (X2

0 − Y 2
0 ). (33)

The curl relation
∂x ∂BX = ∂y ∂BY (34)

may provide an answer to this puzzle since the horizontal and vertical angle
changes along the trajectory are integrals of the corresponding field components.
If there is negligible contribution from fringe fields, we have in addition from
the divergence equation

∂y ∂BX = −∂x ∂BY . (35)

A promising next step will be to use the measured anomalous horizontal
and vertical deflections’ dependence on the beam position in the sextupole to
identify the multipole content of this non-sextupole contribution to the magnetic
field.

6. Conclusions

6.1. Sextupole Calibration Correction Factors

The sextupole calibration procedure was updated in 2022 to use a custom
closed-bump for each sextupole, and the fit to the tune change versus beam
position was updated. During 2022 and 2023, 155 calibration data sets were
recorded for the 76 sextupoles. A 3.1% average correction was found and the
RMS deviation of the correction factors is 12.5%. The average uncertainty in the
correction factors is found to be 1.7 %. The RMS deviation in the uncertainties
is 1.0 %.

6.2. Sextupole Alignment Values

Horizontal and vertical misalignment values for 71 of the 76 sextupoles were
measured using quadrupole and skew quadrupole terms derived from difference
phase and coupling measurements, together with fits to the orbit data. The
horizontal (vertical) misalignments average -0.048 mm (-0.039 mm) and have
an RMS spread of 1.0 mm (0.94 mm). The uncertainties in the misalignment
determinations average 0.023 mm (0.021 mm) with an RMS spread of 0.027 mm
(0.035 mm).
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6.3. Beam Size Calculations

A measurement procedure and data analysis method has been developed
which has sufficient statistical precision to determine the horizontal beam size
at each CESR sextupole magnet with a precision of better than 30%. However,
an unknown systematic contribution to the uncertainty which is of magnitude
comparable to the beam size itself spoils the results. The identification of this
systematic contribution is the logical next step in the analysis. Success appears
likely given the comprehensive nature of the data set.
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