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Abstract
Owing to the quadratic field dependence of sextupole

magnets, a variation in the strength of a sextupole results in
a beam size dependent orbit kick and change in the betatron
tune. By measuring both, we can produce an estimate of
the beam size in the sextupole. We present a full derivation
of the equations necessary to produce such an estimate, in-
cluding as of yet unconsidered correction terms relating to
the finite length of the sextupole. We analyze data from the
Cornell Electron Storage Ring (CESR), and show that these
correction terms are small enough to disregard, in general.
In addition, we discuss the determination of error in our
measurement, the limits of our precision, and report on the
current state of the measurement.

INTRODUCTION
We report on the status of a project to measure the beam

size in a storage ring using variations in the strength of
sextupole magnets, as begun by J. Crittenden and G. Hoff-
staetter. The first iteration of this method was proposed in
2021, considering the one dimensional case and proposing
methods to measure the beam size from tune and orbit mea-
surements [1]. In 2022, the method was extended to the
two transverse dimensions of the beam cross section, and an
improved method for determining the value of the entrance
beam positions, necessary for the beam size calculation, was
developed [2]. The latest report finds that the determination
of the entrance beam positions is reproducible by comparing
multiple measurement methods, including a reliable method
to determine quadrupole kick strengths from the horizontal
and vertical tune change, and improves upon the analysis
process enough to provide results for all 153 data scans [3].

In storage rings, sextupoles are typically used to correct
for higher order effects, especially those of chromatic aber-
ration [4]. However, sextupoles have a unique, quadratic
magnetic field dependence on position. This property al-
lows for integration of the Lorentz force over the width of the
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beam, which leads to an expression for a beam size depen-
dent orbit kick within a sextupole. We take advantage of this
property to measure the beam size indirectly. In the follow-
ing section, we derive a variant of these expressions which
account for the finite length of the sextupole. This leaves us
with approximate expressions which can be applied to data
in Section 2, where we show that the magnitude of the finite
length correction is sufficiently small to be disregarded. In
Section 3, we detail how error estimates are produced by
means of least squares regression. This allows us to make
statements about the typical error in our measurements in
Section 4. In Section 5, we investigate the relationship be-
tween the number and range of measurements we take and
the error in the determined beam size. In Section 6, we
discuss the status of the measurement method, and identify
potential issues in need of further investigation.

DERIVATION OF BEAM SIZE
EXPRESSIONS

In this section, we will derive equations necessary for our
measurement of the beam size. For consistency with the
existing work done on this project, we will ultimately derive
expressions consistent with coordinates with origin at the
center of the sextupole. However, we find it illustrative to
first derive expressions relative to coordinates with origin
at the beginning of the sextupole, and to later transform
our coordinate system. The equations presented will model
those from [2], but with the addition of length dependent
terms.

Horizontal Orbit Kick Derivation
We can express the average horizontal orbit kick across

the sextupole, ⟨∆px⟩L, as an integral of infinitesimal con-
tributions dpx

ds over the length L of the sextupole via the
relation

⟨∆px⟩L =

∫ L

0

dpx
ds

ds (1)



To find the kick element dpx
ds , we will consider the force on

the beam, given by the Lorentz force

F⃗ = qv⃗ × B⃗ (2)

We assume the beam charge distribution is approximately
Gaussian, centered around the horizontal beam position rel-
ative to the center of the sextupole, x, and with a horizontal
root mean square (RMS) width σx. We note that the quan-
tity x varies as the beam travels, and so is a function of the
position s. After appropriate normalization, we find

qx =
q0

σx
√

2π

∫ ∞

−∞

exp
−(x ′ − x)2

2σ2
x

dx ′ (3)

where q0 is related to the total charge of the particle bunch.
The magnitude of the magnetic field is given by the relation-
ship for a sextupole,

By(x) =
1
2

d2By

dx2 x2 (4)

In addition, By is defined for a sextupole by

By =
p0
q0

K2
2

(y2 − x2) (5)

which leads to the second derivative

d2By

dx2 = −
p0
q0

K2 (6)

where K2 is the strength of the sextupole field and p0 is
the momentum of a particle in the beam. We note that the
magnetic field expression used is one such that the horizon-
tal component is positive in the direction of the center of
the storage ring. Combining the magnetic field and charge
distribution with the Lorentz force, along with the assump-
tions that the particles are strongly relativistic, and the mag-
netic field is perfectly perpendicular to the particles’ velocity,
gives us an expression for the force on the beam averaged
over the horizontal direction

⟨F⟩x = −
q0c

σx
√

2π
1
2

p0
q0

K2

∫ ∞

−∞

(x ′)2 exp
−(x ′ − x)2

2σ2
x

dx ′

(7)

= −
K2
2

p0c(x2 + σ2
x)

The quadratic dependence on position in a sextupole mag-
net is noteworthy here, providing the necessary factor of

(x ′)2 in the force integral. Likewise, we will consider a ver-
tical cross-section of the beam bunch as a Gaussian charge
distribution of RMS width σy, centered a vertical distance
y from the center of the sextupole,

qy =
q0

σy
√

2π

∫ ∞

−∞

exp
−(y′ − y)2

2σ2
y

dy′ (8)

in combination with a corresponding expression for the mag-
netic field

Bx(y) =
1
2

d2By

dy2 y2 =
1
2

p0
q0

K2y
2 (9)

which, in effect, differs from the horizontal equivalent by a
factor of −1. In a clear parallel, the force averaged over the
vertical direction is given by

⟨F⟩y =
q0c

σy
√

2π
1
2

p0
q0

K2

∫ ∞

−∞

(y′)2 exp
−(y′ − y)2

2σ2
y

dy′

(10)

=
K2
2

p0c(y2 + σ2
y)

We can now recombine into a single, averaged force,

⟨F⟩x+y = ⟨F⟩x + ⟨F⟩y =
K2
2

p0c(y2 + σ2
y − x2 − σ2

x)

(11)

We consider a small change in the sextupole strength ∆K2,
which causes a change in the position of the beam by an
amount ∆x in the horizontal direction, and a change of ∆y
in the vertical direction. Working in units of p0c = 1, taking
an initial value K2 = 0, and disregarding terms non-linear
in ∆K2, we can write the infinitesimal horizontal orbit kick
as the difference in the force before and after the change,

dpx
ds
=
∆K2

2
(y2(s) − x2(s) + σ2

y − σ
2
x) (12)

where we have now explicitly expressed x and y as functions
of the orbital position s. This allows us to write an expression
for the horizontal orbit kick averaged over the finite length,
L, of the sextupole,

⟨∆px⟩L =

∫ L

0

dpx
ds

ds (13)

=

∫ L

0

∆K2
2

(y2(s) − x2(s) + σ2
y − σ

2
x)ds



If we consider this integral as a term in x and a term in y,

⟨∆px⟩L =

∫ L

0

∆K2
2

(y2(s) + σ2
y)ds (14)

−

∫ L

0

∆K2
2

(x2(s) + σ2
x)ds

then we can make use of a symmetrical argument to quickly
evaluate one expression after knowing the other. Focusing
on the horizontal integral component, we can express the
horizontal beam position x(s), now explicitly a function of
position, as

x(s) = X0 + ∆x(s) (15)

where ∆x(s) is the change in horizontal position within the
sextupole. This change in position is related to the beam
angle, px(s′), by

∆x(s) =
∫ s

0
px(s′)ds′ (16)

We expand x2(s) and rearrange the resulting equation into
two terms,

⟨∆px⟩L = −

∫ L

0

∆K2
2

(X2
0 + 2X0∆x(s) + ∆x2(s) + σ2

x)ds

(17)

= −

∫ L

0

∆K2
2

(X2
0 + σ

2
x)ds

−

∫ L

0

∆K2
2

(2X0∆x(s) + ∆x2(s))ds

The first term represents the kick from a sextupole of zero
length, in which x(s) = X0, and is easily evaluated, giving
us

−

∫ L

0

∆K2
2

(X2
0 + σ

2
x)ds = −

∆K2L
2

(X2
0 + σ

2
x) (18)

We are now tasked with finding an expression for ∆x(s), so
that the correction term can be computed. Similarly to the
treatment of x(s), we will express px(s′) as

px(s′) = PX0 + ∆px(s′) (19)

where PX0 is the entrance angle and ∆px(s′) is the cumu-
lative bend angle caused by the sextupole up to the point
s′. The factor ∆px(s′) is small compared to PX0. Thus, we

approximate the beam angle as constant within the sextupole,
and equal to the entrance angle,

px(s′) = PX0 (20)

We are now able to easily calculate ∆x(s), which evaluates
to

∆x(s) = PX0s (21)

The leading correction term is given by

−

∫ L

0
∆K2X0∆x(s)ds = −

∫ L

0
∆K2X0PX0sds (22)

= −
∆K2X0PX0

2
s2���

s=L

s=0

= −
∆K2X0PX0

2
L2

The second order correction can also be calculated simply
using the tools we have developed, giving

−

∫ L

0

∆K2
2
∆x2(s)ds = −

∫ L

0

∆K2
2

P2
X0s2ds (23)

= −
∆K2P2

X0
6

s3���
s=L

s=0

= −
∆K2P2

X0
6

L3

Thus, we have an expression for the horizontal component
of Equation (14),

−

∫ L

0

∆K2
2

(x2(s) + σ2
x)ds (24)

= −
∆K2L

2
(X2

0 + σ
2
x + X0PX0L −

1
3

P2
X0L2)

An exactly analogous process gives the vertical component.
Thus, we can finally write

⟨∆px⟩L =
∆K2L

2
(Y 2

0 − X2
0 + σ

2
y − σ

2
x (25)

+ Y0PY0L − X0PX0L +
1
3

P2
Y0L2 −

1
3

P2
X0L2)

Vertical Orbit Kick Derivation
For completeness, we will derive a corresponding expres-

sion for the vertical orbit kick. We will once again integrate
over infinitesimal contributions,〈

∆py
〉

L
=

∫ L

0

dpy

ds
ds (26)



We find the infinitesimal contribution, dpy
ds , by starting with

the relation

py = K2LX0Y0 (27)

We consider a small variation in the strength of the sextupole,
∆K2, which causes a change in both the horizontal beam
position, ∆x, and the vertical beam position, ∆y. Taking the
difference before and after the variation in strength, assuming
K2 = 0 initially,

∆py = ∆K2Lx(s)y(s) (28)

If we consider a sextupole of infinitesimal length ds, we will
find an infinitesimal orbit kick,

dpy

ds
= ∆K2x(s)y(s) (29)

If we use our previous expressions for x(s), and the corre-
sponding expression for y(s), we can integrate to find〈
∆py
〉

L
=

∫ L

0

dpy

ds
ds (30)

=

∫ L

0
∆K2x(s)y(s)ds

=

∫ L

0
∆K2(X0Y0 + PX0Y0s + X0PY0s + PX0PY0s2)ds

= ∆K2(X0Y0L + PX0Y0
L2

2
+ X0PY0

L2

2
+ PX0PY0

L3

3
)

which we will rearrange into our final expression,〈
∆py
〉

L
= ∆K2L(X0Y0 +

Y0PX0L + X0PY0L
2

+
PX0PY0L2

3
)

(31)

Normal And Skew Quadrupole Kick Derivations
Our derived expressions are capable of estimating the

beam size, but require reliable determinations of X0 and
Y0. To remedy this, we will derive expressions relating the
normal and skew quadrupole kicks, ∆b1 and ∆a1, to X0 and
Y0, respectively.

Beginning with the normal quadrupole kick, ∆b1, we start
at the relation

b1 = K2LX0 (32)

where K2 is the sextupole strength, L is the length of the
sextupole, and X0 is the horizontal entrance beam position

relative to the center of the sextupole. We consider changing
the sextupole strength by an amount ∆K2, which will also
introduce a change in the horizontal distance of the beam
from the center of the sextupole by an amount ∆x. Taking
the difference before and after this change gives us

∆b1 = (K2 + ∆K2)L(X0 + ∆x) − K2LX0 (33)

Assuming that K2 = 0 initially,

∆b1 = ∆K2Lx(s) (34)

where we have taken x(s) = X0 + ∆x as before. Treating
this as the expression for a zero length sextupole, we can
write the infinitesimal contribution to the overall orbit kick
as

db1
ds
= ∆K2x(s) (35)

We calculate the average beam kick over a finite sextupole of
length L by integrating over the infinitesimal contributions,
which gives

⟨∆b1⟩L =

∫ L

0

db1
ds

ds =
∫ L

0
∆K2x(s)ds (36)

To evaluate this integral, we will make the exact same argu-
ment for the expression of x(s) as before. It follows directly
from this point that

⟨∆b1⟩L = ∆K2

∫ L

0
(X0 + PX0s)ds = ∆K2(X0L + PX0

L2

2
)

(37)

In general, we will use this expression as a means to find X0,
so write

X0 =
⟨∆b1⟩L
∆K2L

−
PX0L

2
(38)

We can make an exactly parallel argument for the skew
quadrupole kick ∆a1 by taking the definition

a1 = K2LY0 (39)

where y is a vertical beam position analogous to x. Follow-
ing the same steps as above, we arrive at the expression

Y0 =
⟨∆a1⟩L
∆K2L

−
PY0L

2
(40)



Coordinate Shift And Beam Size Expressions
Of course, the value of these expressions is their ability

to provide a measurement of the beam size, which we can
express explicitly by rearranging the horizontal orbit kick
expression,

σ2
x =Y 2

0 − X2
0 −

2 ⟨∆px⟩L
∆K2L

+ Y0PY0L (41)

− X0PX0L +
P2

Y0L2

3
−

P2
X0L2

3

where we have disregarded the term σ2
y , which is on the

order of four hundred times smaller than σ2
x . Equation (41)

is an expression for the beam size using quantities measured
from the beginning of the sextupole, but we can simplify
considerably by shifting the coordinates of some quantities
to the center of the sextupole. We note that ⟨∆px⟩L is an
integrated effect, and so is coordinate independent. However,
had we developed the quadrupole kick expressions in the
center of the sextupole, we would have instead written

⟨∆b1⟩L = ∆K2

∫ L
2

− L
2

(X0 +

∫ s
2

− s
2

PX0ds′)ds = ∆K2X0L

(42)

This suggests that ⟨∆b1⟩L
∆K2L

fills the role of X0 in the center
of the sextupole, and likewise for ⟨∆a1⟩L

∆K2L
and Y0. We note

that the difference in the derivation lies only in the choice
of the bounds of integration. This differs from Equation
(38) by a factor of PX0L

2 , suggesting that linear correction
terms are a result of the choice of coordinates. To effec-
tively change coordinates to the center of the sextupole, we
combine Equation (41) with Equations (38) and (40). We
find

σ2
x =(
⟨∆a1⟩L
∆K2L

)2 − (
⟨∆b1⟩L
∆K2L

)2 (43)

−
2 ⟨∆px⟩L
∆K2L

+
7
12

L2(P2
Y0 − P2

X0)

A similar process applied to Equation (31) gives〈
∆py
〉

L
∆K2L

= (
⟨∆a1⟩L
∆K2L

)(
⟨∆b1⟩L
∆K2L

) +
1
12

PX0PY0L2 (44)

No first order terms remain in either expression, and only
second order correction terms remain.

Beam Size Error Expression Derivation
We note that the following two expressions hold true in

general:

δ(σ2
x) =

√
δ2(σ2

x) (45)

δ(σ2
x) = 2σxδ(σx) (46)

Combining these two expressions gives us an expression for
the error in the beam width measurement,

δ(σx) =
1

2σx

√
δ2(σ2

x) (47)

Furthermore, we can express the squared error in the squared
beam width, δ2(σ2

x), as a sum of squared errors,

δ2(σ2
x) = (δ(Y 2

0 ))2 + (−δ(X2
0 ))2 + (−2δ(

⟨∆px⟩L
∆K2L

))2 (48)

+ (
7
36
δ(P2

Y0L2))2 + (−
7
36
δ(P2

X0L2))2

We will express each term in a way that is more convenient
for applications to measurements by using

δ(Y 2
0 ) = 2Y0δ(Y0) (49)

δ(X2
0 ) = 2X0δ(X0) (50)

δ(P2
Y0L2) = 2PY0L2δ(PY0) (51)

δ(P2
X0L2) = 2PX0L2δ(PX0) (52)

This means that the error in the beam width can be expressed
as

δ(σx) =
1

2σx

√
δ2(σ2

x) (53)

δ2(σ2
x) = 4Y 2

0 δ
2(Y0) + 4X2

0 δ
2(X0) + 4δ2(

⟨∆px⟩L
∆K2L

) (54)

+
49
324

P2
Y0L4δ2(PY0) +

49
324

P2
X0L4δ2(PX0)



APPLICATIONS TO MEASUREMENTS
In this section, we will present the application of our de-

rived expressions, including the finite length correction, to
data from CESR. This data was collected for all 76 sex-
tupoles in the storage ring, across 153 data scans. We will
ultimately conclude that the finite length correction is small
enough to disregard in general. For more information regard-
ing the determination of parameters used to calculate the
beam size, see References [1-3]. For a detailed description
of the determination of the error in our measurements, see
Section 3. It is worth noting that the finite length correction
changes our beam size measurement on the order of microns,
which indicates immediately that it is small enough to dis-
regard. However, we investigate this notion more formally
before choosing to disregard the correction.

Figure 1 shows the ratio between the magnitude of the
correction to the beam width, σx to the error in σx, without
correction, for each data scan. The magnitude of the cor-
rection to the beam width was calculated via a difference
betweenσx as calculated directly from Equation (44), andσx
as calculated without the correction term 7

12 L2(P2
Y0 − P2

X0).
The red line marks equality between the correction and the
error. We note that the correction is smaller than the error in
all cases, as we would expect for a small, second order cor-
rection. This suggests that, in general, the length correction
can be safely disregarded for the beam size calculation.

Figure 2 shows the percent difference in error inσx, before
and after the second order correction 7

12 L2(P2
Y0−P2

X0) is ap-
plied to σ2

x , for each data scan. The largest correction to the
error is approximately 1.5%, confirming that the correction
to the error estimate is also small enough to be negligible.

Since the finite length correction represents a minor cor-
rection to our measurements of both the beam size and its
error, we will choose to disregard this correction in our fu-
ture calculations. This amounts to confirming that the thin
lens approximation, in which the sextupole field acts only at
the center, is sufficiently accurate for our measurement.

DETERMINATION OF ERROR BARS
In this section, we will detail the process by which we de-

termine the magnitude of the error in our measurement. This
is done primarily by making use of least squares regression,
performed by the FORTRAN library Minuit [5].

All of the errors we determine are, more formally, the
value of one standard deviation. Minuit determines the value
of one standard deviation in polynomial fit coefficients by

Magnitude Of Correction Over Error In σx

Figure 1: The ratio between the magnitude of the correction
to the beam width, σx to the error in σx, without correction,
for each data scan. The red line marks equality between
the correction and the error. We note that the correction is
smaller than the error in all cases, as we would expect for
the derived, second order correction.

Percent Difference In Error In σx After Correction

Figure 2: The percent difference in error in σx, before and
after the second order correction 7

12 L2(P2
Y0−P2

X0) is applied
to σ2

x for each data scan. The largest correction to the error
is approximately 1.5%, confirming that the correction to the
error estimate is also negligible.



default [6]. To find the errors in the data, we assume that the
error is determined by a known and equivalent source, such
as inherent uncertainties in the beam position monitors. This
allows for the expression of the errors, as standard deviations,
in terms of the variance. If we force the reduced chi squared,
the chi squared over the number of degrees of freedom, to be
unity, then we can produce a single error estimate for all of
the input data. This comes at the expense of any information
the reduced chi squared may have provided regarding the
quality of the fit [7]. Instead, we determine the quality of
the fit by ensuring that the deviations from the fit are on the
order of the errors in the input data.

We guarantee that the reduced chi squared is unity via the
following process. First, a reasonable estimate for the error
in a given quantity is produced by looking at variations in
the measured values. This reasonable estimate is used to
calculate chi squared, which more than likely differs from the
number of degrees of freedom by some factor. By adjusting
the error estimate by the square root of this factor, we adjust
chi squared such that the reduced chi squared is unity. This
fact is verified by once again computing chi squared, and
our error estimate is determined.

More specifically, we use the MINOS minimizer, which
produces asymmetrical error estimates as defined by a func-
tion change [5][6]. A fit which does not include any non-
linear effects will, in general, produce a minimum which is
quadratic, and thus symmetrical. The difference between
the negative and positive error estimates is thus a measure
of the non linearity of the fit [5]. While we have not yet in-
vestigated the relationship between the negative and positive
errors in all cases, we have noted for many cases that they
are very similar in magnitude, suggesting that there is not
a large non-linear effect impacting our fitted values. The
errors we report are the average of the positive and negative
error values.

In general, we fit quantities as functions of ∆K2L when
determining the beam size. This process results in error
estimates for both the individual points used in the fit, and
the coefficients on the powers of ∆K2L. Figure 3 shows
one example of the fitting procedure as applied to ∆px over
∆K2L in scan 85, on sextupole 10. We note that the reduced
chi squared has been forced to unity by adjusting the error
estimate. We also note that the variation from the fit is
on the order of the error bars, suggesting that the fit was
successful. Only the linear coefficient is used in the beam
size calculation, as noted in the displayed equation. ∆px
is clearly cubic in ∆K2L, and this fact has been lost in our

derivation by disregarding terms nonlinear in ∆K2L. A full
derivation, including nonlinear terms, does predict a cubic
relationship.

Figure 3: One example of the fitting procedure as applied
to the horizontal orbit kick ∆px over change in sextupole
strength ∆K2L in scan 85. We note that the reduced chi
squared has successfully been forced to unity by adjusting
the error estimate. We also note that the residuals are on
the order of the error bars, again suggesting that the fit was
successful.

TYPICAL ERROR MAGNITUDES
In this section, we present the current error estimates for

the orbit kicks ∆px and ∆py, the quadrupole kicks ∆b1 and
∆a1, and the beam size σx. We also present typical error
values for each quantity. All of the values presented were
determined via the method discussed in the previous section.

Figures 4-8 show the errors in the determination of the
horizontal orbit kick ∆px, the vertical orbit kick ∆py, the
normal quadrupole kick ∆b1, the skew quadrupole kick
∆a1, and the beam size σx, respectively, over all scans.
Each also includes a histogram of the errors, excluding one
outlier in ∆px, seven outliers in ∆py, one outlier in ∆b1,
nine outliers in ∆a1, and eight outliers in σx. Their mean
values are 0.195 µrad, 0.182 µrad, 28.1 µm−1, 22.5 µm−1,
and 0.083 mm, respectively. The root mean square devia-



tions from the mean are 0.157 µrad, 0.177 µrad, 20.2 µm−1,
22.1 µm−1, and 0.055 mm, respectively.

We note that we have succeeded in taking measurements
of the beam size with an accuracy close to 0.1 mm. This
corresponds to about 10% of the expected beam size mea-
surement, which is on the order of 1 mm. To do so, we need
to know the orbit kicks to precision better than microradians
and the entrance beam positions to the precision of tens of
micrometers. This is difficult to achieve due to the limited
range of ∆K2L, which, if too large, will cause the beam to
be lost in the storage ring. It also means that any system-
atic effects, even if small, have the potential to substantially
impact our measurement, and so need to be considered.

Errors In ∆px

Figure 4: The upper plots shows the error in ∆px over all
scans. The lower plots shows a histogram of these error
values, excluding one outlier. The mean value, excluding
the outlier, is 0.195 µrad.

Errors In ∆py

Figure 5: The upper plots shows the error in ∆py over all
scans. The lower plots shows a histogram of these error
values, excluding seven outliers. The mean value, excluding
the outliers, is 0.182 µrad.

Errors In ∆b1

Figure 6: The upper plots shows the error in ∆b1 over all
scans. The lower plots shows a histogram of these error
values, excluding one outlier. The mean value, excluding
the outlier, is 28.1 µm−1.



Errors In ∆a1

Figure 7: The upper plots shows the error in ∆a1 over all
scans. The lower plots shows a histogram of these error
values, excluding nine outliers. The mean value, excluding
the outliers, is 22.5 µm−1.

Errors In σx

Figure 8: The upper plots shows the error in σx over all
scans. The lower plots shows a histogram of these error
values, excluding eight outliers. The mean value, excluding
the outliers, is 0.083 mm.

STATISTICS OF THE ERRORS

In this section, we investigate the relationship between our
beam size error estimate and the range of data collected. In
particular, we investigate the effect of the range of K2 values,
number of unique K2 values, and number of points taken at
each K2 value on the error in ∆px, the largest contributor to
the error in the beam size.

Figure 9 shows the error in ∆px for each of six scans
conducted on sextupole number 8 as a function of the range
of ∆K2 values, number of unique ∆K2 values, and number of
points taken at each ∆K2 value. Sextupole 8 was chosen for
this purpose because there happen to be the most scans on
sextupole 8 out of all 76 sextupoles. The expected behavior,
statistically, is that the error in the measurement decreases
and the amount of data increases. We note that scan 113 is
an obvious outlier in this plot; we believe that this is because
the fit for ∆px in scan 113 has strongly correlated linear
and cubic terms, both of which have errors comparable to
their value. Nonetheless, we do not observe a square root
dependence of the error on any of these three quantities,
unless taking only the most favorable points. We are led
to believe that taking more data in an individual scan will
not improve the precision of our beam size measurement.
This may be due to systematic effects, such as the maximum
precision of the beam position monitors in the storage ring.

Conversely, Figure 10 shows the error in ∆py for each of
six scans conducted on sextupole number 8 as a function
of the range of ∆K2 values, number of unique ∆K2 values,
and number of points taken at each ∆K2 value. We do not
observe a square root decrease in the error. Instead, we see
an increase in the error as a larger range or larger number of
∆K2 settings are used. We do see a decrease in the error as
the number of points per K2 value is increased, but it seems
to be slower than the expected square root relationship, and
highly variable.

The combination of these two facts leads us to believe that
six scans is not a large enough sample size to make defini-
tive statements about the statistical dependence of our error
estimates on these metrics of the amount of data taken. The
safest assumption about this statistical dependence seems
to be that the error estimates and amount of data taken are
uncorrelated. This would suggest that taking data at more
K2 settings and with more repetition is not worthwhile, at
least for this sextupole. A more complete analysis should be
conducted, ideally with more data, to determine how many
measurements are necessary to produce reliable results.



Errors In ∆px Over Measures Of Data Taken

Figure 9: The error in∆px for each of six scans conducted on
sextupole number 8 as a function of the range of ∆K2 values,
number of unique ∆K2 values, and number of points taken
at each ∆K2 value. The expected behavior, statistically, is
that the error in the measurement decreases and the amount
of data increases. We do not observe the expected square
root dependence of the error on any of these three quantities,
unless taking only the most favorable points. We are led to
believe that taking more data in an individual scan will not
improve the precision of our beam size measurement.

Errors In ∆py Over Measures Of Data Taken

Figure 10: The error in ∆py for each of six scans conducted
on sextupole number 8 as a function of the range of ∆K2
values, number of unique ∆K2 values, and number of points
taken at each ∆K2 value. The expected behavior, statistically,
is that the error in the measurement decreases and the amount
of data increases. We do not observe a square root decrease
in the error. Instead, we see an increase in the error as a
larger range or larger number of ∆K2 settings are used. We
do see a decrease in the error as the number of points per
K2 value is increased, but it seems to be slower than the
expected square root relationship, and highly variable.



IDENTIFYING A SYSTEMATIC ISSUE
In this section, we identify a systematic problem in our

beam size measurement. Figure 11 shows the current beam
size measurement over all scans in the upper plot, excluding
11 scans in which the current method calculates a negative
squared beam size. The lower plot shows the expected beam
size from the optics for each scan. Our measured values are
overestimated in most, but not all cases. Scans in which the
calculated beam size is close to the expected beam size may
provide clues as to why most scans fail, and will need to be
investigated further.

Figure 11: The current beam size measurement over all scans
in the upper plot, excluding 11 scans in which the current
method calculates a negative squared beam size. The lower
plot shows the expected beam size from the optics for each
scan. Our measured values are overestimated in most, but
not all cases.

One possible explanation for this overestimation is related
to our calculated versus measured values of ∆py. Figure 12
shows the calculated versus measured values of ∆py over
values of ∆K2L for scan 85. We calculate ∆py according to
Equation (31) without length correction, ∆py = ∆K2LX0Y0,
which applies to the linear term in ∆py. Scan 85 was chosen
for this graph because of its clear linear behavior. However,
the slope of our calculated values of ∆py do not agree with

the slope of the measured values, and in fact the calculated
slope is significantly too positive.

Difference Between Measured And Calculated ∆py

Figure 12: The calculated versus measured values of ∆py
over values of ∆K2L for scan 85. We calculate ∆py ac-
cording to Equation (31) without length correction, ∆py =
∆K2LX0Y0, which applies to the linear term in ∆py. The
slope of our calculated values of ∆py do not agree with the
slope of the measured values, and in fact the calculated slope
is significantly too positive.

Suppose there is some additional field that has impacted
our measurements, which we have not accounted for in our
theory. These effects are extraneous to the measurement,
which applies to orbit kicks and tune changes caused by the
sextupole itself. We can estimate the strength of this field by
comparing the observed and predicted slopes. In this case,
our measured values could be explained by an additional
field strength of approximately 22 Gauss, compared to a
total change in K2 of approximately 12 Gauss.

Figure 13 shows measured values of the slopes ∆py
∆K2L

and
∆px
∆K2L

as functions of ∆K2L in scan 85. We would expect
these measurements to be approximately constant in ∆K2L,
but they both show a clear dependence on ∆K2L. The fact
that these two values fluctuate similarly may suggest a rela-
tionship.

This observed effect could potentially explain the overes-
timation of the beam size. One possible explanation for our
overestimation of the beam size is that the value of ∆px

∆K2L
which we have measured is too negative. If our measured



Calculated Slopes In ∆py
∆K2L

and ∆px
∆K2L

Figure 13: Measured values of the slopes ∆py
∆K2L

and ∆px
∆K2L

as
functions of ∆K2L in scan 85. We would expect these mea-
surements to be approximately constant in ∆K2L, but they
both show a clear dependence on ∆K2L. The fact that these
two values fluctuate similarly may suggest a relationship.

values of ∆px
∆K2L

and ∆py
∆K2L

are correlated as Figure 13 would
suggest, then resolving the contradiction between our mea-
sured and expected ∆py

∆K2L
will likely also have implications

for our determination of ∆px
∆K2L

.

Figure 14 shows the calculated values of the slope, ∆px
∆K2L

,
and the beam size, σx, over ∆K2L in scan 85. As expected,
there is an obvious correlation between the beam size and
the measurement of ∆px

∆K2L
, with less negative slopes leading

to smaller beam sizes. In addition, it is clear that the beam
size depends somewhat linearly on |∆K2L |, and decreases
for larger |∆K2L |. This is consistent with the existence of
an unaccounted for magnetic field, which impacts the mea-
surement less for larger sextupole strength changes. Our
expectation is that sufficiently large values of ∆K2L would
yield relatively constant beam size measurements; however,
we are limited in the value of ∆K2L, with large values caus-
ing the beam to be lost in most cases.

Calculated Values Of ∆px
∆K2L

and σx

Figure 14: Calculated values of the slope, ∆px
∆K2L

, and the
beam size, σx, over ∆K2L in scan 85. As expected, there
is an obvious correlation between the beam size and the
measurement of ∆px

∆K2L
, with less negative slopes leading to

smaller beam sizes. In addition, it is clear that the beam
size depends somewhat linearly on ∆K2L, and decreases for
larger∆K2L. This is consistent with the existence of an unac-
counted for magnetic field, which impacts the measurement
less for larger sextupole strength changes.

We plan to conduct further data scans to test for the ef-
fects of hysteresis, one candidate for the source of this dis-
agreement in ∆py. We believe that hysteresis is a reason-
able candidate for this external effect because a change in
K2L of 1 m−2, at a typical horizontal entrance position of
X0 = 1mm, corresponds to only about a 4 Gauss change
in magnetic field strength, meaning that the measurement
is particularly sensitive to small, unaccounted for magnetic
fields.

CONCLUSION
In this paper, we derived expressions to calculate the beam

size in sextupole magnets, while taking into account the fi-
nite length of the sextupole. These equations were then
applied to data from the Cornell Electron Storage Ring, and
the impact of correction terms related to the finite length
correction was analyzed. We concluded that the finite length
correction to our beam size measurement is negligible, and
can be disregarded in general. In addition, the determina-
tion of error bars in our measurements was detailed, and



the precision to which we can measure the beam size was
discussed. It seems that we are capable in most cases of
measuring the beam size to tenths of millimeters, or on the
order of 10%. We do not see evidence that we are capable
of leveraging statistical power to improve this measurement
further. In addition, we identified a potential problem within
our current analysis that suggests that there is an additional
systematic effect we have not yet accounted for.
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