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Energy Recovery Linear Accelerators (ERLs) are potential drivers for novel
fourth-generation synchrotron light sources. An ERL combines the high quality
beams of a linear accelerator with the high currents possible in a storage ring.
The excessive power needs of a lone linac are avoided by circulating acceler-
ated particles back through the linac to recover their energy. This dissertation
is focused on the lattice design of a high energy ERL synchrotron light source
at Cornell University. In order to illustrate general ERL requirements, a simpler
design is also presented. The mathematics needed to describe such a machine
are particular to accelerator physics, and so a separate chapter is devoted to
developing all of the relevant concepts.

The short bunch lengths and high bunch charges possible in an ERL can
give rise to Coherent Synchrotron Radiation (CSR) which can potentially limit
the operation of the accelerator. CSR is a collective phenomenon where the en-
ergy radiated at wavelengths longer than the bunch length is enhanced by the
number of charges in the bunch. The final chapter develops an exact model for
CSR from an infinitely thin bunch. It reveals many interesting effects, including
CSR at low energies, through multiple bends in a lattice, and in bunch compres-
sion. The model is also used to obtain the limits of validity of previously known

approximations. Finally, CSR is examined for the ERL designs presented.
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CHAPTER 1
INTRODUCTION

1.1 Synchrotron Radiation

The electromagnetic radiation of an accelerated charged particle has been of
fundamental importance to physics for more than a century now. The power
radiated by a nonrelativistic charge was first calculated by Larmor (1897), and
his result is known today as the Larmor formula. The relativistically correct
version was first derived in Liénard (1898) using potentials for Maxwell’s equa-

tions, and this power radiated is

_2rem 475 9 2 2
P—§C37[ca+y(v-a)], (1.1)

in which v is the velocity vector and a is the acceleration vector of the particle.
Additionally m is the mass of the particle, r. is the classical (electromagnetic)
radius of the particle, y is the Lorentz factor, and c is the speed of light. For
purely transverse acceleration, this reduces to

_2remd Byt

P
3 R?

(1.2)

where R is the instantaneous radius of curvature and 3 ¢ is the magnitude of the

velocity.

Further developments came from Schott in his Adams Prize! essay of 1909,
on the subject of “The Radiation from Electric Systems or Ions in Accelerated

Motion and the Mechanical Reactions on their Motion which Arise from It”

!Prior winners of the Adams Prize included ]. C. Maxwell in 1857, J. ]. Thompson in 1882,
J. H. Poynting in 1893, and J. Larmor in 1899.



(Schott, 1912, is the published version). Written in a time before the establish-
ment of relativity and quantum mechanics, this work contains interesting dis-
cussions regarding various extended models of the electron, superluminal par-
ticle motion, and the influence of the aether. However, like Larmor and Liénard,
he generally only assumes that Maxwell’s equations are correct, and in examin-
ing the motion of an electron moving in a circle of radius R he finds the spatial
distribution of the radiated fields and, in particular, he finds that the electro-

magnetic power radiated in the n™ harmonic of the revolution frequency is
B
B 15, @np)—n(1-4) f dx J5,(2n x)

0

2Bcr.mc?

P,=n R

: (1.3)

in which J, is the n'™ Bessel function of the first kind. It was hoped that the origin
of atomic spectral lines would be explained by such radiation, but this approach

ultimately failed.

Untouched for some thirty years, the subject was picked up by Iwanenko &
Pomeranchuk (1944), who noted that these radiative losses by electrons would
limit the maximum energy attainable in a betatron accelerator. Their remarks
prompted Blewett in 1945 to search for such losses in the 100 MeV betatron at
the General Electric Research Laboratory in Schenectady, New York. He found
(published in Blewett, 1946) that radiative losses accounted for a shrinkage in
the orbit of the electrons in the machine, but in looking at the microwave part

of the spectrum he observed no radiation.

Meanwhile the problem had been introduced to Schwinger in late 1944, and
in 1945 he performed more detailed calculations on these losses. In a then
unpublished report (Schwinger, 1945) he recovers Schott’s results, including
Eq. (1.3). He observes that this expression, for small n, shows none of the de-

pendence on y that Eq. (1.2) would imply, and concludes that a great many



Figure 1.1: The General Electric 70 MeV synchrotron in 1947, built and operated
in Schenectady, New York.

harmonics must contribute to the total radiated power. Using approximations

for Bessel functions, such as

M_ 3
J,(vB) = —\/_3'81(1/3 (%(1 —ﬁz)g/z), (1.4)
n
valid for v > 1, he finds
V3greme® (20" L [
= EﬁrR# (?Vl) 52/3 deK5/3(X) (15)

&

2
with & = S—n_,’, which is peaked around n ~ y*. Equation (1.5) is the form perhaps
Y
best known by modern physicists (see for example, Jackson, 1999). His find-
ings were circulated privately and presented at the American Physical Society

meeting in New York in September the next year (Schwinger, 1946).

In 1947 a team at General Electric led by Pollock constructed the world’s



second synchrotron, operating at 70 MeV. Unlike the 100 MeV betatron, the
beam chamber was transparent, and in this machine the soon to be called “syn-
chrotron radiation” was first observed. In a letter to Pollock, fellow team mem-

ber Langmuir writes:

I have very definite and clear remembrances about the discovery of syn-
chrotron radiation. I don’t remember the date (presumably 24 April 1947)
but in the afternoon one of the technicians reported to me that there seemed
to be sparking in the synchrotron tube. He observed this by looking in a
large (about 6 ft high by 3 ft wide) mirror that permitted us to observe the
machine without getting too much radiation. You were at the controls of
the machine. Upon seeing the light, I asked you to ruin the timing, which
you did and the light went away. It returned when you returned the injec-
tion pulse to the proper time. I immediately said that must be Schwinger

radiation. The whole incident took about thirty seconds.

In the following two years the laboratory was visited by many from the aca-
demic community in order to see this light, including six Nobel prize winners.
Other notable visitors included the actor Ronald Reagan (who was not partic-
ularly impressed) and the physicist and Russian spy Klaus Fuchs (convicted in

1950 for disclosing atomic secrets) (Pollock, 1982).

While synchrotron radiation was readily used as an accelerator diagnostic,
there was some question as to whether the classical calculations were valid
(Parzen, 1951). Experiments using the 300 MeV synchrotron at Cornell Uni-
versity confirmed that they were, with the first accurate measurements of the
energy loss by Corson (1953) and the first accurate measurements of the radia-

tion spectrum by Tomboulian & Hartman (1956).



The subsequent use of synchrotron radiation from accelerators is typically
divided into generations of facilities (much of this history can be found in Robin-
son, 2001). The first generation is characterized by the “parasitic” use of radia-
tion from accelerators primarily designed for particle physics experiments. The
tirst of these was the Synchrotron Ultraviolet Radiation Facility, which used
the 180 MeV synchrotron at the National Bureau of Standards in the United
States (Madden & Codling, 1963). Facilities in Europe and Asia soon followed.
This generation includes the Cornell High Energy Synchrotron Source (CHESS)
at the Cornell Electron Storage Ring. Accelerators built for the exclusive pro-
duction of synchrotron radiation marked the beginning of a second generation
of light sources. The first of these was the Synchrotron Radiation Source in the
United Kingdom, a 2 GeV electron storage ring which began conducting exper-

iments in 1981.

1.2 Modern Synchrotron Light Sources

Today synchrotron radiation has proven to be an invaluable tool for ex-
panding the frontiers of physics, chemistry, materials sciences, biology, and
medicine (Bilderback et al., 2005). There are approximately 70 major particle ac-
celerators spread around the globe that exist for the production of synchrotron

radiation.

The most advanced of these are of the third generation of accelerators, and
are primarily marked by the use of undulators to produce radiation. These de-
vices (also called wigglers for large deflections) are built out of periodic arrange-

ments of magnets that bend particles through a roughly sinusoidal path (see
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Figure 1.2: Undulator (green) versus Dipole (black) Brilliance

Motz, 1951, for early calculations). The radiation at particular wavelengths can

constructively interfere, resulting in enhancements in the spectrum.

One important quantity of merit for these facilities is the brilliance 8, which
is usually defined as the average photon flux per unit volume of transverse

phase space, and is proportional to

Loy

2
€ €

B (1.6)

in which I,, is the average beam current. The quantities €, and ¢, are the hor-
izontal and vertical emittances, which are the areas occupied in the horizontal
and vertical phase spaces of the beam, and are properly defined in Chapter 2.
Particles are usually bunched with an RM.S. length o, so the peak brilliance 8
is

@ oc Iav

(1.7)

€ 6T
Figure 1.2 shows how an undulator can further enhance the brilliance over a
dipole magnet. The harmonics can clearly be seen, with the brilliance amplified

by five orders of magnitude over the dipole.



These photon energies, of course, are only possible if the particles have suffi-
cient energy. Currently there are three high energy (> 4 GeV) dedicated third
generation light sources: the Advanced Photon Source (APS) in Illinois, the
European Synchrotron Radiation Facility (ESRF) in Grenoble, France, and the
SPring-8 facility in Hyogo, Japan. They are all configured as storage rings, in
which particles circulate billions of times through the machine before they are
discarded, producing radiation in every pass. Because of this circulation, stor-
age rings can operate with relatively high average currents (~ 100mA), as the
particle energy lost per turn is a small fraction of the total energy. This energy

is restored by accelerating cavities in each pass.

Unfortunately, the quantum nature of synchrotron radiation increases the
emittance in dipole magnets, which is eventually balanced by a damping of the
emittance by the accelerating cavities, resulting in an equilibrium emittance.
Roughly speaking, this equilibrium emittance is determined by the arrange-
ment of elements in the ring, and is decoupled from the initially injected emit-
tance. The bunch length is determined by the ring in a similar manner. Further-

more, the three facilities listed above are operating near their theoretical limits.

These problems can be circumvented if the bends are eliminated, resulting
in a linac. The emittance in a linac actually decreases with energy, because the
transverse momentum becomes smaller relative to the longitudinal momentum
with acceleration. The bunch length is essentially unchanged from injection,

and can even be compressed by a short section of bends.

Unfortunately for a linac, the average current is limited by the available elec-

trical power. Simply from conservation of energy, the power needed to operate



an electron linac scales as

Ly \[ A&
P = 1M 1.
i W( mA)( GeV) (15)
for a total linac energy gradient AE. Thus, 100 mA at 5 GeV would require
500 MW of power, which is comparable to the output of a modern nuclear

power plant.

Nevertheless, linac light sources are being pursued, in the form of self am-
plified spontaneous emission free electron lasers, or SASE FELs. Such devices
work by sending very short bunches through a very long undulator. They
rely on an instability that further partitions the bunches into “micro-bunches”,
which then emit photons in phase resulting in a much amplified X-ray brilliance.
One prominent SASE FEL is the Linac Coherent Light Source at the Stanford

Linear Accelerator, which is currently in construction (Arthur et al., 2002).

Another option is to combine the benefits of a linac with the benefits of a

ring, and such an arrangement is an Energy Recovery Linac.

1.3 Energy Recovery Linear Accelerators

An Energy Recovery Linac (ERL) is a potential driver for a novel fourth-
generation synchrotron light source. The concept originated many years ago
with Tigner (1965), in which a machine for accelerating, colliding, and decelerat-
ing beams is described. An ERL light source would combine the low emittances
and short bunch lengths possible from a linac with the high currents possible
in a ring, thus maximizing important quantities such as the peak brilliance in

Eq. (1.7). Additionally, the operating characteristics and X-ray beamline config-
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Figure 1.3: Conceptual Layout for an ERL.

urations of such a machine would be sufficiently familiar to users of the current
storage rings that experiments could be easily transferred to take advantage of

the higher quality synchrotron light (Gruner and Bilderback, 2003).

The simplest conceptual design for an ERL light source is shown in Fig. 1.3.
Particle bunches with low emittance are accelerated to a low energy in an injec-
tor, and then sent to a linac where they are further accelerated to a high energy.
These high energy particles can be sent through a series of insertion devices
(undulators and wigglers) that extract synchrotron light. They are then reintro-
duced to the beginning of the linac, with the timing adjusted so that particles
are decelerated through the linac, thus returning their energy to the fields in the
structure. At the end of the linac they have a low energy, and can be sent to a

dump.

Currently there are small functioning ERLs at the Thomas National Accel-
erator Jefferson Facility (Neil et al., 2000), the Japan Atomic Energy Research
Institute (Sawamura et al., 2003), and the Siberian Synchrotron Radiation Cen-
ter (Antokhin et al., 2004). Several laboratories are pursuing ERL options for
large scale purposes, including an ERL extension to the APS facility (Borland et

al., 2005). A listing of these projects can be found in Smith et al. (2005).



Table 1.1: The maximum particle energy, average current, horizontal emittance,
and bunch length for the proposed Cornell ERL along with existing light source
facilities.

Name Energy Current Emittance Bunch Length
(GeV) (mA) (pm) (ps)
ESRF 6 200 4000 20
APS 7 100 2514 20
SPring 8 8 100 3000 13
CERL mode A 5 100 31 2
mode B 5 25 8 2
mode C 5 1 511 0.1

The focus of this dissertation is the layout and design of the beam optics
for an ERL light source at Cornell University. The original study for such a
machine can be found in Gruner & Tigner, eds. (2001), and an early layout is
described in Hoffstaetter et al. (2003). All designs have incorporated the existing
CESR ring, thus taking advantage of much of the existing infrastructure and
expertise at Cornell. Beam properties for three operating modes of the Cornell
ERL (CERL) are given in Tab. 1.1, along with parameters from the APS, ESRF,
and SPring8 light sources. While this project is currently in the design phase,

the injector has already been constructed (Liepe et al., 2008).

In order to design an ERL, one must be familiar with a fair amount of back-
ground material, and therefore Chapter 2 is devoted to establishing a mathemat-
ical basis for describing particle motion in an accelerator. Some effort has been
spent to keep it relatively self-contained, and it concludes with an overview of

the simulation and optimization of an accelerator on computer.

The Cornell design contains many features that are particular to that project,
so in order to illustrate general ERL requirements a simpler design, called the

Minimal ERL (MERL), is presented in Chapter 3. The MERL uses the operating
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modes listed in Tab. 1.1. It is built out of sections that are highly symmetric and
periodic, which greatly shortens the the time needed to modify and optimize the
design. Chapter 4 then presents the CERL design. Many of the sections parallel
ones in Chapter 3. Much of this material will be put into the conceptual design
report for the official project proposal. Note that this CERL design has been
regularly used in other studies, for example the influence of ion distributions on
electron dynamics (Hoffstaetter & Spethman, 2008) and intra-beam scattering in

ERLs (Hoffstaetter et al., 2008).

1.4 Coherent Synchrotron Radiation

In 1949 Schwinger published his derivation of the synchrotron radiation spec-
trum in the Physical Review. His 1945 report, however, is in many ways a supe-
rior document. Most notably, this report has calculations and discussions about
the radiation due to multiple accelerating charges, a topic that is becoming rel-
evant for modern particle accelerators (see Murphy, 2004, for a comprehensive
overview). In particular, the radiation due to the short bunch lengths and high
bunch charges possible in an ERL can potentially be a limiting factor for the

operation of such a machine.

Coherent Synchrotron Radiation (CSR), in the far-field, can be thought of as
an enhancement of the synchrotron radiation spectrum due to localized acceler-
ating charges. When N particles are longitudinally bunched with RM.S. size o,
the radiation due to the individual particles at wavelengths 1 2 o /c are approx-
imately in phase, which enhances the power spectrum per particle by a factor

of N at these long wavelengths. Such an enhancement can be seen in Fig. 1.4.
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Figure 1.4: The power spectrum of N = 6 x 10° charges (corresponding to 1 nC
of electrons) traveling at 5 GeV in a magnet with R = 100m. These charges
have a longitudinal Gaussian profile with RM.S. size o = 0.6 mm. The green
arrow indicates the enhancement by a factor of N for frequencies below c/o. The
vertical axis is normalized by N - P /w,, where P is the total power radiated
by a single charge, and w. is the critical frequency.

Most of the power in the single particle spectrum occurs around the critical
frequency w, = %y%/R, where R is the bending radius of path of the particles,
and there is relatively little power in the low frequencies. However, if a suffi-
cient number of particles are present, the power in these low frequencies can
dominate the total power. This coherent contribution to the total power be-

comes appreciable when

R ™~ 3~

N3/4
T < (1.9)

This is particularly relevant for the CERL Mode C parameters shown in Tab. 1.1.
In this mode, a magnet with R = 100 m radiates a total coherent power that is

approximately 180 times the total incoherent power.

The energy radiated is energy that is lost by individual particles. This is

important in particle accelerators, and especially in ERL accelerators, because

12



04—
0.2 1

0.0 A

Wesr(2) / Wo
S
N

—04/ i
—06/ ,f
o8
4 -2 0 2 4
Z/o

Figure 1.5: The steady-state CSR-wake for a Gaussian bunch density. The black
curve is the second term in Eq. (1.10), which corresponds to CSR in free space.
The red curve includes the effect of a conducting beam chamber, which can
greatly reduce the effect. The scaling factor W, is defined in Eq. (5.40).

the longitudinal positions and energies must be carefully controlled. For this

reason the “recoil” effect of CSR on the source particles is of particular interest,

and we will refer to this as the CSR-wake.

CSR is difficult to model using discrete particles exactly because the prob-
lem scales with the number of particles N as N?. This can be simplified by us-
ing a 1-dimensional model which projects the transverse particle density onto
the longitudinal dimension. Formulas for the CSR field from this line charge
can then be used to calculate forces on each particle and then propagate the
full bunch distribution. While this makes the calculation tractable, the electro-
magnetic fields on the world-sheet of this charged line are singular. Pioneering
efforts described in Derbenev et al. (1995) and Murphy et al. (1995) circumvent

this problem by examining the non-singular terms only.

In more detail, Saldin et al. (1997) regularize the longitudinal force between
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Figure 1.6: The power spectrum for particles traveling between conducting par-
allel plates. The single particle spectrum is shown in Fig. 1.6(a), while the N
particle spectrum is shown in Fig. 1.6(b). The parameters used are the same as
in Fig. 1.4, with the plates separated by a distance of 2.54 cm.

two charges traveling on the arc of a circle by subtracting off the Coulomb force,
calculated as if the charges traveled on a straight line, from the force calculated
using Liénard-Wiechert fields. The result is an always finite CSR force. In the

ultra-relativistic limit, their formula for the CSR-wake due to a bunch entering

from a straight path into a bend is

4
2Nr.mc* | Az —zr) — Az — 4z1) 1 da
T 313 R23 + (z— 7)1 dz

Z—ZL

Wesr(z) =

1/3
L (1.10)

_R¢’
L= 24 )

where A(z) is the normalized longitudinal bunch density centered at z = 0, and

¢ is the angle traveled into the magnet by the bunch center.

The first term in Eq. (1.10) is the transient effect when a bunch enters a mag-
net. When z; exceeds several times the bunch length, it becomes irrelevant, and

the CSR-wake assumes a “steady-state” form given by the second term. The
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characteristic shape of such a curve is shown for a Gaussian A(z) in Fig. 1.5.
There, one sees that the bulk of the bunch loses energy, while the head of the
bunch (z = 207) actually gains some energy. This is due to fields propagating

forward from the tail of the bunch, and catching up the the head of the bunch.

Fortunately for particle accelerators, this intense coherent power is typically
suppressed, because particles often travel through conducting beam-pipes with
relatively small transverse size. This CSR “shielding” effect was first pointed
out by Schwinger (1945), who shows that the synchrotron radiation spectrum
gets modified at low frequencies. Such a spectrum is shown in Fig. 1.6(a) for
a Gaussian bunch. The resulting CSR-wake is correspondingly modified, as

shown by the red curve in Fig 1.5.

Calculations using the power spectrum are only valid for steady-state situ-
ations, and CSR-wake formulas such as Eq. (1.10) are often only valid of ultra-
relativistic particles. It is important to understand the range of applicability of
these formulas, so an exact 1-D model for CSR is presented in Chapter 5. The
bulk of this material is published in Mayes & Hoffstaetter (2009). Finally, this
dissertation concludes with a discussions and estimates of the CSR effect in the

MERL and CERL designs.
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CHAPTER 2
ACCELERATOR LATTICE DESIGN

2.1 Beam Optics Fundamentals

The physical principles by which a beam of particles is transported and focused
along an accelerator are referred to as the beam optics. This chapter serves as
an outline of the basic mathematical concepts for optics design in an accelera-
tor, and defines some terms particular to the subject, many of which were first
collected in Courant & Snyder (1958). It draws heavily from classical mechanics
and electrodynamics, about which one is referred to the standard references of
Goldstein (1965), Jackson (1999), and Landau and Lifschitz Vols. I & II (2001,
2002). For more complete expositions on beam optics, the reader is referred an

introduction by Wille (2000) and two volumes by Wiedemann (1999).

Central to optics design is the accelerator lattice, which is the sequential list
of elements that the beam passes through. Possible elements in a lattice include
accelerating cavities, dipole magnets, quadrupole magnets, sextupole magnets,
and undulators, along with their appropriate dimensions and field strengths.
Straight sections without electromagnetic fields are called drifts. The lattice
thus serves as our theoretical model of the accelerator, with which the machine

can be simulated on a computer.
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2.1.1 Accelerator Coordinate System

In a particle accelerator, one is mainly concerned with the dynamics of a par-
ticle bunch, which consists of many localized charged particles traveling rela-
tivistically through the machine. In general, the equation of motion for any one
particle would look quite complicated if written in a fixed Cartesian coordinate
system, so particle coordinates will always be written in terms of a reference
orbit, a path along the accelerator. The reference orbit is often taken as the path
that an ideal particle would take, such as the arc of a circle in a dipole magnet, or
a straight line in a drift or a quadrupole magnet, but it is sometimes defined as
a path that no particle would take, such as a straight line through an undulator.
For the purposes of this section, it will be sufficient to only consider reference
orbits in the horizontal plane. Such is the case for the ERLs studied here. The
extension of the orbit to arbitrary paths is discussed in detail in the monograph

by Berz (1999).

Let the reference orbit be the path R(s) in space parameterized by distance
s, and define a basis vector e;(s) as the unit tangent vector, given by

dRy(s)

- 2.1)

e(s) =

Now let two mutually perpendicular unit vectors e;(s) and e;(s) lie in the plane
perpendicular to e;(s), so that {e;(s), e;(s), e;(s)} form a right-handed orthonor-
mal frame. The curvilinear coordinates (x,y,s) therefore describe a point in

space with position
r(x,y,s) = Ro(s) + xex(s) + yey(s). (2.2)

We will say that e;(s) and e;(s) lie in the horizontal plane, so that the coordinates

x and y describe the horizontal and vertical displacement from the reference
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Figure 2.1: The accelerator coordinate system for a path in the horizontal plane.
A particle’s position is uniquely defined by its (x, y, s) coordinates.

orbit, respectively. This moving frame is illustrated in Fig. 2.1. The rotation of

these basis vectors along the reference orbit is given by their derivatives

dej(” — o(s) e5(s), 2.3)
)

&) _, (2.4)
ds

dej(s) = —ko(s) €x(s). (2.5)
)

Here ky(s) is the curvature at s, and 1/«y(s) is the radius of curvature of the

osculating circle at s.

Note that while (x, y, s) describe a unique point in space, the converse is only
true for a path that is a straight line. However, if the points of interest always
lie within a tube of radius r < 1/max|ko(s)| surrounding the reference orbit,
then these points will have unique curvilinear coordinates. In practice this is
almost always the case, because the radius of curvature will typically be on the
order of meters, and the reference orbit is surrounded by a beam chamber with

characteristic size on the order of centimeters.

For an arbitrary path parameterized by distance o, the infinitesimal line
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length do is related to the curvilinear coordinates by

do? = dx* + dy2 +[1 + ko(s) x] ds.

(2.6)

With the metric here one can write down all the usual vector calculus deriva-

tive operators and volume elements in curvilinear coordinates (see for example

Gradshteyn & Ryzhik, 2000, section 10.51).

2.1.2 Equations of Motion

Now consider a point particle with charge ¢ and mass m, and with curvilinear

coordinates x(#), y(t), and s(¢) as a function of time 7. While this is a perfectly good

description, it will prove to be advantageous to use the longitudinal coordinate

s, rather than time ¢, as the independent variable, so that x(f) — x(s) and y(f) —

y(s). The particle then has position vector

X(s) = Ro(s) + x(s) e:x(s) + y(s) &;(s)

at time 1(s). The velocity vector is

v(s) = sE

ds

= S‘)C’E;C + Sy’ey + S(l + KoX) €;

with
_[os]
§ = ,
ds
and primes denote derivatives with respect to s, as in
, dx
X =—,
ds
po
Y=y

2.7)

(2.8)

(2.9)

(2.10)

2.11)

(2.12)



It will be assumed that s > 0, and each term is to be understood as a function of

s. The magnitude of the velocity is

1/2
VIl =5 ((1+ ko %) + 27 +?)

(2.13)

Bec.
The regular momentum vector written in terms of the velocity vector is sim-
ply
p=myv (2.14)

= px€z t Py ey + ps€s, (215)

with magnitude

p=P}+pi+pl (2.16)

The corresponding mechanical energy of the particle is

E=+/(pc)* +mic*

= ymcz,

(2.17)

where the relativistic factor y = (1-4?)"/2. The classical motion of such a particle
in an external electric field E and magnetic field B, neglecting radiative losses,

is governed by the Lorentz force equations:

d
E‘S =qgVv: E, (218)
d

EPZQE'FQVXB. (219)

In terms of the moving frame, the fields are E = E'e; + E'¢; + Efe; and B =
B'e; + B’ e; + B'e;, where the components are understood to be functions of

(x,y,t,5). Inserting the energy and momenta into Egs. (2.18-2.19) and equating
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coefficients of the basis vectors gives the following relations

d& . R 3
oo XqE*+YqgE + (1 +kx)qE°, (2.20)
dp, . ) A
(f =Ko ps + Q_Ex +ygB — (1 +kox)g B, (2.21)
s §
d . . .
Py 2Ey + (1 +xx)gB' — xX'qB°, (2.22)
ds s
d S S { A
dp = —Ko Py + ZE“ +x'qgB -y'qB. (2.23)
s §

An alternate derivation of Egs. (2.20-2.23) using the geodesic equations is given

in Appendix A.

Similar to the way we introduced the curvilinear coordinate (x,y, s) to re-
place the Cartesian coordinates of a particle, we will introduce new phase space
coordinates that are more suitable for charges in a particle accelerator. To begin,
we define the reference particle to be a charged particle that always follows the
reference orbit, and which defines the reference time #y(s) and reference mo-
mentum p((s). Relative to this reference momentum, we define the momentum

deviation ¢ of any other particle in terms of its total momentum p so that

(5(S) = M’ (2.24)
Po(s)
which is the same as
p = (1+9)po. (2.25)

We will prefer this coordinate to p.

Associated with d(s) is the longitudinal position z(s) relative to the reference
particle, which we will define in terms of the particle time #(s) and reference
time as

2(s) = =B(s) c[1(s) = 10(s)], (2.26)
with B(s) ¢ being the velocity at s. For example, suppose #(s;) > 1y(s;), meaning

that our particle arrives at s = s; at a later time than the reference particle.
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Then, in the laboratory, when the reference particle is at s,, our particle is at a
distance of approximately B(s) c[#(s;) — to(s1)] behind the reference particle. We
can therefore think of z(s) as the longitudinal displacement of our particle when
the reference particle is at s. The combination (z, ) is therefore a point in the

longitudinal phase space.

Now define new transverse momenta a(s) and b(s), which are normalized

relative to the reference momentum, as in

a=2 (2.27)
Po

=D (2.28)
Po

so that a and b are the new horizontal and vertical momenta, respectively. In

terms of the new momenta a, b, and §, we have the relations
-2

B = [1 + (m) ] , (2.29)

NU+O - - b
S T n (10 (230)

To see the relationship between a and the slope x’, note that
a=2xPs (2.31)
Ps Po
and from the velocity in Eq. (2.9) and the total momentum in Eq. (2.16)

/

Px X
= 2.32
ps 1 +Kx (2:32)
Ps _ \/(1 +6) —a? - b2, (2.33)
Po

which lead to
dx _ (1 +kox)a (2.34)
ds A+ -2 -1

Similarly the vertical direction gives
E _ (1 +kox)b (2.35)

ds U +o—a-bp*
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Using these new variables in Egs. (2.21-2.23) yields

d / (T )

La_ Py \/(1 62— -0+ L|-E + B — (1 + ko) B}'] . (2.36)
ds Do PolsS

db / - o

L0y 4B (14w B - XB, (2.37)
ds Po  DPolS

do o gy o X & l4+kox
—=-(1+0)—+—|—FE +—E"+ E*|. (2.38)
ds Po  Pol|Bc Be Be

Differentiating Eq.(2.26) and using Eqgs. (2.29-2.30) finally gives

P g, B (I + kox)(1 +6)
|¥E +yE>+(1+Kox)E]+’B—0— I (2.39)

bz
ds mc?pB2y3

2.1.3 Accelerator Magnets

Due to the nature of the Lorentz force, in the absence of electric fields, particles
traveling mainly in the longitudinal direction e; are primarily influenced by the
transverse magnetic fields B* and B’. For this reason, the magnets used to bend
and focus the particle beam are typically designed to produce strong transverse
tields, and often have well-defined multipole moments, which can be tuned

independently by the operator of the machine.

Dipole magnets are the primary means by which the beam is bent along the
reference orbit, and are also referred to as bending magnets. The fields in a
dipole are of the form B = Bg e; + B(y; e;, where Bg and Bf) are constants over the
length of the magnet. Of course, any realistic magnet will have variations in
the field strengths at its ends, called fringe fields, but for our purposes we will
assume that the fringe fields cover zero extent. Such a simplification is called

the hard edge model.

In such a magnet, consider the motion of a particle with 6 = 0 that instan-

taneously travels on the reference orbit at position s, so that x(s) = 0, a(s) = 0,
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y(s) = 0, b(s) = 0, and therefore the velocity S ¢ = 5. Equations (2.34-2.38) give

X(s) =0, (2.40)
a'(s) = kg — iBg, (2.41)
Po
y'(s) =0, (2.42)
b(s) = LB (2.43)
Po

We require that such a particle remain on the reference orbit, meaning thata’ = 0

and b’ = 0, which imply

B =0, (2.44)
B = %Ko(s). (2.45)

Thus the reference orbit defines the necessary dipole fields. Conversely, the
dipole fields along with a reference particle can be considered as defining the
reference orbit. For simplicity, the curvature of the reference orbit «y(s) will
always be considered as a step function along s, and nonzero only in dipole
magnets, so k; = 0. The reference orbit then consists of straight lines and arcs of

circles in the horizontal plane.

While the reference particle is guided along the accelerator with dipole mag-
nets, other particles in its vicinity will not necessarily remain so well-controlled.
In special circumstances a series of dipoles can be designed to manage such
particles as well through symmetry and fringe field effects, but more often mul-

tipole magnets are employed to perform this duty.

Multipole expansions for static magnetic fields can be constructed from

Apere’s law and Gauss’ law, which in regions without source currents or electric
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fields are

VxB=0, (2.46)
V-B=0. (2.47)
These imply that the magnetic field can be described by a scalar function ¢ so

that

B =-Vy, (2.48)
with ¢ satistying Laplace’s equation
Vi = 0. (2.49)

In our curvilinear coordinates the Laplacian operator is

P 0 0 2 1 &
02 14kxdx  Oy? (1 + kox)> 0%’

(2.50)

which contains some cumbersome factors of 1 + kpx. Fortunately, other than
dipoles, we will nearly always be concerned with multipole fields in sections
where the reference orbit is straight, i.e. ko = 0. The Laplacian can then be written

in cylindrical coordinates (r, 6, s) with x = rcos# and y = rsin 6, so that

10 0 1 0? 0?
vw=-2,2,_2 .2 2.51
rarré?r * r2 06? * 0s? 2.51)

Neglecting the s dependence, in accordance with our hard edge model, a pure

multipole potential of order n is the solution
U = —a, 1" sin (06 +6,), (2.52)

where g, and 6, are constants. A potential for a general transverse field is then

a sum over multipole components, as in

Y= i Vs (2.53)
n=1
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Table 2.1: Field strengths for selected upright magnets
q

q

Type o Lp L
Dipole koy 0 ko
Quadrupole kixy kiy ky x
Sextupole thh(3x*y -y ky xy Thy (X2 = y%)
Octupole % ks (xX*y — xy?) % ks(3x2y—y?) é ks (x* =3 xy?)

and is therefore completely described by the sets {a,} and {6,}.

For planar accelerators, the most important magnets are ones that exhibit
midplane symmetry. These magnets have B* = 0 in the horizontal plane at
y = 0, so that particles with trajectories in this plane are not deflected vertically,
and are called upright magnets. They are described by a sum over multipole
potentials in Eq. (2.52) with all 6, = 0. The coefficients a, can be written in terms

of derivatives of the magnetic field,

, (2.54)

and in terms of the reference particle we can define the upright multipole mo-

ments

k= (n+ D1-La,,,
Do
qg "B

~ po Ox"

(2.55)

b
x=0
y=0

which have units of m™*". From before, we can identify ky = .

Table 2.1 lists the potentials and magnetic field components in (x, y) coordi-
nates for a few of the lowest order upright multipoles. Figure 2.2 shows field

patterns and equipotential lines for upright quadrupole and sextupole magnets.
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Figure 2.2: Magnetic field patterns and equipotential lines in quadrupole and
sextupole magnets.

2.1.4 Accelerating Cavities

Of equal importance to the magnets in an accelerator are the accelerating struc-
tures that deliver and extract energy from the beam. For us, these elements
will be a series of resonant cavities operating with standing waves at radio fre-
quencies (RF). The design and manufacture of such devices is an active area of
research, and the reader is referred to Chao & Tigner (2006) for technical details

and references.

As a simple model of an accelerating cavity, consider a perfectly conducting
cylinder aligned with the reference orbit that has an outer radius R and a length

L. Electromagnetic boundary conditions restrict the possible fields, with the
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lowest order TMy, fields being

E=EyJy (j01 113) cos (woio 1) €3, (2.56)
E AN
B = —70 Jq (]01E)Sln (wor0 1) €, (257)

at the angular frequency wyio = joi ¢/R. Here E; is the maximum electric field at
r =0, J, is a Bessel function of the first kind, and jy; ~ 2.4048255 is the first root

of Jy (see, for example, section 8.7 of Jackson, 1999).

Now let a highly relativistic (8 ~ 1) reference particle enter this cavity
through a tiny hole on axis and exit through the opposite side. Assuming that it
always maintains relativistic speeds, the energy gain of the particle through the
cavity is

L/2

AE = f ds gEy cos (kits + ¢ir)
P (2.58)

e cos (¢rr)

where kit = wpo/c is the angular wavenumber, and ¢, is the phase when the
particle is in the center of the cavity. The maximum acceleration is achieved
when ¢ = 0 and ks L = 7, so that the average energy change per unit length
is 2q Ey/n. This means that structures with lengths on the order of centimeters

have optimal operating frequencies on the order of a GHz.

Modern accelerating elements can consist of several such cavities grouped
together, with shapes and materials optimized to deliver a maximum acceler-
ating field. Ultimately, however, they are designed to deliver effective acceler-
ating voltages V and therefore a particle with longitudinal displacement z from

the reference particle will experience a change of energy of the form
AE = qV cos (¢ — kit 2) . (2.59)
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We will usually consider particle bunches that are localized enough to be accel-
erated in the same RF wave, meaning that |k z| < 7/2. With ks = 27 fir/c > 0,

1
this implies that |z| < é_lfi’ which translates to |z < 8cm for f;; = 1 GHz.
rf

2.1.5 Linear Optics

Up to this point, Egs. (2.34-2.38) are exact in the sense of classical electrodynam-
ics, and look rather complicated. Now several important approximations will
be made that are relevant for particle accelerators which will allow us to use
these equations to solve for the transverse motion of a charged test particle. The
longitudinal phase space will then be treated and combined with the transverse

motion to give the first order evolution of the six-dimensional phase space.

First, we will assume that the charges travel at relativistic speeds (y > 1) pri-
marily parallel to the reference orbit. This is called the paraxial beam approx-
imation, or small angle approximation, which means that |a| < 1 and |b] < 1.
Second, the transverse coordinates x and y are nearly always small relative to
the size of the system, being on the order of millimeters compared with, for
example, bending radii on the order of tens of meters. Third, the longitudinal
coordinate z is typically on the order of millimeters and thus on the same order
as x and y. Finally, the energies of all particles will be assumed to be similar to

that of the reference particle, so that || < 1.

Now we can see the benefit of these special phase space coordinates: if each
of x, a,y, b, z, and ¢ can be considered as “small”, then functions can be well ap-

proximated by simultaneous Taylor expansions in terms of them. In particular,
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the horizontal and vertical slopes from Eq. (2.34) and Eq. (2.35) are

x':a—6a+/<0xa+()(63), (2.60)

Y =b-8b+kxb+0(€), (2.61)

where €" is any combination of the phase space variables with (positive) powers
summing to n. To first order x’ = a and y’ = b, and therefore the pairs (x, x") and
(y,)') are often referred to as the horizontal and vertical phase space, respec-

tively, when discussing first order motion.

For now, we will specialize to regions with only static upright magnetic
fields, expanded in terms of their multipole moments given in Tab. 2.1. Ne-
glecting radiative losses, ¢’ = 0 in such regions. Expanding Egs. (2.36-2.38) and

combining with Egs. (2.60-2.61) then give

X a

dla K05—(K(2)+k1)x )
—1|= +0 (2.62)
Al o

b kyy

as the first order evolution of the transverse phase space. Reducing these to a
pair of second order differential equations finally yields

X(5) + [15(5) + ki(s)] 2(s) = ko(s) 6, (2.63)

y'(s) = ki(s) y(s) = 0. (2.64)

These two equations form the basis for the linear optics. One now sees the use of

upright dipole and quadrupole fields: they decouple the transverse equations

of motion.
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Hill’s Equation

Equations (2.63-2.64) have the form of Hill’s equation

x"(s) + K(s) x(s) = f(s),

(2.65)

for which, given an arbitrary function K(s), it is impossible to write down a

general solution analytically. For regions of constant K, however, the solutions

are simple. In terms of the particle position and slope at s = 0, the homogeneous

solutions are

x(s) = Cg(s5) x(0) + S k(s) x'(0),

X' (5) = Ci(s) x(0) + S%(s) x'(0),

with the functions Cx and S ¢ defined as

These solutions can also be written as a matrix equation

x(s) x(0)
[ ] = MK(S)[ ],
x'(s) x'(0)

with the transformation matrix

C S
. [ X(5) K(s)].
Ci(s) S1(s)
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cos ( VK s)
] for K >0
ﬁ sin ( VK s)
1
Cx(s) = forK =0 .
Sk(s) )
cosh ( VIK]| s)
| forK <0
N sinh ( VIK| s)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)



_

(a) Horizontal Phase Space (b) Vertical Phase Space

Figure 2.3: The action of a quadrupole with k; > 0 on an initial grid of points in
(x,x") and (y,y") phase space.
Note that dx dx’ is an invariant volume element, because det Mg = 1. A partic-

ular solution with f(s) # 0 can then be formed from these solutions with

N

F(s) = f ds” f(s") [Ck(s") S k(s) = Sk(s) Cx(s)], (2.71)

0

which satisfies

F”(s) + K(s) F(s) = f(s). (2.72)

As an example, consider a particle with phase space coordinates x, x;, Yo, ¥;,
and 6 = 0 at the beginning of a quadrupole magnet with constant k; > 0 and

length L. The coordinates at the end of the magnet are then

|
x| cos ( \/k_lL) 7 sin ( \/k_lL) xo] | 073
x’ —\/k_lsin(\/k_lL) cos(\/k_lL) X,
1
cosh( vk, L ——sinh( Vk; L
Yl (Ve 1) Vi (Verr) [yo]. (2.74)
Y vk, sinh ( vk L) cosh ( vk, L) Yo
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Figure 2.3 illustrates the effect of this quadrupole on the transverse phase space.
Now assume that this magnet is sufficiently short and weak, so that vk, L < 1.

The final coordinates are then approximately

X 1 L] xo

~ , (2.75)
X —ki L 1]{x;
y 1 Lijy

~ °l. (2.76)
y’ le 1 yE)

From the change in slopes, these equations have the form of linearly focusing
and defocusing lenses in the horizontal and vertical directions with focal lengths
f = +1/(k, L), respectively. Similarly, if we had used k; < 0, such a quadrupole
would be defocusing in the the horizontal direction and focusing in the verti-
cal direction. This brings up an important difficulty in beam optics: a single
quadrupole magnet cannot simultaneously focus the beam in both the horizon-

tal and vertical directions.

This matrix form suggests a way to extend such solutions to multi-element
lattices. Consider K(s) as a step function, which can be thought of as a sequence
of elements starting at s = 0 with lengths L; and values K; for i e N. The solution

within element N is therefore

x(s) x(0)
= Mg, (s = sy-1) - Mg, (Ly—1) - ... - Mg, (Ly) , (2.77)

X' () x'(0)
with sy = YN, L.
Identifying these K; with «3(s) + k;(s) in the horizontal direction and —k;(s) in
the vertical direction, assuming hard edge dipole and quadrupole magnets, this

is therefore the solution to Egs. (2.63-2.64) with § = 0. In other words, the phase

space coordinates of a particle at s are linear functions of their values at 0, with
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the transformation matrix being the concatenation of matrices corresponding to

all of the elements between 0 and s.

Twiss Parameters

The individual particle trajectories can be utilized to characterize the evolution
of a beam of particles through this system. To do this, we write the transverse

coordinate in the form

x(8) = 2 JB(s)sin (Yx(s) + ). (2.78)

The positive §,(s) is called the beta function, and ¢,(s) + ¢ is called the betatron
phase. The constants J and ¢ are called the particle amplitude and particle

phase, respectively. The function y,(s) is chosen as

~o
X = — ds, 2.79
Ua(s) ?fﬁﬁﬂ s (2.79)

so that ¢ is the betatron phase at s = 0. Inserting Eq. (2.78) into Hill’s equation,
Eq. (2.65), gives

_ 1 7 \2 1 7 7 \—2
K = 4ﬁ/% (ﬂx) + Zﬁxﬁx (ﬁx) . (280)
The slope of the beta function defines another function
38 @81)
ay = 7 ) .
so now we have
> +B.a,— K (B)*+1=0. (2.82)

Finally, with the definition y, = K 8, — &/, we get

1+a?

Bx

Yx = (2.83)
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The functions g,, @,, and v, are called Twiss parameters.

Differentiating Eq. (2.78), the particle’s transverse phase space coordinates

are related to the Twiss parameters by

VB: 0 |[sin(y,
[x]: V2Ul o, 1 [Sm(w +¢)]. (2.84)
X B. B. cos (Y, + @)
This can also be written as
X t.(s) - RW,) - V27 sng , (2.85)
xX'(s) cos ¢
where
cosf sind
R(O) = (2.86)
—sinf cos 9]

is a rotation matrix, and
VBx($) 0
t.(s)=|  a.s) 1| (2.87)

VB B

The Twiss parameters can thus be used to form a transformation matrix that

evolves a point in phase space with initial amplitude J and phase ¢ to a point at
s, and therefore must be equivalent to the transformation matrix Mk(s). To see

this, we insert Eq. (2.85) into Eq. (2.69), giving
t.(s) - R(Yr) = Mi(s) - t(0). (2.88)
Multiplying by the transpose gives
T.(s) = M(s) - To(0) - [Mg(9)]", (2.89)

with the Twiss matrix defined as
Tx(s) = tx(s) : [tx(s)]T
[ Buls) —ax(s>] (290)

—CL’X(S) %c(S)

35



So,if the Twiss parameters are know at any s, then the Twiss parameters at any

other s can be determined from Mgk(s).

As an example, consider the beta function in a drift. The transfer matrix in a
drift (K = 0) is simply
1 s
Mo(s) = : (2.91)
0 1

If we assume that the Twiss parameters at the beginning of the drift are 8,y and

@, understanding that y, can be written in terms of these, Eq. (2.89) gives

1+a?
Yoo (2.92)

ﬂx(s) :ﬁxO —2ay s+

x0

quadratic in 5. As long as a,y > 0, the beta function will focus to a minimum at
s = @y Bro/(1 + aio), with a value B,(s*) = B,0/(1 + aio). Alternately written, the
beta function in a drift given as the distance from the minimum at s* with value
B is

Bus—s)=p+ 8 ;:)2. (2.93)

The shape of the beta function in a drift always has the form of a parabola.

The form of Eq. (2.84) also reveals an important relation. Multiplying by t;'

and squaring both sides shows that
BeX? + 20 xxX +y, x> =27 (2.94)

is a constant of motion, called the Courant-Snyder invariant. This equation has
the form of an ellipse in (x, x’) phase space, with dimensions shown in Fig. 2.4.
Particles with the same amplitude J and various phases ¢ lie on this ellipse,
while particles with smaller amplitude lie within. This is important, because
a beam of particles is therefore completely characterized by a set of (J,¢) and

initial Twiss parameters, with its evolution governed by M.
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Area =27 J

Figure 2.4: The phase space ellipse with a fixed amplitude J and all possi-
ble phases ¢, according to Eq. (2.85) with Twiss parameters B,, @,, and vy, =
(1 + ai) /Bx. Particles distributed uniformly on this ellipse represent an emit-
tance ¢, = J.

For many particles, this set can be approximated by a density p(J, ¢). Typi-

cally this density assumes a Gaussian distribution, modeled by

06(J, ) dJ d¢ = ﬁe_‘]/ € dJ dg, (2.95)

X

where ¢, is called the emittance. Using such a distribution, one can calculate the

average amplitude of a particle

00 27
<J>=fdjf do J pc(J, ¢)
J (2.96)
= €,.

Similarly, the average position squared

2n

<x2>:fdjf d¢ [2]8in2¢]PG(~L¢)
0

. (2.97)

= Gxﬁm
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the average slope squared

2n

<x’2> = f de d¢ 2ﬁ—J [cos2 ¢ + a’sin’ ¢ — 2 @, cos ¢ sin ¢] pc(J, )
0 0 '

(2.98)
= € Yx
and the average correlation
0 2n
(xx'y = f de dgp2J [sinqﬁ cos ¢ — a, sin’ ¢]pG(J, o)
i 0 (2.99)
= —€ Q.
Identifying these terms in the average of Eq. (2.94) gives
€ = \/(x2> (x?y — (xx')2. (2.100)

So, for this Gaussian distribution the emittance is the area in phase space
circumscribed by a collection of particles with the average amplitude and which
contains (e — 1)/e = 63% of the particles in the distribution. A collection of
particles all with an amplitude 3 ¢, circumscribes 95% of the distribution. This is
useful because the various expectation values can be calculated for an arbitrary

distribution, and then fit with such an ellipse.

When the emittance is calculated using Eq. (2.100) it is called the geometric
emittance. During acceleration, however, our transverse momentum is reduced
due by the reference momentum P,. To account for this, we define the normal-
ized emittance as

ev = YBE, (2.101)

which is invariant through acceleration.

From Eq. (2.97), we see that the root mean squared (RMS) width of the beam

is Ve, B,. Therefore the beta function describes the beam envelope, and must
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be kept small enough to avoid colliding the outermost particles with the beam
chamber. Fortunately, the the largest ERL emittance considered is on the order
of a nm, which would give a beam width of 1 mm for a 1000 m beta function.
However, if there are particles with more or less energy than the reference mo-

mentum, then the beam width can become larger where there is dispersion.

Dispersion

The preceding calculations are valid for 6 = 0. For nonzero ¢ the vertical equa-
tion of motion, Eq. (2.64), is unchanged because there are no vertical bends in
this planar lattice, but the horizontal equation of motion, Eq. (2.63), has a right
hand side f(s) = o6 within a bend. To account for this, we add the particular
solution of Eq. (2.71) to the homogenous solution Eq. (2.66), which can be easily
integrated for constant xy and J, giving

o0D(s) = 6% [1-=cos(kys)], (2.102)
0

where D(s) is called the dispersion function. The general solution for the hori-

zontal coordinates of a particle in a bend is then, in matrix form,

1 1
x(s) cos (ko §) - sin (ko §) P [1 —cos (ko )] || x(0)
0 0
X'(s)| = [kosin(kys)  cos (ko $) sin (ko 5) X' (0)]- (2.103)
0 0 0 1 5

The dispersion function therefore represents an additional horizontal offset of
an off-energy (6 # 0) particle from the reference orbit, which arises from the fact
that particles with higher energy than the reference particle are bent less (i.e.
have a larger radius of curvature) in a dipole magnet, and vice versa, with the

degree of offset proportional to their momentum deviation 6.
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Due to the linearity of these equations, the dispersion can be thought of as
separate from the motion of an otherwise on-energy (6 = 0) particle, which

evolves according to

D(s) Ck(s) Sk(s) Klo[l —cos (ko $)] || D(0)
D'(s)| = |Cli(s) Si(s) sin (kg §) D'(0) | (2.104)
1 0 0 1 1
and thus the dispersion through multiple lattice elements can be calculated
by concatenating matrices, similar to the method in Eq. (2.77). The form of
Eq. (2.104) also shows that while dispersion is “created” in bending magnets,

it can be affected by quadrupole magnets as well, which will turn out to be

useful.

The particle coordinate and slope in terms of beta function, phase, and dis-

persion are then

x(s) = x5(s) + 6 D(s), (2.105)
¥ (s) = xXj(5) + 6 D'(s), (2.106)

with the definitions
X5(5) = V2T B(s) sin ((5) + ¢). (2.107)
Xi(s) = % (08 (W(5) + @) — aty Sin (U(s) + B)] (2.108)

coming directly from Eq. (2.84). In phase space, particles with the same ampli-
tude and momentum deviation, but different phases still form an ellipse as in
Fig. 2.4, but with the center shifted to (6 D(s), 6 D’(s)). Sets of particles with dif-
ferent energies therefore separate in dispersive sections, which tends to increase
the apparent size of the beam. When a section begins and ends with D(s) = 0

and D’'(s) = 0, it is called achromatic.
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Time of Flight

Thus far we have considered the transverse coordinates x, x’, y, ¥’ of a particle
relative to the reference orbit, with momentum deviation ¢ relative to a reference
particle on that orbit. The fifth coordinate to discuss is the longitudinal position
z(s) relative to the reference particle, which is also called the time of flight due

to its relationship with #(s) in Eq. (2.26).

In absence of electric fields, expanding Eq. (2.39) gives

% = —kox + O (62) , (2.109)

noting that the ratio 8/8y =1+ O (63), because

5 35
£=1+—2———352+.... (2.110)
IBO Yo 2 Yo
Integrating Eq. (2.109) then gives

N

2(s) = z(0) - fko(i) x(8) ds + 0(62). (2.111)
0
Note that if we write the horizontal coordinate x(s) in terms of Twiss parame-

ters and dispersion function, as in Eq. (2.105), then the change in longitudinal

coordinate is
S

2(s) = 2(0) = — f K0(3) [ V27 B.(3) sin (y.(3) + ¢) + D(5) 6| ds. (2.112)
0

Manipulation of the dispersion function within bends therefore allows the lat-
tice designer to change the longitudinal phase space, and in particular bunch

compression, discussed in Section 3.5.

The longitudinal coordinate to first order can only change within a bend,

and we know the first order trajectory in a bend from the first row of Eq. (2.103),

x(s) = cos (kg 5) x(0) + Ki sin (kg 5) x'(0) + Kl [1 —cos (kg 5)] O. (2.113)
0 0
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Using this in Eq. (2.111) gives

z2(s) = z(0) — sin (ko 5) x(0) + Kl [cos (kg s) — 1] X(0) +
0

1
—sin(kp §) — s] 6. (2.114)
Ko

This result, combined with Eq. (2.103), the vertical motion, and the fact that ¢ is
unchanged, gives the six-dimensional phase space evolution through a bending

magnet in matrix form as

x(s) cos (ko §) Klo sin (ko S) 00O K—lo [1 — cos (ko )] || x(0)
x'(s) —Ko sin (kg §) cos (ko §) 00O sin (kg S) x’(0)
y(s) _ 0 0 I s 0O 0 v(0)
V' (s) 0 0 010 0 V' (0) .
2(9) —sin (kg §) 1 [cos(kgs)—1] O O 1 1 sin (kg ) — s || z(0)
Ko Ko
(s) 0 0 000 1 6(0)
(2.115)

The six-dimensional transfer matrices for other common elements can be de-
rived similarly, and are listed in Appendix B. In particular, the fifth element of
the sixth column of these matrices is often called the first order time of flight
term rs¢, which is important in controlling the length of a bunch. When rss = 0
for a section, it is called isochronous to first order. It and higher order time of

flight terms are discussed in Section 2.1.6.

Acceleration

For simplicity we will model accelerating cavities as in section 2.1.4, which as-
sumes that particles are sufficiently relativistic with velocity v = ¢ so that they
travel essentially with the accelerating wave. If £(0) is the energy of a particle at

the beginning of a cavity, then the energy of the particle at the end of the cavity,
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according to Eq. (2.59), is
E(L) = &(0) + gV cos [¢r — kit 2(0)] (2.116)

where gV is the maximum energy that the cavity can deliver over its length
L. Also in this relativistic assumption, the longitudinal coordinate is approxi-
mately unchanged, as in z(L) = z(0). Because the energy through many cavities
is simply accumulated, the passage of a particle through many adjacent cavities
with energies ¢V, gV, etc., the final energy through N such cavities is given by

Eq. (2.116) with gV =3 qV, so long as the phases ¢, are the same.

For particles with momentum p > mc¢, the momentum deviation ¢ is ap-

proximately the same as the energy deviation

8(;080 ~ p;opo, (2.117)
where & is the energy of the particle and & is the energy of the reference particle.
For example, an electron with energy 11 MeV has a momentum deviation of
6 = 0.10025 compared to a reference electron at energy 10 MeV, and because the

machines considered will operate at energies above 10 MeV, the terms energy

deviation and momentum deviation will be used interchangeably.

Now let the reference particle enter the cavity with energy &, so that its
energy at the end of the cavity & = &) + gV cos¢. For a particular particle,

rearranging Eq. (2.116) gives the energy deviation at the end of the cavity

_ )1 @ o8 [¢r — kit 2(0)] 3 @
5(L) - {1 & }{ Cos ¢rf 1} " & 6(0) (2118)

The cosine term expanded in small z is

cos [ — kit 7]

1 1
—1=keztangy — 5 (ke 2)* - = (ke D)’ tan gy + O (). (2.119)
COS it 2 6
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This gives the first order transfer matrix for the longitudinal phase space as

L 1 0 0
(L) _ z(0) (2.120)

sL)) |11 - &o/Elkstandy Eo/E1)|500))

With these explicit formulas it is possible to calculate the longitudinal phase
space density p; at the end of a linac given the density p, at the beginning. This
is done by first writing the initial phase space coordinates (zy, 6y) in terms of the

tinal phase space coordinates (z;, d;), as in

20(z1,01) = 21, (2.121)
é] [COS(¢rf_kﬁZ1) _ &

1|+ —=—46;. 2.122
& + 1 ( )

00(z1,01) =11 —
0(z1,01) [ cos b z

Simply changing variables gives

92 0%
Po(z0, ) d2o Ay = po (o1, 81), Go(zr, 0D |91 91| dzy dsy, (2.123)
0z1 00,
and we can therefore identify
&
p1(z1,61) = po (20(z1, 61), do(z1, 61)) R (2.124)

where the Jacobian factor has been calculated. Typically the standard deviation
of z and ¢ using such densities are called the bunch length and energy spread,

respectively.

To illustrate the effect of a linac, consider a bunch with an initial Gaussian

—72 —5?
exp|—
“xp (20‘%) P (20'%)
2ro, 2oy

with bunch length o, energy spread o, and energy & = 10MeV shown in

distribution in z and 6,

po(z,6) = (2.125)

Fig. 2.5(a). It is then sent through a linac with ¢, = 0 and accelerated to an
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Figure 2.5: The longitudinal phase through a linac. The bunch begins with a
Gaussian density according to Eq. (2.125) with bunch length o, = 0.6 mm, energy
spread o5 = 2x 1073, and energy & = 10MeV, and is accelerated through a linac
with ¢ = 0 and f;y = 1.3 GHz to an energy of & = 5GeV, according to Eq. (2.124)
combined with Egs. (2.121-2.122).

energy & = 5GeV, shown in Fig. 2.5(b). There one sees that the final energy

spread is dominated by the cosine-like curvature of the density, with the initial

energy spread giving little contribution.

For an arbitrary ¢, the variance of z; and §, at the end of a linac can be

calculated exactly using the distribution in Eq. (2.125), yielding

7= o (2.126)
Eo\? e (e — 1) (e —cos26)  (Eo)
2 = -0 rf <0 )
o T (1 81) 2 cos? ¢y + (81) T 50> (2.127)

where € = (ks 0,)*. The bunch length o, is unchanged by the linac. Typically e
is small, so expanding Eq. (2.127) gives

cos2¢y 1 4
— = | (k, +...
OS2 by 2) (kit 0720)

& 2
+(—0) 02, (2.128)
&

&\
o = (1 - 8_0) [(krf 00 tan ¢yr) +(

1

The energy spread for on-crest acceleration (¢y = 0) of a Gaussian bunch is
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1
therefore approximately o = %(krf 0,)?%, and for sufficient off-crest accelera-

tion (¢, # 0) it is approximately os1 ~ | ket 00 ¢t |-

The evolution of the transverse phase space in an accelerating cavity is
worked out in Rosenzweig & Serafini (1994), and for completeness we give their

result here. The transfer matrix is

cos@ — V2cosA¢ sina A2V2cos A¢ sina
My =] 1 . (2.129)
e li cos A¢ + —} B[cosa/+ 2 cos Ag sina/]
A V2 2V2cos Ap
with parameters written in our terms as
Ap = ¢ — kit 2(0), (2.130)
1+6(0) COS ¢yf
A= 2.131
e[ 1)
A
B= 2.132
A+L ( )
a=———1logB. (2.133)
2V2cos Ag
The transverse coordinates at the end of the cavity are then
x(L x(0)
= = My , (2.134)
x'(L) x'(0)
(L) (©0)
g = My d . (2.135)
y'(L) y'(0)

2.1.6 Nonlinear Optics

The motion in a classical deterministic system can be completely predicted
given the fields and initial phase space points, and the six-dimensional transfer

matrices of this form give the full first-order classical motion in the accelerator.
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For compactness, we will call the vector of phase space coordinates 7, with an
arrow to distinguish it from the coordinate z(s). The components 7' of 7 are

numbered according to
(2'. 2%, 2%, 24, 2°,2°) = (x, a, . b, 2, 9). (2.136)
Equations like Eq. (2.115) can then be written as
Zi(s) =R ()27(0) + O (&), (2.137)

with i and j numbering the row and column of an element of the the transfer
matrix, respectively. Repeated indices are summed from 1 to 6 according to
the Einstein summation convention. Similar to Eq. (2.77), the phase space co-
ordinates the end of the n™ element with position s = s, given the phase space

coordinates at the beginning of the first element at s = 0 are

Rjz

J3
.- R M ji

Z'(su) = Ry, R, @) jr

(n) jn (n_l)jn—l '

7'(0)+0(&). (2.138)
associating Rém)j with the components of the transfer matrix for the m™ element.

The first order particle motion can thereafter be used to calculate higher or-
der motion. The reader may be familiar with this method from perturbation
theory in quantum mechanics (see for example Landau & Lifschitz Vol. 3, 2002).
Let M be the exact map of phase space coordinates, so that 7'(0) at s = 0 is

mapped to Z'(s) through a portion of the accelerator according to

7i(s) = M (Z(0), s) (2.139)

= R'(8)27(0) + T'; () 27(0) 2(0) + U}, () 27(0) 25(0) 2'(0) + O (€*), (2.140)

where the map has been Taylor expanded about 7 = 0, the reference particle

coordinates. The matrix R’ j(s) is the first order map which we have solved for
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in terms of individual elements, as in Eq. (2.138). The coefficients Tij (s) and

U, (s) represent the second and third order motion, respectively.

Phase space coordinates evolve according to the first order differential equa-
tion

4 () = f1(Z, ), (2.141)
ds

where the functions f’ have been calculated at the end of Section 2.1.2. Alterna-

tively, they can be found from the Hamiltonian K of the system, by

oK 0K oK oK oK oK
1 2 43 4 (5 6) _ _ = . 2.142
(' 52 F) (aa, Tl T e (2.142)
In fact, all analysis could start with such a Hamiltonian, as shown in Courant &

Snyder (1958).

Now Taylor expand f about Z = 0, so that

—dZ" =L'.27+ N (Z,5) (2.143)
ds J

- Lijzj +Nijkzjzk + Nijklzjzkzl + 0(64), (2.144)

where L' jare the linear terms, N’ are all of the nonlinear terms, and the N are ex-
pansions of the nonlinear terms of f. For example, given a horizontal trajectory

within static upright magnetic fields we have

X a Koxa—ad
a Ko O — (K(z) + kl) X — (KO ki + %kz) x* = g a* + Tkoy* — ko b?
% y _ b . Koxb—bo +O(e3),
b kyy (koky + ko) xy
z —KoX —1 (kox)* = 1a® — 1b?
0 0 0

(2.145)
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where the first vector on the r.h.s. contains the first order terms L’ i and the
second vector on the rh.s. contains the second order terms N';,. Along with
this, write 7 as

20 _ 20 >0 >0 4

=ttt O(e ), (2.146)
where terms up to 7, represent the n" order solution to Eq. (2.144). The first

order equation
d

d Z[l] = Ll Z[l] (2.147)

has already been solved, with solution

Zy(8) = R () Z1,(0). (2.148)
This is equivalent to
d
—R ;=L R",. (2.149)
ds

The second order equation is
L v z) =1, (2 + 20) + N 202 2.150
a(zm +2) = L5 (3 +20) + N 3 2 (2.150)
Subtracting off the first order Eq. (2.147) and some manipulation gives

%[(R_l) Z[le] (R, N, 2020 (2.151)

where R7! is the inverse matrix of R. With the definitions Z’[n](O) =0forn > 2,

integrating Eq. (2.151) gives
Z5,(s) = R' (s) f ds [R—l(s)]jk NYL.(3) 2, 27,5 (2.152)
=T',(5) 27(0) 20, (2.153)

where the coefficients 7", are given explicitly in terms of R'; and N',, by

T (s) = R (s) f ds [R'®)], N%,(5) R*(5) R(3). (2.154)
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Because Tij =T ;» it is more convenient in practice to refer to symmetrized

versions of nonlinear terms, defined as

T, forj=k

ik = , (2.155)
27", forj#k

and similarly for higher orders. Also define
rij = Rij. (2.156)

Note that the dispersion D = rs, and its slope D’ = ry. This method can be

similarly continued to higher orders.

Sextupole Magnet

As an example, consider the motion in an upright sextupole magnet with length
L and sextupole moment k,. The first order transfer matrix R’ (s) is simply that
of a drift given by Eq. (B.1). The phase space coordinates at the entrance of the
sextupole at s = 0 are

X0
Ay
zo =" (2.157)
bo

20
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Multiplying by the transfer matrix and inserting the solution into the second

term on the r.h.s. of Eq. (2.145)

Nklm(g) Z[ll](g) Z)[nf](g) =

gives the second order terms
) ap
1 ~ 2 1 ~ 2
—Ekz (xo + Sao)” + Ekz (Vo + 3 bo)
—0 by
ka (xo + $ ao) (yo + 5 bo)
1 1

—54% = 55

0

(2.158)

Multiplying by transfer matrices and integrating as in Eq. (2.152) finally gives

1 )C()2
|42
k2 [ 2\ L

B R

1 XO2 1
-3
k2 [ 4\L) 2

o [R5 )

S 2o -t
TR
T R
TN
—%L(aé + b(z))
0

. (2.159)

From this one is able to read off all of the second order terms. For example,

1
tie = —L and traq = 61(2 L.

By definition, a sextupole moment can only affect the second order motion

and higher of a particle. This is useful for the lattice designer, because once the

tirst order optics have been determined then sextupole magnets can be intro-

duced and tuned. In particular, they are useful for controlling the second order

dispersion.

It should be noted that, in practice, the nonlinear transfer map terms are cal-

culated numerically using techniques from differential algebra, and with great

efficiency. For an overview, see section 2.3.7 of Chao & Tigner (2006).
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Nonlinear Dispersion and Time of Flight

In general, the dispersive orbit is the result of mapping a particle that has phase
space coordinates all zero except for a finite momentum deviation. In other
words, if M is a phase space map, then the dispersive orbit through the map is
given by

Xs
as
Yo
bs

: (2.160)

2

S, © o o o O

)

where the subscript ¢ is a reminder of the ¢ dependence. For horizontal refer-
ence orbit we always have y; = 0 and bs = 0, because there are no vertical bends

to create vertical dispersion. Expanding these functions in ¢ gives

x5(5) = D(5) 8 + ti66(5) 6 + O (€). (2.161)
as(s) = D'(5)6 + ye(s) 6> + O(€7), (2.162)
z5(8) = rse(5) 6 + t566(5) 5> + O (62) , (2.163)

revealing the first order dispersion function D(s) and its slope D’(s). The time of

flight term rs56(s) can be found using Eq. (2.111), giving

N

rse(s) = — fKO(E) D(3) ds. (2.164)

0

The dispersive orbit is dependant on the reference location, chosen here to
be at s = 0. For example, suppose that the map from s = 0 to s = s, is known to

second order, and that we have a sextupole magnet with length L and sextupole
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moment k, beginning at s = s,. The dispersive orbit at s, = s; + L, the end of this

element, is then

xs5(s2) D(s1) + LD'(s1) t166(52)
as(s2) _ D'(sy) sS4 f266(52) 524 0(63) ’ (2.165)
75(52) rse(s1) I566(52)

o 1 0

with the second order terms

1
ti66(52) =t166(S1) + Ltres(51) — é_lksz [Do(s)]?

~ SL2D(s1) DY) ~ 3kl (D' 5P ~ LD (s, (2.166)
1 1
166(52) =te6(s1) — EkzL [D(sD]* - EkZLZD(Sl)D,(Sl)’ (2.167)
1
fs66(52) =ts66(S1) — §L [D'(s)]. (2.168)

This shows that a sextupole must be in a section with nonzero first order disper-
sion in order to affect the second order dispersion, and that, roughly speaking,
sextupole strengths can be weakened as the first order dispersion is strength-

ened.

2.2 Radiative Emittance Growth

When a bunch is accelerated, each particle can emit photons by synchrotron ra-
diation, which perturb the orbits of these particles and can result in an increase
in emittance. The following argument, which originated in Sands (1970), gives

an estimate for this emittance growth.

Suppose that a particle with energy & is traveling in a dipole magnet with

horizontal position x(s) and slope x’(s) at s, and emits a photon with energy &,.
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Neglecting the opening angle of this radiation, the particle’s position and slope
are approximately unchanged, but its energy has been lowered, and therefore
according to Egs. (2.105-2.106) its position and slope due to betatron motion are

changed by
87
Axp(s) = D(s) =, (2.169)
Eo
’ ’ 8)’
Av(s) = D'(5) g (2.170)
which corresponds to a variation in amplitude
2AJ :ﬁxA(ng) + ZQ’XA()Cﬁ xl’;) +yxA(xé). (2.171)

The variation in xé is calculated as

A (xé) = (xﬁ + Axﬁ)z - xé,

2
= 225 Axp + (Axg) ", 2.172)
& &
=2x DL+ D",
el &
and similarly
’ ’ 87 ’ 8’)’ ’ 87 ?
A(xpx5) = x5 D 8—O+xBD8—O+DD (8—0) : (2.173)
& &\
72\ _ Y Y ”2 Y
A(x?)=2x,D (50) +D (8—0) : (2.174)
Factoring out the energies, we have
8 2
2AJ = H(s) (—7) , (2.175)
Eo
H(s) = B.(s) [D'(5)]* + 2 ax(s) D(s) D'(s) + yx(s) [D(s)]*. (2.176)

Averaging over the synchrotron radiation power spectrum and integrating
through a distance L in the lattice gives the change in normalized emittance

as

L
55 r.hc

Aey = ——— =< H 340 ds. 2.177

En 18 V5 mc? Of (s) [k(s)I” y” ds ( )
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This formula is especially useful for lattice design, because it is written in terms

of the Twiss parameters and dispersion.

2.3 Accelerator Simulation

In the previous sections we have seen how the evolution of a beam through an
individual element can be understood through the linear and nonlinear maps
of phase space coordinates through that element, and we have seen how to cal-
culate these maps. The transportation of a beam through a lattice is then under-

stood through the concatenation of individual element maps.

For lattices of few elements or high symmetry it can occasionally be enlight-
ening to do such calculations by hand. Realistic accelerators, however, are of-
ten described by complicated lattices with many elements, and the modeling of
these machines requires the inclusion of many effects beyond the single parti-
cle equations of motion, for example coherent synchrotron radiation, described
in Chapter 5. Furthermore, lattices often need to be designed to provide certain
beam characteristics, such as beta functions at a point, by simultaneously tuning
attributes of several elements, such as quadrupole moments, and these charac-
teristics often depend on the element attributes in highly nonlinear ways. For
these reasons the aid of a computer is necessary in the design and simulation of

modern particle accelerators.

Many different codes are in use, with some in more active development than
others. A table of some of the more easily available ones is shown in section 2.2.7
of Chao & Tigner (2006). Many are derived from MAD (Methodical Accelerator

Design), which is perhaps the most commonly known program (Grote & Iselin,
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1991). The work in this dissertation is primarily done using a code called Bmad .

2.3.1 Bmad & Tao

Bmad is a set of subroutine libraries for simulating relativistic charged beams
in a particle accelerator, and has been in development and use at Cornell Uni-
versity since 1996 (for a brief introduction see Sagan, 2006). It is written in a
modular fashion, primarily in Fortran 90, so that a user may relatively easily
build a custom program to perform a particular simulation. A lattice in Bmad is
described by a text file written in an extended form of the MAD syntax, and can
describe an arbitrary arrangement of common accelerator elements, e.g. bends,

quadrupole magnets, and accelerating cavities.

The capabilities of Bmad include essentially all of the calculations described
in this chapter. Once a lattice is loaded, it can compute Twiss parameters and
dispersion through multiple elements, calculate and manipulate Taylor maps to
arbitrary order, integrate emittance growth formulas such as Eq. (2.177), and cal-
culate a myriad of other important accelerator physics quantities not discussed
here. In particular, Bmad has the ability to track point particles through the lat-

tice and apply effects to these particles along the way:.

Designing and testing accelerator lattices is such a common use for Bmad
that Sagan, along with Jeffrey Smith, created the Tao (Tool for accelerator opti-
mization) program, which is now in active development along with Bmad . Tao
is an interactive command-line environment (along with a plot window) that
calls Bmad routines to perform lattice and beam calculations. Many of the plots

in Chapters 3 and 4 were generated using Tao .
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The main capability of Tao is multi-dimensional optimization of an acceler-
ator lattice. Optimization in general is an important mathematical topic in the
tield of operations research, and has a wide variety of applications ranging from
stock portfolio allocation to the timing of traffic lights in a city. In optimization,
one is concerned with a system S that is determined by a set of independent
variables V,,, and a merit function M that somehow encapsulates the overall
quality of S. This merit function is typically composed of out of a set of con-
straints C, with the form

M= w,Ch. (2.178)

Each constraint represents some property of S that should be minimized, and
the set of weights w, determines the relative importance each constraint. A

constraint is typically of the form
C=X(S) -X, (2.179)

where X is a number that can be computed from S, and X is the desired value
for that number. For example, if S is an accelerator lattice, then X could be the
horizontal beta function 8, in meters at the center of an undulator, and X = 2.5
could be a value specified by a beamline user. Constraints occasionally have the
form of

C = max |X(S) - X,0|, (2.180)

which is zero as long as X(S) is less than X For example, X(S) could be the
maximum beta function in meters through a section of the lattice, and X = 100

could be the maximum allowed.

An optimizer is an algorithm that takes an initial set V,, and varies each
to find a minimum for M. An optimizer generally knows nothing of the un-

derlying logic or physics that determines the merit function, and can often be
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treated as a ‘black box” for solving complicated systems. Tao incorporates a va-
riety of optimizers, but typically only two are needed for lattice design. One is
the Differential Evolution (Price et al., 2005) method, which is a heuristic algo-
rithm inspired by evolutionary biology. It works by taking an initial random
population of variables {V;} corresponding to a set of merit functions { M}, and
combines and alters them to produce a new population of variables with lower
associated merit functions. It is a very effective global optimizer. The other is
the Levenberg-Marquardt algorithm, which is a modified method of steepest
descent (see for example Press et al., 2007). It takes an initial V, and varies each
variable to calculate a local derivative of the merit function, and steps the so-
lution accordingly. This algorithm is especially useful when the initial solution
is close to the desired solution, meaning that it is a good local optimizer. It can

also be surprisingly good even when the solution seems to not be very local.

2.3.2 Optimization Example

As an example of a typical optimization, consider a section of an accelerator at
the end of a linac in Fig. 2.6, which shows all of the constraints for the section.
Particles exit the linac at 5 GeV, and must have a specified width in undulator,
which translates into the constraints 8, = 8, = 2.5m and «, = @, = 0 in the center
of the undulator. The dispersion and its slope must also be zero in the undula-
tor, but that is automatically satisfied because there is no dispersion exiting the
linac. A first optimization uses the five quadrupole strengths prior to the first
undulator as variables with a merit function composed of these constraints, and

results in the beta functions plotted.
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Following the undulator is a three bend isochronous achromat, which must
end with D = 0, D’ = 0, and rs¢ = 0. Because the section begins with D = 0
and D’ = 0, and is symmetric about the center bend, the achromatic condition
can be satisfied by using a constraint of D’ = 0 in the middle of the center bend,
and varying quadrupole strengths in pairs about this point. Also because of
the symmetry, using rss = 0 at this point will satisfy the isochronous condition,
and using the constraints that @, = @, = 0 at this point will result in beta func-
tions that lead into the second undulator with the same Twiss parameters as
the first undulator. Finally these presence of bends will result in radiative emit-
tance growth Aey according to Eq. (2.177), so this is used as constraint with the
form in Eq. (2.180). A second optimization thus varies the quadrupole strengths
between the undulators symmetrically, resulting in the beta functions and dis-

persion plotted.

The second order dispersion is required to give t)5 = 0 and #56¢ = 0 in the
middle of the second undulator. Using the four sextupole strengths as variables
and a merit function with these constraints, a third optimization results in the

second order dispersion ¢4, plotted.

In principle all three optimizations could be combined, using all of the con-
straints mentioned and varying all of the quadrupole and sextupole strengths.
In practice, such an approach can be very time consuming, with the optimiza-
tion taking perhaps days to complete on modern computer hardware. Instead,
an intelligent partitioning of this optimization, and recognizing the symmetries,

can reduce the computation time to be on the order of minutes.
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Figure 2.6: Example of the optimization of a section following a linac. The constraints at different points are indicated by
the arrows. The vertical size of the quadrupole and sextupole magnets represents their k; and k, strengths, respectively.
This section is identical to one later shown in Section 3.2.3.
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Figure 2.7: Trajectories of particles in the horizontal plane using the Twiss parameters and dispersion from Fig. 2.6. The
particles are initially distributed with the same amplitude and different phases and energies shown in Fig. 2.8(a), and

represent a normalized emittance of 0.3 mm-mrad at 5 GeV and momentum deviations ¢ e [—2 x 1074, 2 x 10‘4].
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Figure 2.8: Particles in the horizontal phase space at selected points in Fig. 2.7.
The colors represent different momentum deviations d, with blue representing
positive §, and red representing negative 6. They all have the same amplitude J
with different phases ¢.

Finally, to illustrate what the result of these optimizations will do to a beam,
individual particle trajectories in the horizontal plane are shown in Fig. 2.7.
They are calculated using the Twiss parameters and dispersion from Fig. 2.6
according to Egs. (2.105-2.106). The initial distribution of particles is a matched
ellipse shown in Fig. 2.8(a). This ellipse contains particles with different ener-
gies. Manipulation by the first five quadrupole magnets brings this distribution
to have a small width shown in Fig. 2.8(b). At the point where the dispersion
is largest, ellipses with different energies separate, shown in Fig. 2.8(c). The

distribution in the center of the achromat is show in Fig. 2.8(d).
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CHAPTER 3
MINIMAL ERL

3.1 Introduction & Layout

The Minimal ERL (MERL) is a realistic lattice and layout for a high energy ERL
X-ray light source. It is used to show all of the major issues that one must an-
alyze when designing an ERL. The layout is especially designed to be as com-
pact as possible given practical attributes for typical beam transport elements,
without reference to any particular topography. It is highly symmetric, which
greatly simplified the amount of effort needed to design and optimize the beam
optics. This machine is essentially a simplification of Cornell ERL described in
Chapter 4, and uses many of the same operating parameters as that design. In

particular, it uses the same operating modes for particle bunches, as listed in

Tab. 3.1.

The MERL is primarily a light source, and has space for 18 insertion devices.

In order to produce high quality X-rays, it must:

o Accelerate particles from 10 MeV to 5 GeV
e Send bunches with low emittance through 18 insertion devices

e Control bunch length

We will assume the existence of a injector that can merge bunches of 10 MeV
electrons into the main linacs of the MERL. In the default operating mode (Mode
A), these bunches will have 77 pC of charge and will occur at a repetition rate

of 1.3 GHZ, which corresponds to an average current of 100 mA.
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Table 3.1: MERL & CERL operating modes at 5 GeV

Mode A Mode B Mode C

& 5 5 5 GeV

I 100 25 1 mA

0 77 19 1000 pC
EN,xs €N,y 0.3 0.08 5.0 mm-mrad
€, € 31 8.2 511 pm
o./c 2000 2000 100 fs

s 2 2 30 10

As mentioned in Chapter 1, such a high current an energy would require
an unreasonable amount of electrical power for a linear machine, so the MERL
recovers energy from these bunches. In order to operate as an ERL, the machine

must then:

e Ensure the survival of all particles
e Decelerate and recover 4.990 GeV per particle (minus radiative losses)

e Discard 10 MeV particles

Here we assume the existence of a dump that can extract and absorb 10 MeV

electrons.

The MERL layout is divided into six sections, shown in Fig. 3.1. The injector
(IN) delivers a 10 MeV bean into Linac A (LA), which accelerates it to 2.505 GeV.
The beam then goes through a Turnaround Arc (TA) and connects to Linac B
(LB), which further accelerates it to 5 GeV. It then traverses a Return Arc (RA)
containing eighteen insertion devices. The beam is then reintroduced to the
beginning of LA at the decelerating phase and returns 2.495 GeV per particle to
the RF cavities. Now at 2.505 GeV, the beam goes through the same TA, and then

into LB where 2.495 GeV per particle is recovered. Finally, the 10 MeV beam is
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sent to the dump (DU) at the end of LB.

The dimensions of this machine are primarily governed by the lengths of the
linacs and the number and lengths of the insertion devices. The linacs are each
taken to be 318 m long, based on the Cornell ERL designs, and all 18 insertion
devices are taken to be 5 m long undulators. Allotting a minimal amount of
space for dipole, quadrupole, and sextupole magnets, with suitable drifts in
between leads to a 465 m long RA containing the undulators, which lies roughly
on a circle with a 122 m radius. The TA is designed to be as short as possible with
special consideration given to the heat load on the chamber wall. In general, the
power per unit length radiated on the beam chamber wall in a dipole magnet

due to incoherent synchrotron radiation is given by

P\ _2 2340l
<L>—3rcmc,6’ Al 7 (3.1)

where ] is the average current, g is the elementary charge, and 1/« is the magnet
bending radius. Here the bends are chosen to give ~ 750 W/m for 200 mA
electron beam in the TA, and allotting for focusing elements makes it 116 m
long. Incidentally, Eq. (3.1) gives = 500 W/m for a 100 mA electron beam in the
RA. The total length of the machine is then 1217 m.
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Figure 3.1: The MERL layout with section labels. A bunch is accelerated to 10 MeV in the injector (IN), and injected into
the beginning of Linac A (LA), which accelerates it to 2.5 GeV. The bunch traverses Turnaround A (TA), and gains another
2.5GeV through Linac B (LB). At 5 GeV, the bunch travels through 18 undulators in the Return Arc (RA). It then reenters
LA off phase, which decelerates it to 2.5 GeV, enters Turnaround B (IB), and is decelerated to 10 MeV through LB. Finally
it is extracted and sent to the Dump (DU).



3.2 Optics

The majority of the optics design is focused on the linear optics. The selection
and ordering of dipole magnets and quadrupole magnets is chosen with this in
mind. Once the lengths of drifts and strengths of bends have been settled upon,
tixing the layout, the optics optimization typically then only involves choosing
the quadrupole strengths. Second order effects can be adjusted separately by

sextupole strengths.

The optics in the MERL must be tuned to be in accordance with the X-ray
and ERL requirements described above. For the X-ray requirements, this means
that the initially injected bunch emittance must be preserved through the linacs
and through TA, which amounts to minimizing the radiative emittance growth
given by Eq. (2.177). Additionally, the beta functions and dispersion in the
undulators determine the X-ray source spot size, and must be well controlled
throughout the entire machine. Controlling the bunch length amounts to con-
trolling time of flight terms and linac phases, and is further discussed in Sec-
tion 3.5. For the ERL requirements, the linac optics must be able control two
beams of different energies, and nonlinear effects must be controlled to insure
that all particles survive their passage through the machine. Finally, the time of

flight terms need to be controlled to minimize the energy spread at the dump.

The following sections describe the choice and optimization of the optics for
each of the major sections. By design, each of these sections can be optimized
separately and pieced together to form the total optics solution. The complete
solution for the beta functions and dispersion is shown in Fig. 3.3. The radiative

emittance growth is shown in Fig. 3.2.
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Figure 3.2: Beta functions and dispersion for the MERL, including the energy recovery pass.
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3.2.1 Linacs

The linacs are the engines of an ERL lightsource. The linacs in the MERL
consist of 64 identical cryomodules, each of which can give or take approxi-
mately 78 MeV to or from the beam, and operate at a fundamental frequency of
fir = 1.3 GHz. Each cryomodule contains one quadrupole magnet. Because these

are similar to those of the CERL, they are further described in Section 4.3.1.

The main optics requirement in a linac section is to keep the beta functions
as small as possible for both the accelerating and decelerating beams. This is
done primarily to suppress the effect of wakefields in the accelerating cavities,
which can result in the beam breakup instability (see for example section 4.3 of
Chao & Tigner, 2006). Additionally, the Twiss parameters must be matched to
the adjacent sections. In particular, the Twiss parameters at the end of LA must
be the same for both beams, and similarly must be the same at the beginning of
LB, in order to have a single set of optics in the TA. There is no dispersion in the
linacs. Some optics guidelines for ERL linacs can be found in Douglas (2000)

and Bazarov ef al. (2001).

A solution satisfying these constraints is sought by varying the quadrupole
tields. Due to the symmetry in the layout, a good solution for both LA and LB
can be found by finding a solution for one linac, and mirroring the quadrupole
strengths in the other. Such a scheme is shown in Fig 3.4. In this case it is
simplest to optimize LB by varying the 32 quadrupole gradients as well as the

beginning Twiss parameters, set to be the same for both beams.

The difficulty in this optimization is due to the presence of two beams of

different energies . In nearly all other sections the quadrupole strength k; is
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Figure 3.4: A mirroring scheme for the MERL linac optics. Different Twiss pa-
rameters from the IN and RA converge to a single set at the entrance of the TA.
The TA optics reverse the signs of a, and «a, to enter into LB. Similarly, the RA
optics reverse the signs of «, and a, from the high energy beam at the end of LB.

treated as a variable, as that is the quantity that affects linear optics. Multi-
pole strengths, however, are normalized by the reference particle momentum
according to Eq. (2.55), so here we vary the physical magnetic field gradient in-

stead. This means that the ratio of the quadrupole strengths seen by the beams

is inversely proportional to the ratio of their momenta, as in

[Po]a
[pO]d

in which the subscripts a and d denote the decelerating and accelerating beams,

[kl]d = [k] ]a ) (32)

respectively. For example, in the first quadrupole magnet in the first cryomod-
ule of LA, where the accelerating beam is at (10 + 78) MeV and the decelerating
beam is at (5000—-78) MeV, we have the quadrupole strength [k, ], = [k2], /56. The
resulting strengths for all 64 quadrupole magnets seen by the different beams
are shown in Fig 3.5. Both beams have the same energy at the end of LA. Be-

cause quadrupole gradients at the beginning of LA and end of LB must be weak
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enough so as to not over-focus the low energy beam, it becomes difficult for

them to focus the high energy beam.

The beta functions for the first pass (accelerating) beam and energy recov-
ery (decelerating) beam in LB are shown in Fig. 3.6. Near the entrance to this
section the beams are at similar energies, and the beta functions are therefore
similar. Near the end, where the beam energies are the most different, so are the
beta functions. There is no known rule for finding good solutions in this situa-
tion, though in practice it has been found that alternating positive and negative
quadrupole strengths gives a good starting point. In this solution, we see that
the end of LB for the second pass beam has very regularly focusing and defo-
cusing beta functions, while the beta functions for the first pass beam behave

similar to those in a long drift. The optics for LA are shown in Fig. 3.7.

The relative effectiveness of quadrupole magnets on the different beams
happens to be a virtue for matching from the IN and to the DU, because
quadrupole fields near those sections can be tuned for the low energy beam
with little effect on the high energy beam. Therefore matching from the IN and
to the DU is relatively simple compared to the overall optimization. For sim-

plicity, they are just taken to be the same in this design.
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—i TA

Figure 3.8: Layout for the TA. This section is divided into three

3.2.2 Turnaround Arc

The purpose of the TA is to connect LA to LB and reverse the slope of the beta
functions, according to the scheme in Fig 3.4. In order to deliver zero dispersion
to LB, this section is made to be achromatic to second order. Additionally, to
control the bunch length and to aid efficient energy recovery (further described
in Section 3.4), the time of flight terms rs¢ and ts¢¢ are set to zero, making the

section isochronous to second order.

The TA layout is shown in Fig. 3.8. It is partitioned into three types of sec-

tions, called Cells:

Cell A Straight section with five quadrupole magnets, matches Twiss parame-

ters from LA into Cell B

Cell B Periodic section containing a three-bend isochronous achromat — occurs

seven times

Cell C The mirror image of Cells A and B, matches Twiss parameters into LB
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| 10 m |
[ |

Figure 3.9: The layout for the beginning of the MERL TA, showing the cell par-
titions.

The bulk of the TA is built out of Cell B sections, so most of the effort in opti-
mizing the TA is focused a single such section. The beta functions are required
to by periodic, so that many sections can be linked together. Once a good Cell B
optics is found, the five quadrupole strengths in Cell A are varied to match the
Twiss parameters from LA into the first Cell B. Because of the symmetry, Cell C
quadrupole strengths can be set to the mirror image of those from Cell A and
the first Cell B, and will automatically end with the correct Twiss parameters for
LB. Note that there are a total of eight sets of three-bend isochronous achromats

in the TA.

The layout and optics for Cell A and the first Cell B are shown in Fig. 3.9
and Fig. 3.10, respectively. The linear optics in Cell B are optimized by varying
the nine quadrupole strengths. For simplicity these strengths are varied in pairs
symmetric about the center bend, so effectively there are only five variables.
To make the section achromatic, we demand that the dispersion r¢ = 0 and its
slope ry = 0 at the end of the third bend. To make the section isochronous,
we demand that rs = 0 and rs¢ = 0 in the center of the middle bend. Finally,
we demand that the radiative emittance growth, described by Eq. (2.177), be as

small as possible.
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Also shown in Fig. 3.10 is the second order dispersion fi¢6. This is manip-
ulated by varying the four sextupole strengths in Cell B, and is related to the
second order time of flight #5¢c. It would be simplest to make a single Cell B
isochronous to second order (7545 = 0) and achromatic to second order (166 = O,
e = 0), but it was found that such constraints demanded very large sextupole
strengths. These strengths need not be as large if the achromatic constraint is
relaxed for the cell, and so these constraints are replaced by the demand that
e = 0 in the center of the eighth quadrupole magnet. Because the layout and
strengths are symmetric about this point, sextupole strengths in the following
Cell B can be set to those in the reverse ordering of those in the first Cell B, auto-
matically making a pair of Cell B sections isochronous and achromatic to second

order.

The optics for the entire TA are shown in Fig. 3.11. There one can see the
pairing of the Cell B sections as related to the second order dispersion. The

radiative emittance growth and time of flight terms are shown in Fig. 3.12.
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3.2.3 Return Arc

The RA optics, similar to the TA optics, need to accept the Twiss parameters
from LB an reverse the signs of a, and a, from the entrance to the end, and
furthermore need to be isochronous and achromatic. This section houses all 18
undulators, and the beam quality needs to be preserved through each of them.
Additionally, in order to recover the energy from this 5 GeV beam, the total time
for the center of a bunch to traverse the RA needs to be adjustable by one period
of the fundamental mode of the linacs (1/ fi), so that it will arrive out of phase
with LA by n radians. The TA avoids such a problem because the RF phase
of LB can be chosen relative to the RF phase of LA. We will assume that these

technical challenges will be solved in the machine operation.

The beginning of the RA layout is shown in Fig. 3.8. It is divided into three

types of cells:

Cell A Straight section with five quadrupole magnets, matches Twiss parame-

ters from LB into Cell B

Cell B Periodic section containing a three-bend isochronous achromat — occurs

eighteen times

Cell C The mirror image of Cell A, matches Twiss parameters into LA for en-

ergy recovery

Note that this is similar to the partitioning in the TA, and the same symmetries

exist.

The RA Cell B is essentially the same as the TA Cell B, except that the dipole

magnet lengths are doubled from (1 m, 2 m, 1 m) to (2 m, 4 m, 2 m), respectively,
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in order to reduce the radiation load on the wall. Additionally, a 5 m undulator
with quadrupole magnets at the ends replaces the eighth quadrupole magnet,
and some of the drifts have changed lengths. The optimization criteria are also
nearly the same: ri¢ = 0 and ry = 0 at the end of the third bend, and r,s = 0
and rs¢ = 0 in the center of the second bend. The second order dispersion is also
controlled symmetrically over two cells by sextupole magnets. Note that this is

the same section used as an example in Section 2.3.2.

The beta functions are periodic, but unlike the TA Cell B, the RA Cell B has
fixed entering Twiss parameters. This is because the Twiss parameters in the
undulator are chosen by the X-ray user. For baseline values we will assume
them to be half the length of the undulator; thatis, 8, =8, =2.5mand a, = @, =
0 in the center of the undulator. Because the undulator to first order basically
behaves like a drift, these values can propagated to the beginning of the cell
using Eq. (2.93), giving the entering Twiss parameters as 8, = 8, = 6.1 m and

ay=a, =1.2.

The optics for Cell A and two Cell B sections are shown in Fig. 3.14. The
optics for the entire RA are shown in Fig. 3.15, with the radiative emittance

growth and time of flight terms shown in Fig. 3.16.
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Figure 3.13: The layout for the beginning of the MERL RA, which contains 18 undulators. The blue lines are 80 m long
and represent the X-ray beamlines projecting out of the undulators.
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3.3 Particle Tracking

Much effort has been taken in designing a lattice that controls the Twiss pa-
rameters, dispersion, and time of flight terms in the lattice. The emittance in
Eq. (2.100), however, is only invariant for linear transformations. To verify that
nonlinear terms do not ruin the initial emittance, we employ the method of

tracking particles through the lattice.

As mentioned in Section 2.3.1, Bmad has the ability to track particles element
by element through the lattice. Each element is treated as a truncated Taylor
map of phase space coordinates, and particles are propagated through these ele-
ments by applying the maps in the appropriate order. At each element, statistics

such as emittance and bunch length are computed and saved.

The initial distribution, for simplicity, is taken to be a Gaussian in the hor-
izontal, vertical, and longitudinal phase space planes. Each transverse phase
space is furthermore generated to match the phase space ellipse shown in

Fig. 2.4 for the appropriate Twiss parameters.

In practice, it is impossible to simulate all of the particles in a typical bunch,
the number of which can be on order of billions. Therefore we take a fraction
of these particles to represent a bunch. This can be either be done by taking
equally weighted particles and distributing them in phase space randomly ac-
cording to the desired distribution, or by placing particles in phase space, and
then differently weighting them according to the distribution. Both methods are
useful, but the latter has the advantage of sampling more of the outlying parti-
cles. Such a method is shown in Fig. 3.17, in which particles in the horizontal,

vertical, and longitudinal phase spaces are placed on discrete ellipses sampling
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the bunch out to three standard deviations in each dimension.

These particles at the beginning and end of the RA are shown in Fig. 3.18.
At the beginning of the RA, we see that the longitudinal phase space takes on
the characteristic shape of an on-crest distribution through a linac, previously
seen in Fig. 2.5. The horizonal phase space looks relatively unperturbed, while
the vertical phase space shows the signs of chromaticity, meaning that particles
with different energies have different phase advances. Particles at the end of the
RA are more noticeably disturbed, indicating that there may be some emittance

growth.

The calculated horizontal and vertical widths o, and o, for these particles
through the RA are shown in Fig. 3.20, along with the normalized horizon-
tal and vertical emittances. These quantities show some marginal increases
as particles advance through the arc, with the vertical phase space suffering
slightly more than the horizontal phase space. Normalized emittances and en-
ergy spread through the entire MERL are shown in Fig. 3.21. The bunch widths
and length are shown in Fig. 3.22.

The particles at the end of the MERL are shown in Fig. 3.19, calculated
with and without the sextupole magnets turned on. Here we pleasantly find
that turning off the sextupole magnets results in negligible emittance growth

through the lattice. The cost is a small increase in energy spread.
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and normalized emittances through the RA, calculated using an initial distribution shown in

Figure 3.20: Bunch widths

Fig. 3.17.
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Figure 3.21: MERL normalized emittances and energy spread from particle tracking, using an initial distribution shown
in Fig. 3.17.
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3.4 Time of Flight in ERL Arcs

A linac does not accelerate all particles uniformly, and likewise does not decel-
erate particles uniformly. When an ERL is built out of linacs connected by arcs,
care must be taken to insure that all particles in a bunch arrive at the beginning
of each linac with the correct phases in order to achieve maximum efficiency.
To make this happen, the TA and RA are ideally isochronous, and designed to
be so to second order in Sections 3.2.2 and 3.2.3. This section will examine how

precisely isochronous these arcs must be.

From Eq. (2.118), the longitudinal phase space coordinates (z;, d,) at the end

of a linac given initial coordinates (2, 6y) at the beginning of the linac are

80 Ccos (¢rf - krf 20 t ¢err0r) 80
— — 1|+ = 6o, 3.4
81] [ COS Pyf * & 0 (34)

61:|:1—

where a possible phase error ¢, has been added, representing an error in
the arrival time of the center of a bunch with respect to the ideal accelerating
wave. An arc, on the other hand, evolves initial coordinates (zo, dy) according to

Eq.(2.163) as

2 3
4 =Zo+f’565o+f5665o+M566650+-~~, (3-5)

51 = 60, (36)

which includes a possible third order time of flight term uses6. Synchrotron ra-

diation losses have been neglected for simplicity.

Successful energy recovery can be quantified by requiring the distribution
of energy deviations to have max 6] < 0.5 at the dump. These energy deviations

are straightforwardly calculated by successive maps of Egs. (3.3-3.4) through
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the linacs and Egs. (3.5-3.6) through the arcs, starting with coordinates (z, o)y at
the injector and ending with coordinates (z,5)py at the dump. When there are
no linac phase errors, and the arcs are isochronous to all orders, then this map
is simple: (z,0)py = (z,6)iv. The maximum absolute energy deviation will then

be on the order of 3 X o5y, where o in the injected energy spread.

In the MERL, all bunches are to be injected with a bunch length o, = (2¢) ps
and energy spread o5 = 2x 107*. Perfect linac phases and perfectly isochronous
arcs therefore result in final energy deviations well within the 50% range at the
dump. When the arcs are imperfectly isochronous, the energy deviation at the
dump can be expanded for small injected particle position ziv and small ¢y,
giving

1
dpy = [(@ + O _ 2) ket ra + (SRA + O _ 2) kit rTA]
81N 8TA SIN 8RA 2 (3 X 7)

[3 re hip 2oy — krf ZIN] x
where rra and rra represent the rss terms for the linear maps of the TA and RA,

respectively. The ratio Ega/Era = 2, and the ratio Ega/En > 1, so this equation

is approximately

1&
OpU = = =2 (et ra + Kot FT0) (3 ue heip zin — Ky ZIN) (38)
28N

This implies that particles with |zin] < 3 X 0 will end up within the 50% energy

spread range at the dump as long as

1 &n 1
54 8RA ka 0'50 (|¢rf| + krf O-ZO)

(3.9)

[rra + 1RAI S

Note that kso9 ~ 1.6 x 1072 corresponding to approximately 0.94°, and
En/Era = 1/500. When all bunches are synchronized with ¢, = 0 for both

linacs, then Eq. (3.9) implies that |[rga + r1al < 31 cm. This can be seen in Fig. 3.23,
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Figure 3.23: Maximum absolute energy deviation at the dump for combina-
tions of rs¢ in the TA and RA, assuming an injected bunch with particles
ziN€E [—3070, 30]. The white area indicates max |6py| < 0.1, the gray area indicates
0.1 < max|dpyl < 0.5, and the black area indicates max |[opy| > 0.5. Figure 3.23(a)
is without linac phase errors, and Fig. 3.23(b) is with all possible combinations
of 0.1° phase errors, defined in Eq. (3.4).

which shows the maximum energy deviations for different combinations of rga
and rry with no higher order time of flight terms. This figure also includes the
possibility of 0.1° phase errors in all both passes of a bunch through the linacs.
When both gy = 0 and rra = 0, one must examine the degree that the sec-
ond order time of flight terms need to be controlled. This is shown for ¢,; = 0
in Fig. 3.24, which is essentially the same as Fig. 3.23 but for ts¢ instead of rs¢
terms. This indicates that 7556 terms should be controlled to be within 150 m. A

separate calculation shows that we must have all ¢¢ror S 0.6° even when the arcs

are perfectly isochronous.
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Figure 3.24: Similar to Fig. 3.23, but for #5¢, terms in the TA and RA, assuming
all rs¢ = 0.

When operating at ¢+ # 0, the range of allowed time of flight terms in the
arcs becomes more restricted. Figure 3.25 shows the allowed ranges for rsc and
tse6 in the TA and RA for ¢+ = 9°. Equation (3.9) implies that [rga + rral S 3cm,
and the more exact calculation shown in the figure indicates that this absolute
sum should be less that 2 cm. When phase errors ¢eqor = 0.1° are introduced,

this value should be less than 0.5 cm.
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Figure 3.25: The same as Figs. 3.23-3.24, but with ¢, = 9°. Note the much more
restricted range of possible rss and ts¢ terms in the TA and RA.
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3.5 Bunch Compression

Accelerating bunches off-crest increases the energy spread, requires a higher
peak accelerating voltage, and restricts time of flight terms in the TA and RA
versus on-crest acceleration. However, off-crest acceleration creates a correla-
tion between z and ¢ in the longitudinal phase space, which can be taken ad-
vantage of with nonzero time of flight terms in an arc to compress the bunch.
When sent through undulators, these short bunches emit short pulses of X-rays.
This technique is well known, and similar formulas can be found in Bazarov &

Hoffstaetter (2003).

To see how this works, consider a single linac and a single arc. The energy

deviations at the end of the linac are, according to Eq. (3.4),

_ 08 (¢ — ki 20) _

!
COS rf

1, (3.10)

assuming that /&, < 0. Sending these particles through an arc gives modifies

the longitudinal positions according to Eq. (3.5) as

— k; —k 2
2 =71+ s cos [¢1‘f fZO] — 1:| + 566 [COS [¢rf erO] -1 +... (311)

COS @yt COS Pyt

Now assume that the initial distribution is a Gaussian according to

Eq. (2.125), which has moments

(%) = o, (3.12)
(zb) =3 0%, (3.13)
() = 1505, (3.14)
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Figure 3.26: The minimum possible bunch length for first order compression
(red) and second order compression (blue), assuming that all higher order time
of flight terms are zero, versus ¢,+. The initial distribution has o,/c = 2ps and
the linac operates at fiy = 1.3 GHz.

The variance of z, in Eq. (3.11) can then be calculated by expanding and averag-
ing in zy, resulting in
0% =02 [1+krtang]

+0'40§k3 [kr2 —2(r+6ntang —2kr(r+ 8t)tan2¢
2 (3.15)

+12u tan’® ¢ + 4k(t2 +3 ru)tan4¢]
6
+0 (0‘Z0)
in which k, ¢, r, t, u, and are abbreviations for k., ¢, rse, tse6, and usees, rE-
spectively. One can then choose rss = —kr‘f1 cot ¢,¢ to eliminate the leading term,

resulting in a bunch length compressed to first order with a new leading term

1
[O-ZZ]min 1= \/gkrf 0'?0 E cot ¢rf + krf t566 tan2 ¢rf . (316)
1
To compress to second order, one can then choose #s5¢6 = Y cot’ ¢y, resulting
of
in a new
1 1
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Figure 3.27: Longitudinal phase space before and after second order compres-
sion for ¢+ = 9°. The bunch length in Fig. 3.27(a) is 2000 fs, while the bunch
length in Fig. 3.27(b) is 100 fs.

and so on. These minimum lengths, assuming #s¢¢ = 0 in Eq. (3.16) and usee6 = 0

in Eq. (3.17) for MERL parameters are compared in Fig. 3.26.

Similar to Fig. 2.5, the longitudinal phase space density for a com-
pressed bunch can be calculated by inverting z,(zo, 6p) and 6,(zo, d), and using

Eq. (2.124). The results of the inversion are

20(22,62) = 22 = I's6 02 — 3566 05 — Usee6 03y (3.18)
& 08 (¢t — ki (22 — 756 02 — 566 03 — Usees O3

0(22,62) = =63 — ( ( 2 2)) — 1. (3.19)
&Eo COS Pyt

This is shown in Fig. 3.27 for ¢+ = 9° off-crest acceleration, and full compression

to second order.

The short bunch mode in the MERL is Mode C from Tab. 3.1, which has
o./c = 100fs. According to Fig. 3.26, this requires the linac phase to be at least

6°. We will choose ¢ = 9°, which allows for a range in combinations of rsg
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Figure 3.28: Contours of bunch lengths for combinations of rs¢ and #s¢¢ terms,
given the parameters in Fig. 3.26.

and ts¢¢ terms in an arc to compress the bunch, shown in Fig. 3.28. Practically
speaking, it is often easiest to optimize for time of flight terms near zero, so we
will choose a point on the bottom left of the 100 fs contour that has rs¢ = —0.225m

and ts66 = —2.9m.

The first four Cell B sections in the RA can be used as a bunch compressor
by optimizing them to provide these special time of flight values. This requires
large dispersion, because rsq is proportional to the integral of the dispersion
over the bending radius from Eq. (2.164). The sextupole strengths can further be
changed to adjust #s¢6. The eleven undulators following the bunch compression
section will then ideally receive the short bunches. To have energy recovery,
the last four Cell B sections of the RA must decompress the bunch by exactly

reversing the time of flight terms to make the whole of the RA isochronous.
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Figure 3.29: Dispersion and time of flight terms in the RA for Mode C bunch compression.
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Figure 3.31: Longitudinal phase space in the first undulator after compression
and in the last undulator before decompression in the MERL RA.

The resulting first and second order dispersion from this optimization are
shown in Fig. 3.29, along with the first and second order time of flight terms.
This compression is tested by tracking particles, with the resulting bunch widths
and length shown in Fig. 3.30. It was found in this tracking that the sextupole
strengths in the middle cells did more harm than good, so they are set to zero
here, resulting in a marginal degradation in the bunch length. The longitudinal
phase space in the first and last undulators that have short bunches are shown
in Fig. 3.31. It should be noted that the decompression in this solution is not
perfect, as the bunch does not exactly return to its original length at the end of

the arc, and also the bunch widths become relatively large.
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CHAPTER 4
CORNELL ERL

4.1 Site

The development of an ERL at Cornell presents many unique challenges in
addition to those for the Minimal ERL. Primarily, the Cornell ERL (CERL) is
planned to make as much use as possible from the existing facilities at the Wil-
son Synchrotron Laboratory, which include the Cornell Electron Storage Ring
(CESR), the Cornell High Energy Synchrotron Source (CHESS) G-line beamline,
and the Wilson Lab building. Because the CESR components were designed to

sustain 8 GeV electrons, this section can comprise part of the 5 GeV return arc.

The location of Wilson Lab, shown in red in Fig. 4.1, lies on a hillside between
the Cornell campus and Cascadilla creek. The CESR tunnel is approximately 15
meters below the soccer field to the north. Early designs for an ERL at Cornell
extended CESR to the north by twin linacs that avoided buildings, but it was
found that these linacs were too short to deliver the full 5GeV energy given
current technology. With the creek to the south and buildings to the west and
the north, the ERL linacs must then connect to CESR and extend to the east.
Several possibilities have been considered, all of which utilized a single tunnel
to house the two linacs, with a small turnaround loop to the east. It was found
that the bending radius of this loop was too small for any modern tunneling
machine to dig, and that it would be more cost effective for the linacs to occupy
their own tunnels, with the turnaround being a simple arc. Additionally, in
order to have separate control over accelerating and decelerating beams, the

linacs are to run at different energies, so that the turnaround can house two
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beam transport lines, one for each energy.

The most current design, as of the writing of this document, is shown in
Fig. 4.1. The logic in choosing this design is discussed in the following sections.
The layout is divided into nine discrete sections, shown in Fig. 4.2, roughly in
accordance with their function: The injector (IN) delivers a 10 MeV beam into
Linac A (LA), which accelerates it to 2.8 GeV. This beam feeds into Turnaround
A (TA), which bends it around to connect to Linac B (LB). The beam is accel-
erated through LB to 5GeV into the South Arc (SA) containing up to fourteen
undulators, which connects to part of CESR (CE), which connects to the North
Arc (NA) containing eight more undulators. The NA connects back into LA,
which decelerates the beam to 2.2 GeV, recovering 2.8 GeV. A demerging dipole
separates this beam from the 2.8 GeV accelerating beam into TB. Thereafter a
merging dipole combines this decelerating beam with the accelerating beam
from TA and directs it into LB, where it is decelerated to 10 MeV, recovering

2.2GeV. Finally the beam is sent to the Dump (DU).
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Figure 4.1: The Cornell campus map in the area immediately surrounding Wilson Lab, shown in red. Other buildings

are shown in blue. The CESR tunnel lies 15 meters below the soccer field to the north. Due to the length of the linacs
required for a 5 GeV ERL, the only viable direction to build is to the east.
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Figure 4.2: The CERL layout with section labels. A bunch is accelerated to 10MeV in the injector (IN), and injected
into the beginning of Linac A (LA), which accelerates it to 2.8 GeV. The bunch traverses Turnaround A (TA), and gains
another 2.2 GeV through Linac B (LB). At 5GeV, the bunch travels through undulators in the South Arc (SA), the CESR
tunnel (CE), and undulators in the North Arc (NA). It then reenters LA off phase, which decelerates it to 2.2 GeV, enters
Turnaround B (TB), and is decelerated to 10 MeV through LB. Finally it is extracted and sent to the Dump (DU).



4.2 Layout

In order to be a competitive and cost-effective light source, it has been deter-

mined that the CERL must:

Utilize as much of CESR as possible

Provide at least 18 X-ray beamlines with easy access

e Have a single building to house all X-ray beamlines outside of Wilson Lab,

as well as the injector and dump

Accommodate at least two 25 m long undulators

Include the CHESS G-line beamline

As mentioned before, the natural extension of the CERL from CESR is to the
east. Taking advantage of the curved hillside in this direction, the South Arc
is shaped to conform to the terrain, with the North Arc beamlines terminating
as close as possible to this arc, which can be seen in Fig. (SA and NA). In this
manner, beamlines from both arcs can be housed in a single building. Space
has been allotted for four beamlines in Wilson lab, including G-line and a 25 m
undulator, with the new building containing up to eighteen beamlines. Of these
beamlines, up to ten are from the South Arc and up to eight are from the North
Arc, with each contributing a long undulator. Thus the CERL can accommodate

three 25 m undulators and nineteen 5 m undulators.

Tunneling technology requires the bending radius of the turnaround tunnel
to be atleast 250 feet, and this minimum is used in the design. The bends and the
beginning of the SA and the end of the NA are adjusted so that, when connected

via the linacs, the turnaround loop is a pure arc. The linacs then have a relative
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angle of approximately 22 degrees, and therefore TA and TB bend the beam by
approximately 202 degrees.

Bends in the CERL are designed so that:

e The angle between undulators is large enough to be able to place the first
optical element, outside the shielding wall, at approximately 30 m down

the X-ray line after the end of the undulator

e The radiation load on the beam chamber does not exceed 1kW/m

All undulators are separated by two-bend achromatic sections that satisfy the
tirst constraint. For the second constrant, from Eq. (3.1), the average power per
unit length lost on the beam chamber walls in a magnet with radius of curvature

p is, in practical units,

()=o) )

where & is the beam energy and I is the average current. For a 100 mA beam,

this implies that bends in the SA, CE, and NA must have a minimum radius of
curvature of approximately 30 m. The bends in TA and TB must have a mini-
mum radius of curvature of 10 m and 6 m, respectively, which are easily satisfied

given the dimensions of the turnaround tunnel.
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4.3 Optics

In order to deliver a high quality beam to the undulators and perform energy

recovery, the optics in the CERL must overall:

e Accommodate simultaneously accelerating and decelerating beams in the

LA and LB sections
e Accommodate one high energy beam in the SA, CE, and NA sections

e Limit radiative emittance growth as much as possible prior to undulators

The bulk of TA and TB maneuver the accelerating and decelerating beams sep-
arately, and the SA, CE, and NA sections only manage the high energy beam,
so the only sections that must handle both beams are LA, LB, and the ends of
TA and TB. The optimization of these sections is challenging, and discussed in
sections 4.3.1 and 4.3.2. Emittance growth occurs in every bending magnet due
to the quantum nature of synchrotron radiation, at a rate given by Eq. (2.177).
It must be controlled everywhere, especially in TA and between the SA undu-
lators. Unfortunately, the CESR magnet arrangement reused in CE does not ad-
mit a low emittance solution, and therefore the emittance in the NA is relatively

large. For this reason, an upgrade option to CE is given in section 4.3.4.
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In order to provide the desired transverse beam size and length to undula-
tors, and to avoid nonlinearities in magnets, the linear optics are subject to the

following:

Flexible time of flight term rs¢ for each turnaround loop

Zero time of flight term in the return arc, i.e. rs¢ = 0 from the end of the LB

section to the beginning of the LA section

Tunable rs¢ within subsections

Flexible beta functions and zero dispersion in all undulators

Beta functions must be less than 100 m everywhere

In general, the time of flight term rs¢ and the phase of the accelerating cavities
can be used to manipulate the longitudinal phase space, as described in Sec-
tion 3.5. In particular, rs¢ must be zero from the end of LB to the beginning in
LA in order for the energy spread profile to correctly match the decelerating RF

voltage and therefore perform energy recovery, as described in Section 3.4.
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The beta functions in all undulators must be flexible in order to satisfy the
requirements of individual users of these devices. The dispersion is zero in
undulators to avoid an apparent increase in beam size. As a rule of thumb,
the beta functions are also kept below 100m as much as possible to limit their
sensitivity to field errors in magnets, and it is generally advantageous to keep

them small in order to limit emittance growth.

For further refinement of the transverse beam size and length, the nonlinear

optics are subject to the following:

e Zero second order dispersion t,4 in all undulators

e All sections achromatic to second order, i.e. f;46 = 0 and ty¢6 = 0 from the

beginning to end of each section

e Flexible second order time of flight term #s¢¢ in all sections, close to zero

Similar to the first order dispersion, the zero second order dispersion in undu-
lators avoids an apparent increase in beam size. As a rule of thumb, it is often
easiest to control second order dispersion when 66 = 0 and t,5 = 0 for every

subsection.
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Figure 4.4: Radiative emittance growth ey and total energy & in the CERL, including the energy recovery pass.
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Figure 4.6: The standard CERL cryomodule.

431 LA & LB-Linac A andB

The CERL linacs consist of 64 identical cryomodule cells divided among LA
and LB, with the layout for the standard CERL cryomodule shown in Fig. 4.6.
Each cryomodule contains six superconducting accelerating cavities and a sin-
gle quadrupole magnet, along with other elements, e.g. higher order mode ab-
sorbers, gate valves, and beam position monitors, that can be considered to be
drifts for purposes of the beam optics. Some technical details regarding the de-
velopment of such cryomodules and cavities can be found in McIntosh et al.
(2006). Each cavity contains seven elliptical cells operating at the fundamental
frequency fir = 1.3 GHz, which corresponds to k¢ ~ 27.25m™! and a wavelength
A = 23.06 cm. They are designed to deliver accelerating gradients in the range
of 15-20 MV /m for currents up to 100 mA. Using the dimensions in Fig. 4.6, in
order to bring a 10 MeV beam to 5 GeV, each cavity must provide an average
energy gradient of 16.12MeV/ m, and therefore a single cryomodule can give or

take 78 MeV to or from a beam.
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Because the CERL has two turnaround loops TA and TB operating at differ-
ent energies, one linac needs to be longer than the other. In general, for N4, and
N standard cryomodules in LA and LB, respectively, the changes in energy of

the beam in these linacs are

Na
A& A = ——— (Emax — Emin) » 4.2
AT NI, ( ) (4.2)
A(CJ»LB = Smax - Smin - A(CJ»LA’ (43)

where &, is the injection energy and &« is the full operating energy of the
ERL. For N4 = 36 and N = 28, with energies Eyin = 10MeV and Epax = 5GeV,
we get A& = 2.806875GeV and A& g = 2.183125GeV. The beam in TA is
therefore has an energy of Eyin + AS 4 = 2.816875 GeV, and the beam in TB has
an energy of Enax — ASLa = 2.193125 GeV, which will often be abbreviated as
2.8GeV and 2.2 GeV, respectively.

The beam optics in the linacs must satisfy the following criteria:

e Zero dispersion

e Keep beta functions as small as possible for both accelerating and deceler-

ating beams
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o Accept Twiss parameters from the IN for LA

e Provide correct Twiss parameters for the DU from LB

The adjacent sections provide zero dispersion to LA and LB, and because there
are no bends within the linacs there can be no creation of dispersion. The beta
functions are manipulated by the 36 and 28 quadrupole magnets in LA and LB,

respectively.

The optimization of the Twiss parameters in LA and LB is very similar to
the MERL linac optimization described in Section 3.2.1. Here, however, the ex-
istence of two turnaround loops means that the two beams do not need to have
the same Twiss parameters as they enter the turnaround tunnel, and are thus
more flexible. Nevertheless, the MERL LA and LB solutions can still be used
as a starting point. The resulting quadrupole strengths seen by each beam are

shown in Fig. 4.7. The optics are shown in Figs. 4.8-4.9.
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Figure 4.10: Layout for the TA and TB sections showing the partitions into Cells
A, B, and C.

4.3.2 TA & TB - Turnaround A and B

Two turnaround arcs provide an additional level of flexibility in the optics
relative to the single turnaround in the MERL. In particular, having two
turnarounds allows for the compensation of wake-fields by tuning time of flight
terms, a scheme described in Hoffstaetter & Lau (2008). First pass particles exit
LA at 2.8 GeV, and follow TA. The second pass beam exits LA at 2.2 GeV, and
follows TB.

TA is divided into five cell types:

Cell A Controls and separates the two beams after LA

Cell B Periodic section containing 4 bends and 4 quadrupole magnets for beam

transport — occurs three times

Cell C Similar to the reverse of Cells A and B, matches Twiss parameters into

LB for both beams
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These cells are shown in Fig. 4.10. Cells for TB are very similar to those of TA.

The bulk of TA (and similarly TB) is built out of four three-bend achromats,
described in a Cell B section. These are similar to the MERL achromats in Sec-
tion 3.2.2, except that the bends and drifts are much longer. The beginning of
Cell A for each turnaround contains shared elements, including a demerging
bend, shown in Fig. 4.11. This bend is part of a two-bend achromat for each Cell

A, which give fixed rs¢ and 566 time of flight terms.

We would like both TA and TB to be isochronous, so the interior Cell B sec-
tions are optimized to compensate for the fixed time of flight terms in Cells A
and C. The optics for the TA Cell B are shown in Fig. 4.12. In addition to the time
of flight contributions, this cell is optimized for periodic Twiss parameters, low
radiative emittance growth, and to be achromatic by varying the quadrupole
strengths. The second order dispersion and time of flight are optimized by vary-

ing the sextupole strengths.

With these periodic beta functions at hand, the TA and TB Cell A sections
are optimized simultaneously to match into their respective Cell B sections. The
optics for these cells are shown in Fig. 4.13. Additionally, radiative emittance

growth is controlled.

The optics for all of TA are shown in Fig. 4.14. The TA radiative emittance
growth and time of flight terms are shown in Fig. 4.15. There one sees how
the interior cells compensate for the outer cells to make all of TA achromatic
and isochronous to second order. Note that the radiative emittance growth is

approximately 20% of the Mode B normalized emittance.
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Figure 4.11: The layout of the beginning of TA and TB. The first pass beam follows the outer arc at 2.8 GeV, while the
second pass beam follows the inner arc at 2.2 GeV. The quadrupole magnet after the demerging bend is seen by both
beams.
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Figure 4.16: Layout showing the SA.

4.3.3 SA - South Arc

The SA section, shown in Fig. 4.16, is approximately 500 m long and contains
the majority of undulators in the CERL. It is the first section after the beam has
been accelerated to 5 GeV by LB, and therefore receives bunches with the lowest

possible emittance. It is divided into five cell types:

Cell A Matches Twiss parameters from LB into Cell B and contains a 25 m un-

dulator

Cell B Periodic section containing a 5 m undulator and a two-bend achromatic

section — occurs eight times
Cell C Matches Twiss parameters from the last Cell B into the first Cell D

Cell D Periodic section consisting of a two-bend achromat for beam transport

only — occurs three times

Cell E Matches Twiss parameters from Cell D into four undulators, and ends

with the 6 m G-line undulator.

The layout for the beginning of the SA is shown in Fig. 4.17 with Cell A and

the first three Cell B sections. The first four bends comprise a pair of two-bend
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SA Cell A

Figure 4.17: The layout for the beginning of the SA section, showing Cell A with
the long undulator and two Cell B sections, each with an undulator. The beam
moves to the left from the end of LB.

achromatic sections that serve to rotate the linacs and turnaround to the south,
and thus avoid tunneling under the College of Veterinary Medicine. The first
25 m undulator follows, and that is followed by a single two-bend achromat to

match into the first Cell B.

The linear optics for Cell A are shown in Fig. 4.19. Because the beta functions
exiting LB are large, five quadrupole magnets are used to focus them down to
manageable values. The following four bends direct the beam into the 25 m un-
dulator, with quadrupole magnets interspersed to give a, = 0, @, = 0, and spec-
ified values for the beta functions in the center of this undulator. Additionally
the the quadrupole magnets between the first two bends focus the dispersion
and its slope to zero at the end of the second bend, and similarly for the third
and fourth bends. After the undulator a two-bend achromat matches Twiss pa-
rameters into the undulator in the first Cell B. With the Twiss parameter and
dispersion constraints satisfied, the quadrupole strengths are further optimized

to reduce the radiative emittance growth as much as possible.
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The second order dispersion, also in the figure, is manipulated by six sex-
tupole magnets. Four sextupole magnets placed in areas of large dispersion are
used to make #;66 = 0 and 1,66 = 0 from the beginning of the first bend to the end
of the fourth bend. Similarly, two sextupole magnets at the end of the section
make 166 = 0 and 66 = 0 from the beginning of the fifth bend to the end of the

sixth bend, making the last two bends achromatic to second order.

The linear optics for Cell B are shown in Fig. 4.20. The cell consists of a 5m
undulator followed by a two-bend achromat, and occurs eight times. The bends
provide an angle between the beginning and end of the cell so that the beam-
lines emitted from the undulators of consecutive cells have sufficient clearance
after 30m. The Twiss parameters at the beginning and the end of the cell are
fixed by the requirements of the undulators at the beginning of the cell and the
beginning of the next cell. Seven quadrupole magnets, arranged symmetrically
about the center of the achromat, are used to match these requirements, with
the center three additionally used to focus the dispersion and its slope to zero
at the end of the second bend. As with the previous sections, emittance growth
is reduced as much as possible while maintaining the Twiss parameter and dis-
persion requirements. Two sextupole magnets placed symmetrically about the

center of the achromat are used to set 7165 = 0 and 1,46 = 0 through the two bends.

Cells C and D serve as beam transport lines between the last Cell B and the
tirst undulator in Cell E. Both are very similar to Cell B without an undulator.

The linear and nonlinear optics are thus treated similarly.

Cell E contains the four Wilson lab undulators, including G-line, and con-
nects to CE. The optics are shown in Fig. 4.21. The first two undulators are of

the same type as in Cell B, separated by the same type of two-bend achromat
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Figure 4.18: The layout for the end of the SA showing Cell E lying within Wil-
son Lab with four undulators. The G-line beamline radiates from the leftmost
undulator. Beyond that one sees the first magnets of CE

and optimized similarly. A pair of two-bend achromats follow the second undu-
lator, and are optimized similarly to the beginning of Cell A to provide specified
beta functions and a, = @, = 0 in the center of the 25 m undulator. Finally, an-
other pair of two-bend achromats focus the beam into the 6 m G-line undulator.

The second order dispersion is controlled by sextupole magnets similarly to the

previous sections.

The optics for the entire SA section are shown in Fig. 4.22. Radiative emit-
tance growth and time of flight terms rs¢ and #s¢¢ are shown in Fig. 4.23. One
sees that the emittance growth is dominated by portions of Cell E. This is due

to the relatively strong bends needed to place the undulators appropriately in

Wilson lab.

136



Lel

160 ]
B B ]
L By i
120 |- j
E L — f
QL% SOj .
o [ i
iV
ol \ J N | ] | \/ \\/
0.6 . T T T T

L 16 . B
Lo ti66 R i
~ 03} o f
£ i R i
© r h

f 0 < .
S 03 s
—o06l \ | \ \ 1

890 909 928 947 966 985
s (m)
i I 0 I I 0
0 o000 i o100 O u; O O

Figure 4.19: Optics for Cell A in the SA. Five quadrupole magnets focus the large beta functions exiting LB down to
manageable values. The first sixteen quadrupole strengths are varied to match a, = @, = 0, 8, = 5, = 12.5m in the center
of the 25 m undulator, as well as ¢ = 0 and rys = 0 at the ends of the second and fourth bends, all while attempting to
keep the beta functions below 100 m and minimizing emittance growth. Then the last seven quadrupole strengths are
varied to provide rjs = 0 and ry = 0 at the end of the last bend and to match into the Twiss parameters for the undulator
in the following Cell B. Sextupole magnets places in dispersive sections serve to set f¢s = 0 and #,ss = 0 between the first
and fourth bends, and between the fifth and sixth bends, making this section achromatic to second order.
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first bend to the end of the second, making these bends achromatic to second order.
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for this section is dominated by relatively strong bends in Cell E.
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Figure 4.24: Layout for the CE section.

434 CE-CESR

The CERL baseline design intends to reuse most of the currently existing CESR
elements. The layout for the CE is shown in Fig. 4.24. This section is approx-
imately 540 m long, containing 58 dipole magnets, 72 quadrupole magnets,
and 60 sextupole magnets. It is configured in an alternating dipole-quadrupole

(FODO) arrangement.

Unfortunately, this configuration is not completely regular, and it does not
lend itself to periodic cells as in the other sections. Therefore it is optimized
as a whole for controlled beta functions and emittance growth, as well as con-
trolled time of flight terms, by varying all quadrupole strengths for the linear
optics, and all sextupole strengths for the second order optics. These optimiza-
tions were performed by James Crittenden and Carol Johnstone, with the optics
shown in Fig. 4.25, and the radiative emittance growth and time of flight terms

are shown in Fig. 4.26.
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Roughly speaking, the reason for the poor emittance growth is that there are
not enough quadrupole magnets per dipole magnet to simultaneously control

the beta functions and dispersion enough to minimize Eq. (2.177).

Low Emittance Upgrade

The CESR magnets can effectively transport the beam from the SA to the NA,
but they contribute to the vast majority of the emittance growth in the CERL.
Here an upgrade option for the CE section is presented that provides very low
emittance growth. It uses the same 6.57 m long dipole magnets as in the CESR,

with the addition of quadrupole and sextupole magnets.

The CESR tunnel is a mixture of pure arcs connected by straight sections.
In this upgrade, the CESR dipole magnets are rearranged to span the arcs by
periodic cells containing two bends. The straight sections are drifts with three

quadrupole magnets. For optimization, CE is divided into seven cell types:

Cell P Periodic cell with two bends — Occurs twenty times
Cell A Matches optics from the SA into the first Cell P
Cell B, C, D, E Matches optics from a Cell P to a Cell P

Cell F Matches optics from the last Cell P into the NA
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Figure 4.27: Layout for a low emittance upgrade for the CE section.

The positions of these cells are shown in Fig.4.27. Essentially multiple Cell
P sections comprise most of CE, with matching cells A and F for connecting to
the SA and the NA, respectively. Cells B, C, D, and E account for the straight
sections in the tunnel. Each is similar to two Cell P sections, with an extended

drift and extra quadrupole magnets between the third and fourth bends.

The beta functions and first and second order dispersion in Cell P are shown
in Fig. 4.28. The four quadrupole strengths are optimized to produce periodic
beta functions and first order dispersion that yield a specified value for the rsq
contribution and low radiative emittance growth. Those quantities can be seen
in Fig. 4.29. Next the two sextupole strengths are optimized to produce a speci-

tied value for the ts¢c contribution, also seen in Fig. 4.29.

The optics for Cell B are shown in Fig. 4.30. Due to symmetry, it is sufficient
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to optimize the section by setting the Twiss parameters and dispersion at the
entrance to those of the end of Cell P, and vary quadrupole strengths symmet-
rically about the center quadrupole magnet in the straight section to produce
. (s;)) = 0, &(s.) = 0, and D’'(s.) = 0, with s = 5. in the center of that magnet.
The value of D(s.) can be chosen freely, and therefore the rss contribution by the
section is adjustable. The two sextupole strengths are optimized symmetrically

to match tx46(s.) = 0.

Cells C and E are practically identical to Cell B, all having a 6.3 m straight
section. Cell D has a longer straight section of 12.2 m, but the optimization

strategy is the same as that of Cell B.

The optics for the matching Cells A and F can be seen in Fig. 4.31 and
Fig. 4.32, respectively. There are enough quadrupole and sextupole magnets
in these sections to match Twiss parameters between the adjacent sections, and
to fine tune the total rss and #s¢¢ contributions by CE. The resulting optics for
all of CE are shown in Fig. 4.33. Radiative emittance growth and time of flight
terms are shown in Fig. 4.34. There one sees that, due to the similarity of all the

cells, emittance growth is very regular and relatively small in the bulk CE.
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dispersion with a specified time of flight term #s¢¢ contribution.
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Figure 4.35: Layout for the NA section. Part of the SA is shown for reference.

4.3.5 NA - North Arc

The NA is approximately 354 m long and contains the final set of seven 5 m un-
dulators and a single 25 m undulator before energy recovery in LA. It is divided

into four cell types:

Cell A Matches optics from CE into Cell B

Cell B Periodic section containing a three-bend isochronous achromat and a

5 m undulator — occurs seven times
Cell C Matches optics from the last Cell B into a 25 m undulator

Cell D Bunch decompression section, matches optics into LA for energy recov-

ery

The layout for these cells is shown in Fig. 4.35.
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Figure 4.36: Layout showing the NA Cell D.

In the bunch compression mode, where CE compresses the bunch, it is nec-
essary to keep the bunch short in all undulators. Therefore, in addition to be-
ing achromatic, the bends between all undulators are also isochronous. This is
achieved by adding a short “negative” bend between the two long bends in an
achromat, which can be seen in all Cell B and Cell C sections. This short bend is

also designed to produce an adjustable quadrupole moment.

Besides this short bend, all Cell B sections have the same layout as the SA
Cell B sections, with altered drift lengths and bend strengths, and each begins
with the bends as opposed to an undulator. Cell C is similar to a Cell B section,
except with a longer 25 m undulator. Optimization for these cells is therefore
similar to the method described in Section 4.3.3 for SA Cell B, with the addi-
tional constraint that rs¢ = 0 through a cell. Two sextupole magnets make the
section achromatic to second order. The resulting optics for these sections are

shown in Figs. 4.37-4.38.
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The NA Cell A section matches Twiss parameters and dispersion from CE
into the first NA Cell B. Optics for this cell are shown in Fig. 4.39. The first and
second order dispersion are fine tuned to give the desired rsc and fs¢6 terms from

the beginning of CE to the beginning of the first NA undulator.

After the 25 m undulator, the NA ends with a ten bend arc that connects the
beam back into LA for energy recovery, shown in Fig. 4.36. In the mode where
the bunch arrives compressed, this section serves to decompress the bunch by
providing rather large dispersion through the central bends and correspond-
ingly large rss compensation. The optics for this cell are shown in Fig. 4.40, with

the resulting time of flight terms shown in Fig. 4.41.

Optics for the entire NA section are shown in Fig. 4.42, with radiative emit-
tance growth and time of flight terms shown in Fig. 4.43. Because the time of
flight terms are calculated starting at the beginning of the SA, one sees that they
indeed go to zero at the end of the NA and thus the SA-CE-NA sections together

are achromatic and isochronous to second order.
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strengths are finally adjusted to provide fi¢ = 0, 1266 = 0, and a specified ts¢s through the section.
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Figure 4.44: Phase space slices of the initial particle distribution used in the
CERL. The colors represent different energies, with blue being higher and red
being lower than the reference particle energy. The sizes of the particles in these
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4.4 Particle Tracking

Just as with the MERL, our efforts in designing the CERL lattice are tested by
tracking particles through the lattice. The initial distribution is in accordance
with the Mode A parameters shown in Tab. 3.1, and is accelerated on-crest with
¢ = 0. It is very similar to the MERL one, only matched to different incoming

Twiss parameters, shown in Fig. 4.44.

Particles at the beginning and end of the SA are shown in Fig. 4.45. There it
is evident that the TA does a good job in preserving the transverse phase space.
The end of the SA shows some chromaticity, but negligible emittance growth.
Transportation through CE does disturb the transverse phase space, with par-
ticles in the first NA wiggler shown in Fig. 4.46. Notice that the longitudinal
phase space has been sheared due to time of flight terms in the SA and NA. The

end of the NA corrects for this, as seen in the same figure.

The calculated horizontal and vertical widths o, and o, for these particles

through the SA are shown in Fig. 4.48, along with the normalized horizontal
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and vertical emittances. Although it is difficult to see in the figure, the emittance
shows negligible increase in emittance through the SA. The same quantities are
shown through the NA in Fig. 4.49. Even though the particles in Fig. 4.46 look
distorted, it turns out that the emittance growth is negligible through CE and
the NA.

Normalized emittances and energy spread through the entire CERL are
shown in Fig. 4.50. The bunch widths and length are shown in Fig. 4.51. There
one sees that the bunch width in the horizontal plane becomes very wide in CE

due to the large dispersion there.

The particles at the end of the CERL are shown in Fig. 4.47, calculated with
and without the sextupole magnets turned on. Here we see that the CERL does
not fare well with sextupole magnets turned off, showing a large increase in
energy spread. Additionally the normalized beam emittance in CE is increased
from 0.3 mm-mrad to approximately 0.6 mm-mrad when sextupoles are off (not

plotted).
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4.5 Bunch Compression

Bunch compression, described in Section 3.5, can be performed when there is a
correlation in (z, 6) phase space that can be manipulated by time of flight terms.
This correlation is created by sending bunches off-crest through the linacs, and

optimizing the rss and 56 terms in an arc.

Mode C in Tab. 3.1 is the bunch compression mode for the CERL. Just as in
the MERL, we choose ¢,; = 9°, along with rs¢ = —0.225m and ts¢¢ = —2.9m in
order to compress the bunch to o,/c = 100fs at the end of CE. The optimized

dispersion and time of flight terms that give these values are shown in Fig. 4.52.

This compression is tested by tracking particles. Unfortunately, even with 754
and ts¢s properly tuned,the bunch is unable to achieve the desired compressed
length, shown in Fig. 4.53. This is due to the third order time of flight term usecs,
which becomes large at the end of CE. Perhaps equally troublesome is an erratic
bunch length through CE in which, unintentionally, the first and second order

time of flight terms occasionally conspire to give a 150 fs length.

Fortunately, the upgraded CE lattice fares much better, and is able to achieve
100 fs lengths through the NA undulators. This is shown in Fig. 4.54, along
with u#see6, Wwhich remains small through the compression, and only grows in

the decompression section at the end of the NA.
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Figure 4.54: The same as Fig. 4.53, but with the upgraded CE lattice. The additional quadrupole magnets in CE aid in
controlling the time of flight terms, so that the bunch attains and maintains the intended 100 fs length through the NA

undulators.
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Figure 4.55: Longitudinal phase space in the first undulator after compression
with the existing CESR magnets and the upgraded CESR magnets.

The longitudinal phase space in the first NA undulator using the non-
upgraded CE is shown in Fig. 4.55(a). High order time of flight terms shear this
phase space at relatively large ¢ and spoil the intended bunch length. The corre-
sponding phase space using the upgraded CE is shown in Fig. 4.55(b). There the

bunch is properly compressed to second order without noticeable contributions

from higher order time of flight terms.
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CHAPTER 5
COHERENT SYNCHROTRON RADIATION

This final chapter examines the effect of Coherent Synchrotron Radiation (CSR)
in a particle accelerator. It uses the less widely known Jefimenko forms of
Maxwell’s equations (Jackson, 1999), which allow one to calculate electromag-
netic fields by directly using the evolving charge and current densities, and
which internally incorporate all retardation effects. These equations are related
to forms used in Derbenev et al. (1995) and Warnock et al. (2006). This is in con-
trast to the usual Liénard-Wiechert approach, which gives fields due to charges
at their retarded times ¢ and positions x(#'), and one must invert equations of
the form t — ¢ = |x(¢') — x,|/c for the retarded time ¢, where x, is an observa-
tion point at a later time ¢ and c is the speed of light. While this latter method
has proven useful in deriving equations for (incoherent) synchrotron radiation
of single particles, the former is found to be useful for the coherent fields of

particle distributions.

5.1 Exact 1D model for CSR

In general, for given charge and current densities p(x, ) and J(x, 7) at position x
and time ¢, the electric field E(x,?) can be calculated using Jefimenko’s form of

Maxwell’s equations (Jackson, 1999)

1 X ’ r ’ 1 ’
E(X,t):—fd3x [ﬁp(x,t)+m0ﬂp(x,t)—C—Ot/J(X,t) , (51)

2
47T60 r t'=t-r/c

in whichr = x - X/, r = ||r||, & is the vacuum permittivity and ¢ is the retarded

time. In this formulation, the retarded points x" and times ¢ are independent
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variables, so there are no functions that need to be inverted. Therefore, if one
knows p, p, and J at all points in space x’ and times ¢ < t, with a dot denoting the

time derivative, then this formula gives the electric field by direct integration.

Now consider a line charge distribution, which follows a path X(s) param-
eterized by distance s, has a unit tangent u(s) = dX(s)/ds, and moves with con-
stant speed Sc along this path. A bunch with total charge Q and normalized line

density A therefore has one-dimensional charge density and current

p(s, 1) = QA(s — s, = Bct),

J(s,0) = QBcu(s) As — 5, = Bct),

(5.2)

where s, is the location of the bunch center at time ¢ = 0.

The rate of energy change per unit length of an elementary charge g at po-
sition s is d&/ds = qu(s) - E(s, ). Functions of this type are called wake-fields.

Using Eq. (5.1) with the one-dimensional bunch in Eq. (5.2) gives

[

%(s, 1) = Nrcmcz fds' lwﬂ(m _ﬁwﬂ'(sr)

r(s, s’)3 r(s, )2

~ (5.3)
+ﬁ2—“(:()s','s’,(; Qu(sy)|.
with the definitions
s, =8 —so+Br(s,s), (5.4)
S0 = 5, + e, (5.5)
K(s, ') = X(s) - X(s), (5.6)
(s, ') = lIKGs, )l (5.7)

where N = Q/q is the number of elementary particles with mass m and classi-

cal radius r. = ¢*/ (47reomcz), and the prime on A indicates a derivative of this
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function with respect to its argument, i.e. A'(x) = d1/dx. Additionally, s, is the
center of the bunch at time ¢, and this is the only place where the time depen-
dence appears. The integrand is thus the contribution to the wake-field due to
particles between the retarded positions s” and s + ds’, with N A(s,) being the

charge density at retarded position s" and retarded time #'.

Unfortunately the integral in Eq. (5.3) diverges as s — s* — 0, which is a
consequence of the one-dimensional line charge model. This problem can be al-
leviated by using the regularization procedure originating in Saldin et al. (1997),

where the electric field E is split into two parts

The space charge (SC) part is the electric field of a line charge moving on a

straight path,

1
Eo(s,1) = —U(S)f dS[ ~|3/1(S1) 'BI 3P ﬂ'(Sz)+,3 ﬁfl ()|, (5.9

with s; = § — 50 + B|s — 5|, which can be integrated by parts, simplifying to

Qu(s) wd§/1’(§—s()+ﬂ|s—§l)'

Teyy? s—3
Y

—00

Eoc(s,1) = - (5.10)

It will turn out to be useful to change variables in this expression, so that when
combined with Eq. (5.3) the function A’ can be factored. This can be done by
setting § — so + Bls — 8| = 8" — 5o + Br(s, s"), with the convention that sgn(s — §) =

sgn(s — s’). Noting that dr(s, s")/ds" = —r(s, ") - u(s")/r(s, s’), this leads to

-1 ;1 +Bsgn(s —s)
T sgn(s’ — s) =y - BrGy) (5.11)
ds = _ﬁr(sa S’) : U(S’)/F(S, S,) dS,, (512)

1 + B sgn(s’ —s)
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so that

Eo(s,1) = iﬁ;‘) ds’ X(s,) sgn(s’ — sy B S) WIS ) g g
drey y s— s —Br(s,s’)
The resulting wake-field due to Ec, called the CSR-wake, is
d&
( diSR) =qu(s) - [E(s, 1) — Es(s,0)]. (5.14)

This expression is finite, and shown in Saldin et al. (1997) to correctly account

for the coherent energy loss due to synchrotron radiation.

The approach here is to be contrasted with the conventional one taken in the
literature using Liénard-Wiechert formulas. In terms of the quantities above,
the electric field at position s due to a charge g at retarded time ¢ = ¢t — r(s, s")/c
and retarded position s’ is

g r—Bru(s) +rx{[r—BrU(s’)]XﬁZu’(s’)} 615
4re | 2 [r - pru(s)]’ [r=Br-u(s)f -

Ev(s, S,) =

with r as in Eq. (5.3) suppressing the arguments. Therefore, the electric field at
s due to a charge p(s;, ) ds, between s, and s, + ds,, as in Eq. (5.2), is found by
inverting s, = s’ + Br(s,s’) for s and using Eq. (5.15). This is often impossible
to do analytically, but fortunately for a distribution of charges the inversion can
be circumvented by changing variables. Because dr(s, s')/ds" = —r - u(s’)/r from

before, the charge is

o(s, 1) ds; = QA(s' — s, — Bet + Br) [1 _ gl ‘;(S’)] ds’, (5.16)

and the total electric field is
E(s,1) = fdst Euw(s, 5'(s1) p(s1, 1) (5.17)
-0 fn ds’ [1 Sy L li(s’)]l«:w(s, §') AGs,). (5.18)
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Figure 5.1: Geometry for a single bend. The variable s parameterizes the curve

with radius 1/«. The coordinates are X(s), and the unit tangent vector is u(s).
We can use this to verify that Esc computed this way agrees with the result

using the Jefimenko approach. For the SC field one has r(s) = (s — s)u(s), u(s’) =

u(s), and u’(s) = 0, giving

Ec(s,1) = %;—;” d '%(;;S')A(s' —so+Bls— ). (5.19)

Equation (5.19) agrees with Eq. (5.10) when integrated by parts because, for
s0=0, [(B+sgn(s—s))(s—5)2ds = (B+sgn(s—s))(s—s)", and —ZA(s" +B (s -

s )sgn(s —s")) = —(1 = Bsgn(s — s")A'(s" + Bls — s’|), and similarly for all s.

5.2 Single Bending Magnet

Now we apply Eq. (5.3) to the geometry of an arc of a circle of curvature x and
length B, shown in Fig. 5.1. Set s = 0 at the entrance of the bend so that § = « s

is the angle into the bend. In terms of fixed Cartesian unit vectors ¢, and ¢é,, the
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path coordinates and tangent vector are

X(s) =k 'sin(k s) &, — k' [1 — cos (k )] &, (5.20)

u(s) = cos(k s)e, — sin(k s) &p,. (5.21)

Consider a bunch with its center at angle 6, = « sy, and a test particle at angle

6. The contribution to Eq. (5.3) of this finite arc is

kB

= Nr.nc® f d@’[(i‘n“m( - plne S V(sa) + ﬁzcosa/l’(sa), (5.22)
0

d&
a(s) 5

ro)? () Ta

with s = k' and the following definitions:

a=60-6, (5.23)
1

«=—(0-00—a)+Br,, (5.24)
K

Fo = ! V2 —2cosa. (5.25)
K

Thus «a is the angle between the test particle and the retarded source particle,
and is positive when the former is ahead of the latter. The first term of Eq. (5.22)
can be integrated by parts because d(2 — 2 cos @)™/?/8¢" = sin (@) (2 — 2cos @)/,
and the wake greatly simplifies to

= Nr mcz{ KA
‘ V2 -2cosa

a=0

2
f B cos(a) - /l(s(,)}. (5.26)

V2 - 2cosa

d&
a(s) 5

a=—(k B-6)

In terms of the variable ¢, the space charge term in Eq. (5.13) can be split as

—(k B-0) 0 oo

d
jjc (s) = =Nr.mc? f da (@) + f da () + f da ()¢, (5.27)
oo —(k B—6) 0
with the integrand
B sin (@)

1= £> 7
sgna V2 - 2cosa
y? a—pB V2—-2cosa

(@) = — A'(84), (5.28)
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so that the contribution of the bend to the CSR-wake is

a=0
d(gcs[{ (S)' :Nrcmcz —K /1(5(1)
ds B V2 —2c0s @|o=—(x B-0)
, - B sin (@)
2
-1 _
N f da U (sa)[ﬁ cos(@)—1 sgnga) V2 =2cosa (5.29)
o) V2 -2cosa Y a-BV2-2cosa
—(k B-0) 00
- f da’ Isc(a) - f da’ Isc(a) .
—0o0 %]

5.2.1 Steady State

In the practical environment of a particle accelerator with a bunched beam, one
is typically only concerned with electric fields around the bunch center. Due to
the rotational symmetry, there will be an angle into a bending magnet beyond
which the CSR-wake, relative to the bunch center, does not change. Note that in
Eq. (5.24) the quantity z = (6 — 6) is the distance along the path ahead of the
bunch center, and define the extent of the bunch /, = z, —z_, where z, is the head
particle coordinate, and z_ is the tail particle coordinate. Henceforth the symbol
z will refer to the longitudinal coordinate relative to the bunch center: z = s — 5.
The particle at z, is affected by a particle at z_ at retarded angle a,, found by

inverting
Klp = Omax — B2 — 2 COS Qppax.- (5.30)

Similarly, a particle at z_ is affected by a particle at z, at retarded angle @y

found by inverting

—K lb = min —ﬁ\/Z —2cos min- (531)

When the bunch center is at an angle 6y > am.x — « 24, only particles within
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Figure 5.2: The inverse of Eq. (5.33) for positive « at various energies. The
dashed green curve (y — ) is @ = (24 k A)'/3, the inverse of Eq. (5.35).

the bend affect the wake-field. The “steady-state” (s.s.) CSR-wake is then

Wesr(z) = Nr.mc? f da [

@min

B%cos(a) -1
V2 —2cosa
| _Bsin@ (5.32)

N sgn(a) V2 —2cosa
y? a—-BV2-2cosa

X (z-ANa)),

where

Al@) =k (@ —B V2 =2cosa) (5.33)
is the distance behind the test particle at z. The notation

dEcse

SS (5o + 2) (5.34)

Wese(2) =

is used to refer to the CSR-wake immediately surrounding the bunch center at

S0-.

In the ultra-relativistic approximation (8 — 1) with a small normalized

bunch length «/, < 1, and thus @ < 1, the steady-state formula in Eq. (5.32)
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Figure 5.3: The steady-state CSR-wake for various relativistic y using Eq. (5.32),
compared to Eq. (5.36) plotted as green. Here ko = 3 x 107 for a Gaussian
bunch, represented in light blue.

greatly simplifies. The 1/y* term in Eq. (5.28) puts I« — 0, and the term in the
integrand (B2 cos (@) — 1)/(2|sin (a/2)]) = —|a|/2. The function A(e) for y — o is
approximately

@’/(24k) fora >0
Ala) ~ . (5.35)

2a/k fora <0

Figure 5.2 plots the inverse of Eq. (5.33) for positive a and various energies.
One sees that the approximation in Eq. (5.35) is increasingly good for higher en-
ergies, but greatly overestimates a at the smallest distances. Changing variables

using Eq. (5.35), the ultra-relativistic steady-state CSR-wake is

2X(z-A) kA

b
_ 2 ey
Wgs_Rm(Z) = —Nr.mc deA[ EPINIE + 3 A(z+ A)]. (5.36)
0

The first term in this integral is derived by an alternate method in Saldin et al.

(1997). The scaling here is apparent by writing the distribution in the normal-
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Figure 5.4: The steady-state CSR-wake for various relativistic y due only to par-
ticles ahead of the test particle, i.e. negative a in Eq. (5.32), and the second term
in the integrand of Eq. (5.36). A Gaussian bunch is used, with ko = 3x107°, and
the wake has been scaled by (k 0)™/*. Compared with Fig. 5.3 this demonstrates
that the contribution to the CSR-wake of particles ahead of the test particle is
insignificant compared to those behind.

ized form

Az—A) = éﬁ(ﬂ) : (5.37)

g

X(z-A) = %’i’ (Z _ A). (5.38)

g

where o is the variance of 4, so that A has unit variance. Also using normalized

Z=z/oand A = Ajo gives

Iy/o —_ —_
) (k)PP f F]2AE-D)
o? (33

Wgs_%oo(zv()‘) = —Nr.mc + (ko)*? %Z’(Z+ K) ) (5.39)

Now one can see that the particles in front of the test particle, represented in the
last term in the integrand, influence the wake by roughly a factor of (x 0)*/° less
than particles behind, and that the primary contribution to the CSR-wake scales
with the factor in front of the integral in Eq. (5.39). However, it is interesting to

note that even as y — oo, where a charge radiates infinitely more power in the
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Figure 5.5: The ratio of the average energy of a Gaussian bunch using the exact
Eq. (6.32) to that using approximate Eq. (5.36) in a practical range of the param-
eters y and k0.

forward direction than the backward direction, there is still a finite CSR force

from particles ahead of the test particle. In light of the primary scaling, we

define a characteristic CSR energy change per unit length as

5 (K 0_)2/3

Wy = Nr.mc >
o

(5.40)

The ultra-relativistic approximation in Eq. (5.36) is compared to the exact
formula Eq. (5.32) in Fig. 5.3 for various energies and a particular value of ko
One sees that Eq. (5.36) represents the largest possible effect. The CSR-wake due
only to particles in front of the test particle is shown in Fig. 5.4, emphasizing
again that these forward particles contribute only a small amount to the total

CSR-wake.
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Figure 5.6: Similar to Fig. 5.5, but with the ratio of the average energy of
Eq. (6.32) to Eq. (5.41), showing that the latter is an excellent approximation
at relatively low energies.

Neglecting the contribution due to forward particles, the ultra-relativistic
stead-state CSR-wake in Eq. (5.39) scales with W, and depends only on the shape
of . Factoring out W, from the exact steady-state CSR-wake in Eq. (5.32), the
exact result additionally depends on y and « 0. Therefore, to quantify the appro-
priateness of the ultra-relativistic approximation, the ratio of the average energy
lost (per unit length) of a Gaussian bunch using the exact Eq. (5.32) to that using
approximate Eq. (5.36) is shown in Fig. 5.5 for a practical range of these param-
eters. At a given energy, one sees that Eq. (5.36) is a good approximation for
the relatively long bunches. This can be understood from Fig. 5.2, because the
approximation in Eq. (5.35) has a relative error for a finite energy that diverges

for small «.
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A systematic method for calculating the CSR-wake using Liénard-Wiechert
formulas in the small angle, relativistic approximations has been developed in
Sagan et al. (2008) for arbitrary combinations of drifts and bends. Using the
corresponding equation in Sagan et al. (2008) for the geometry of a bend, and
the appropriate Jacobian factor, the steady-state CSR-wake to second order in «

and 1/yis

@max

1 a,Z)( 2 + y*a? 1 )

14 = —Nromc* | da [z + — -
GR g0 (@) = ~NTeme™ [ da (2)/2 8 \a+203/4  a/2+y2a )24

0 (5.41)
3
Nyt [ 2+ &
X A (z K (2}/2 + 24)).
Compared to Eq. (5.36), this expression is a significantly better approximation

of Eq. (56.32) for low y and a practical range of ko, shown in Fig. 5.6.

5.2.2 Shielding by Parallel Plates

The presence of a conducting beam chamber can have a strong effect on the
CSR wake-field. For a rectangular cross section, it has been observed that the
dominant effect comes from the smaller of the height and width (see, for exam-
ple, Sagan et al. (2008)). If particle trajectories are planar, then a finite chamber
height can be represented by infinite parallel plates. In such a geometry, CSR

wake-fields can be calculated using the image charge method.

The kick due to a single image bunch at height / is easily adapted from
Eq. (5.3) as

d& s (g [_UG)
a(s, t,h) = Nr.mc fds {mﬂ(sh)
-, (5.42)

u(s) - u(s’) u(s)-r|
’ [ﬁz Pimr Pay hz] 1 (sh)}’
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Figure 5.7: The free space and shielded CSR-wakes in a bend. The contributions
to the shielded wake of individual image bunches are shown in red and blue. A
1GeV Gaussian bunch with o = 0.3 mm is used in a bend of radius ™! = 10.0 m.
The shielding height H = 2 cm.

with the argument

sp=8 —s,—Pct+B Nrr + h?, (5.43)

and with r and u retaining their meaning from Eq. (5.3). Parallel plates require
an image bunch for each plate, and an image bunch for each of those, ad in-
finitum. For the real bunch with orbit midway between plates separated by a

distance H, symmetry gives the total image kick

d&‘“ag“ 5,0) = Z( 1)" (s t,n H) (5.44)
n;&O
=2 Z(—l)" @(s, t,n H). (5.45)
o ds

If the real bunch has a vertical offset V, the total image kick is modified to

AdEimages = dE = dE

= —(s,t,n H) — —(s,t,n H-2V). A4

T (s ) n=§¢ods(s n H) n;ods(s n ) (5.46)
eve}rll odd

In a bend, the contribution of the image bunches to the CSR-wake within the
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bend, following Eq. (5.26), is

daima es - - A a,n @0
()| = Nrame Y 2(-1)”{ K AlSan)
ds B n=1 a,n a=—(k L,,—06)
) ) | (5.47)
+ ﬁ&’ ﬁ—COS (a/) — /l,(soz,n)},
—(k Ly—6) o
with the definitions
Fan = \/2 —2cosa + (nk H)?, (5.48)
San =K (0 =0)—a+PBry,). (5.49)

Notice that the integrands do not need to be regularized by the SC term, because

they are always finite due to the always positive factor (nk H)*.

Due to the infinite number of image layers needed, a finite bend can never
be exactly in the steady-state. However, due to their increased distances and an-
gles, the relevant contribution image number n will be negligible beyond some
maximum image number. This point is illustrated in Fig. 5.7, where the contri-
butions to the CSR-wake of five individual images are shown along with their

sum with the free space wake, to give the total shielded wake.

Shielded Steady-State CSR

CSR effects in a vacuum chamber have been computed by the Green’s func-
tion of grounded parallel plates (Schwinger, 1945; Warnock, 1990). These for-
mulas are difficult to compute numerically, due to the presence of high order
Bessel functions, so we will use an excellent approximation developed by Agoh

& Yokoya (2004). The impedance for the steady-state in a dipole with horizontal
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plates separated by a distance 4 is

20 =2, 21/MOF 2 5.50
*) =20 | ;Ayw,), (5.50)

7/ R\'3
Br=Cp+ D7 (55) - (5.51)
Fay(x) = Ai'(x) [Ai'(x) — i Bi"(x)] + x Ai(x) [Ai(x) — i Bi(x)] . (5.52)

where Z; = cuy is the free space impedance, k is the wave number, and Ai and
Bi are Airy functions. The parallel plate wake-field due to a bunch with longi-

tudinal density A(z) is obtained by Fourier transform:

d 40
(—8) = —N,r;mc* R | — f Z(k) A(k) e™dk| | (5.53)
ds | pp. Zy
bamd 0
Ak) = f A(2)e ®dz . (5.54)
Some manipulation reveals that
By =Q2p+Dn27"P bt (ko) (5.55)
Z(k) = 2P n b} (ko) ' P iPo! Z Fay(B2) (5.56)
p=0

where the bunch length o has been added and we define a shielding factor

b, = h(i)l/3 . (5.57)

o2
This is useful because the CSR wake shielded by parallel plates (p.p.), in the

steady-state and ultra-relativistic approximations, is then

<) o _I_C_, B N
Wop (2) = -Wp R f Ib(k)z(—) exp(z’ki) dk], (5.58)
0
210/3 & 2 12 2
1, (k) = === ZFAY[M), (5.59)
b, k13 2213 2 /3
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Figure 5.8: Average energy loss and energy spread versus the shielding param-
eter b;.

which, besides scaling with W, only depends on z/o and b;.

Two principal effects of CSR on the bunch distribution are a loss of energy
and an increase in energy spread. These are calculated using the CSR-wake
Wer(z) and the bunch distribution A(z), where the average energy change per

unit length (W) and the standard deviation oy (W) over the distribution are

(Wesr) = fWCSR(Z) A() dz, (5.60)

ya
1/2

Ow =

(5.61)

f WCZSR(Z) /1(2) dz - <WCSR>2

The term oy is important because it contributes to the energy spread in a bunch.
These quantities for a Gaussian bunch and the CSR-wake in Eq. (5.58) are cal-
culated versus b, in Fig. 5.8, indicating that shielding becomes relevant when

b, < 3.
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5.2.3 Retarded Bunch Visualization

For a given particle at time ¢ within the bunch, it is evident that the retarded
bunch density can be very distorted relative to the actual bunch density. From
Eq. (5.16), the retarded bunch density at position s” as seen by a particle at posi-

tion s is

Aret(8"58) = A(s" — s, — Bt + Br) (1 -B (5.62)

r-u(s)
—
In the steady-state, the geometry of a bend can be used in Eq. (5.62). Moving

to coordinates relative to the bunch center, the steady-state density seen by a

test particle at z, within the bunch as a function of 7’ is

sin (k(z; — 2'))
V2 —2cos (k(z, — 7))

/lsr;st.(z';zf) =|1- ] A (z' + B! \/2 —2cos (k(z; — Z’))) . (5.63)

This retarded density is illustrated in Fig. 5.9 for a Gaussian bunch distribution
for various test particles. There one sees that the density in front of the test
particle is compressed to roughly o/(1 + 8) = 0/2, concentrated in an apparent
spike at the right of the plot. The density behind the test particle occupies the
majority of the plot. While it may seem that the curves shown are Gaussian
in form, this is only true for the left sides of the curves; the right sides have
been extended and diluted due to the Jacobian factor in Eq. (5.62). Similarly, the

retarded density of an image bunch at height / is

r-u(s’)

Aret(8", 3 8) = [1 —Bﬁ
2+

A(s' = sy =Bet+ BV +12). (5.64)

Figure 5.10 shows the retarded densities for a Gaussian bunch and several
image bunches within a bend. In this example, the first and second image
bunches as seen by particles in the rear of the bunch are actually closer than

the real retarded bunch.
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Figure 5.9: The steady-state retarded distribution A5 (z’; z;) for various test particles z, in Eq. (5.63) using a Gaussian
bunch with standard deviation o = 0.3 mm and energy 1 GeV, in a magnet of bending radius ™' = 10.0 m.
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Figure 5.10: The same as Fig. 5.9, along with image charges at heights nH = nx2 cm (not to scale), which are approximately
at heights n x 6707, and calculated using Eq. (5.64).
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Figure 5.11: Geometry for bends and drifts. The variable s parameterizes the
path X(s), with s = 0 at the beginning of element B,. The names B, Dy, etc., also
serve to indicate the element length. The dashed line is for a prior bend with
negative curvature.

5.3 Multiple Bends and Drifts

In this section the general formula Eq. (5.3), regularized by Eq. (5.10), is applied
to the geometry of multiply connected bends and drifts. Shielding by conduct-
ing parallel plates is added as in Eq. (5.45). It has been seen in Eq. (5.39) that the
primary contribution to the CSR-wake in a bend is due to particles behind the

test particle, so for brevity the path is given behind the test particle only.

Let the bunch center be at length s, inside bend 1 of length B; and positive
curvature «;, preceded by drift 1 of length D;, preceded by bend 2 of length B,
and curvature k, # 0, as shown in Fig. 5.11. A drift follows bend 1, referred to

as Dy. A negative curvature «, signifies a bend in the opposite direction of bend
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1. With s = 0 located at the beginning of bend 1, the path coordinates are

XD()(S) for s > B

Xp, (s) forO<s<B
X(s) = (5.65)

sé, for-D; <s<0

Xp,(s) fors<-D,

where the paths in the individual elements are

i B
Xpo(s) = | SEBY By cos (KlBl)] 2
K
| : (5.66)
+ [—(cos (k1 By) — 1) — (s — By) sin (KIBI)] ep,
K1
. -
X, (5) = sin (k; ) o — [1—=cos (k)] 2. (5.67)
K K
i D, +
Xp,(s) = [Sm(“ ARRL —Dl] 2,
2 (5.68)
1 —cos(ky Dy + k> 5) n
- €p.
K3
The tangent vector is then
COS(K]B])éa—SiH(KlBl)éb for s > B,
cos (k; 8) &, — sin (k; §) &, forO< s < B
u(s) = (5.69)
le, for-D; <s<0
COS (K2D1 + K28) €, — sin (Kle + K S) €p for s < -D,

Straightforward calculation gives the total CSR-wake at position s in the bend

(0 < s < B;) due to these different sections of the path

dSCSR (0 <s< B]) — dSCSR

daCSR
+
ds tot ds

dSCSR
+
B ds

D ds

(5.70)

B>
with By, Dy, and B, signifying the contributions from bend 1, drift 1, and bend

2, respectively. Due to their length, these terms are written out in Appendix C.
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Figure 5.12: The average energy loss and energy spread induced, per unit
length, of the CSR-wake for a Gaussian bunch through the length of a bend
in free space as well as between parallel plates with H = 2cm. Solid lines
have D, = 1m, while dashed lines have D, — oo. Parameters used are
k' = ' =10 m, o, = 0.3 mm, with an energy of 1 GeV.

A visualization of the retarded bunch and images of this geometry, similar
to Fig. 5.10, is shown in Fig. 5.13. Even though the bunch has progressed 50 cm

into bend 1, it sees much of the retarded bunch inside bend 2, especially for test

particles z, in the front of the bunch.
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Figure 5.13: Similar to Fig. 5.10, but with a 1m drift (shaded in gray) between two magnets of curvature x| = k, = 1/10m.
The center of the bunch is 50cm into the bend. A Gaussian bunch distribution is used with o, = 0.3 mm, an energy of
1GeV, and a shielding height H = 2 cm.



To show how the average energy loss (Eq. (5.60)) and energy spread (Eq. (5.61))
change as a bunch progresses through a bend, Fig. 5.12 plots (W) and oy, nor-
malized by W,, versus different bunch center coordinates s, in bend 1 using
Eq. (6.70) with D; = Im and «; = k, = 1/10m. In the literature, the wake near
the beginning of bend 1 is often calculated as if the prior drift length D; —
(Saldin et al., 1997; Agoh & Yokoya, 2004), so such calculations are plotted in
dotted lines for comparison. From the difference between the two approaches,
one sees the effect of bend 2, where the CSR-wake at s, = 0 is non-zero. In
this example, they coincide after about 1.4 m and 1.8 m for the free space and

shielded cases, respectively.

In order for it to be plausible to ignore the vacuum chamber sidewalls, such
a chamber must be wide enough to allow a straight path between the retarded
bunch and the test particle. In this example, the vector from a source particle at
z = —8000 o to the center of the bunch (z = 0) requires that the vacuum chamber

half-width must be greater than approximately 3 cm.
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5.4 CSR in a Drift Between Bends

The non-zero CSR-wake at the beginning of bend 1 in Fig. 5.12 is evidence
that the wake in a drift region after a bend also needs to be considered. This
exit-wake in the region D, following bend 1 is calculated using Eq. (5.3) with
Eq. (5.65) and Eq. (5.69) around the center of a bunch at s, > B;. Because the
bunch is moving in a straight line, the regularization procedure simply removes
the need to integrate any s’ > B; for the real bunch. Therefore we can use
Eq. (5.3) for bend 1, drift 1, and earlier elements, and subtract the space charge
terms for s’ < B,. Image charges, however, still require terms for s* > B;. The

total exit wake is then

Cié;CSR Cié;hnages

(s>B)=

N dEcsx
ds ot ds

ds

. dcsx
B, ds

T (5.71)

D

Dy
where the individual terms due to element elements D, B, D, are written out

in Appendix C.

For a magnet of length B, = 3m, the exit wakes in the following drift D, are
shown in Fig. 5.14 for bunch centers in the following 3 meters between paral-
lel plates and in free space. The average and standard deviation of the wakes
through this region are shown in Fig. 5.15. In the shielded situation, one sees
that the bunch actually gains some energy in a short length following the bend,
and that the total energy loss between parallel plates is negligible compared to
the free space losses. Energy spread, however, is qualitatively the same in both

cases.
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Figure 5.14: CSR-wakes for various bunch centers s, > B, calculated using Eq. (5.71). The left graph uses parallel plates
separated by a distance H = 2cm, while the right graph is for free space (n = 0 terms only in Egs. (C.6)-(C.7), and without
Eq. (C.5)). The bending radius «;' = 10m, and the bunch has a Gaussian profile with o = 0.3mm and an energy of 1GeV.
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Figure 5.15: The average energy loss and energy spread per unit length of the exit wakes in Fig. 5.14. In this example,
shielding by parallel plates drastically reduces the energy loss, but only marginally reduces the energy spread, when
compared to free space calculations.



5.5 Bunch Compression

Bunch compression or decompression can be achieved in a bending magnet if
there is a correlation between energy and longitudinal position of particles in
the bunch. To exactly calculate CSR for this, however, requires at least a 2-
dimensional model, because particles of different energies travel on different
orbits. In the framework of the 1-dimensional model described by Eq. (5.3), this
effect can be approximately modeled by allowing the bunch length to be time

dependent, and neglecting variations in the velocity 8 c. The density and current

are then
I ~(s—s,—Bct
p(s,0) = Q /1( )
o(t) Sa'(tz s (5.72)
- 3 ~obh T
J(s,0) = QpBc a(t)/l( o0 )

where 1 has unit norm and variance with respect to s, as in Eq (5.37). The time
derivative of p(s, 1) is

7( (2 v

with s, = s—s,— ct. Note that /(8 ¢) is on the order of o/ B in a magnet of length
B, and (s — 5, — B ct) is on the order of o for all relevant (s, ¢), and therefore the
term in brackets is on the order of o-/B < 1 relative to the first term, and will be
neglected. With such an approximation, the CSR-wake in a bunch compression

system can be modeled by simply making the substitutions

I ~( s
Als:) = cr(tret)ﬂ(aaret)) (6.74)
1 ~ )
A(s,) — A 4 5.7
P (fr(treo) 6.73)

e =t — AP+ (nH)?*/c (5.76)
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in all of the previous formulas, with r = [IX(s) — X(s")l|, as in Eq. (56.3). This
accounts for the real charges (n = 0) and image charges (n # 0) at the appropriate

retarded times.

Calculations for the average and standard deviation of the CSR-wake with a
linearly compressing bunch through the length of bend 1 in free space are shown
in Fig. 5.16(a). The above approximation is referred to as Method 1. Method 2
calculates the instantaneous CSR-wake of a compressing bunch at each point in
the bend as if it always had its instantaneous length. Such a scheme is essentially
what particle tracking codes use for CSR simulation, e.g. elegant (Borland,
2000) and Bmad (Sagan, 2006). For reference, Method 3 calculates the CSR-
wake for a non-compressing bunch that maintains the same length as the final
compressed length in Methods 1 and 2. In this example, Method 2 overestimates
the CSR effect compared to the more realistic Method 1, and both exhibit a much
smaller effect than Method 3. At the end of the magnet (5o = 3 m), the CSR-wake,

according to Method 1, has yet to reach its corresponding steady-state strength.

Figure 5.16(b) shows these same calculations but between parallel plates
with H = 2cm. One sees that the energy loss in method 2 is similar to that
in method 1, but the energy spread induced is overestimated. Free space and
shielded calculations are repeated with D, — oo in Figs. 5.16(c)-5.16(d), which
when compared with Figs. 5.16(a)-5.16(b) one can see the effect of the previous
bend B,.
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Figure 5.16: The average and standard deviation of the CSR-wake in free space (Fig. 5.16(a)) and between parallel plates
with H = 2cm (Fig. 5.16(b)) over a Gaussian bunch, compressing from o = 0.9mm to o = 0.6mm linearly through bend 2,
and from o = 0.6mm to o = 0.3mm linearly through bend 1, using methods described in the text. Figures 5.16(a)-5.16(b)
have D, = 1m, while Figs. 5.16(c)-5.16(d) have D; — oo. The lengths B| = B, = 3m, the bending radii are /<1‘1 =K, 1= 10m,
and the energy is 1GeV.



5.6 Coherent Power Spectrum

Some of the first CSR calculations are found in an originally unpublished re-
port by Schwinger (1945). Here we use one of his methods to derive an exact
expression for the coherent energy loss by a Gaussian beam, which is then used
to verify our earlier calculations. Consider the power spectrum due to a single
particle moving on a circle with velocity ¢, which is proportional to the abso-
lute square of the Fourier transform electric field E®V(€, 7), integrated over solid

angle Q, as in
2

: (5.77)

(o)

dPM .
o f dQU dr " EV(Q, 1)
w

(%)

For N particles moving on this circle with positions s = s, + B ct, the total electric
tield can be written in terms of the single particle’s electric field (s, = 0), as in

N
EM(Q, 1) = Z EVQ,1-1,), (5.78)

n=1

where the time deviations #, = s,/(8¢). By changing variables, this means that

the N particle power spectrum is simply

2
dPV K | ap®
= il ——, 5.79
dw ; ¢ dw (5.79)
These phase factors can be separated into terms with m = nand m # n,
N N

dP™ _ Z Jioin Z " dPD
dw | & 1 — dw

(5.80)

dph  gph Y s\ v S
= + E o E —iw>),
y do 4 1exp (lw,Bc) exp( lw,Bc)

= n=1
n#m

so that the second term can be written as a correlation between different parti-

cles

’

Zexp(iwsmﬁ_csn):N(N—l) dm(s)exp(iwﬁ—sc) f ds’/l(s’)exp(—iwﬁs—) (5.81)

c

m#n
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Figure 5.17: The power spectrum in Eq. (5.82), per particle, using a Gaussian
form factor with various values of the coherence parameter a, = 27, defined

in Eq. (5.87). The lower frequencies are enhanced by a factor of N, and in this
example N = 10°.

using the normalized particle distribution A(s) along the circle. The N particle

power spectrum is then

dP™ dpP® ~ws\[* dP
o (w) =N T +N(N-1) ‘fds A(s) exp (1 E) o (5.82)
———

incoherent coherent

The first term in Eq. (5.82) is the incoherent power spectrum, while the second

is the coherent power spectrum. The squared integral is called the form-factor.

In free space, the well-known single particle power spectrum is

(1) (1)
P =" (3) (5.83)

dw W, W,

where w, = 3y° ck is the critical frequency (Jackson, 1999; Chao & Tigner, 2006).

The function S is defined as

9

3 o0
S(f) = S_Z/T_é:f dx K5/3()C), (584)
¢
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in which K is a modified Bessel function. The integral fooo S(x) dx = 1, and the

total power lost by a single particle is
a2 344 2
P = 3reme By . (5.85)

For a Gaussian distribution with variance o> and ko < 1, the form-factor is,

extending the integration limits to infinity,

fd .,BC 202 exp( o2 wz)
- T2 2
o V2no Bc (5.86)
w \2
=exp {— (ac—) },
W

defining the coherence factor
26 (5.87)

The total power spectrum per particle for an N-particle Gaussian distribution
with various values of a, is shown in Fig. 5.17. One sees from the exponential
that the lower frequencies, up to a cutoff frequency around w = Bc/o, are en-
hanced by a factor of N by the coherent part of Eq. (5.82). The spectrum at higher

frequencies agrees with the familiar single particle spectrum in Eq. (5.83).

It turns out that Eq. (5.82) can be integrated exactly for a Gaussian distribu-

tion. Explicitly, the total power radiated by N particles is

(o)

PN = ypD f S(x) dx + N(N - l)P(“% f xe %

e fK5/3()’) d)’} dx

X

0

[

= NPY + NN — 1)P<1> f Kss() l f xe @ dx}dy (5.88)

0

3
=NPY+ NN -1)PVT, (ﬁf m) :
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Figure 5.18: The coherence function 7T.(a.) of Eq. (5.89) is plotted in red. The
green curve is the first term in the asymptotic expansion in Eq. (5.90) (Nodvick
& Saxon, 1954), and the blue curve uses all three terms in Eq. (5.90).

in which the final integral yields the coherence function defined as

9 1 1 9
T.(a,) = K| —| - —. 5.89
) = S R eXp(Sag) 5/6(8a3) 16a2 (5:89)

The limit lim,_,o- Tc(a) = 1, which is to say that an infinitely narrow bunch ra-
diates as one charge. In practical situations a. > 1, so an asymptotic expansion
of T, gives the useful approximation

91“ 5 1 4/3 1 2 91“ 5 1 10/3
T.(a,) ~ @) R +¢ I (5.90)
163 yr\a.) 16\a.) 32225y \a.

The first term in Eq. (5.90) is given in Nodvick & Saxon (1954). Figure 5.18
compares this first term to the exact expression in Eq. (5.89) and to all three
terms in Eq. (5.90). One sees an excellent approximation for a. 2 50 using the

tirst term and for a. 2 1 using all three terms in Eq. (5.90). Also, the average
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Figure 5.19: The relative difference |(b — a)|/b for a the average energy lost using
Eq. (5.32), and b being the result in Eq. (5.91).

coherent energy lost per particle per unit length is

L ——E(N—l)r mc*y* BT 2 3k (5.91)
Ngc|.. 3 mey {37 '
r(3)
N_@ﬁwm@+m, (5.92)

using W, defined in Eq. (5.40). The numerical coefficient I'(5/6)6™'/* 771/2 ~
0.350. The same procedure in Eq. (5.88) and Eq. (5.90) can be carried out for
a uniform distribution of length AL with the same variance ¢, implying that
AL = 23 0. The result yields the same form as Eq. (5.92), except with the nu-
4/3

merical coefficient 2~

(1945).

~ (0.397. This term was originally derived in Schwinger

To verify that the CSR-wake does indeed represent the coherent energy lost,
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Figure 5.20: The dividing line where the coherent power equals the incoherent
power, i.e. the total power is twice the incoherent power. Below this line, the
coherent power dominates the total power.

the relative difference of the average energy loss using the steady-state wake of
a Gaussian bunch in Eq. (5.32) to the result in Eq. (5.91) is plotted in Fig. 5.19.
One sees that the relative difference is at most 1% in this practical parameter
range, and that occurs with relatively long bunches. We speculate that this error
is caused by the regularization procedure that subtracts the space charge term

from the longitudinal electric field.

The relevance of the coherence function depends on the number of particles
N —1 = N. The coherent power radiated equals the incoherent power radiated
when N - T, (a.) = 1, illustrated in Fig. 5.20. Using Eq. (5.90), the coherent power

dominates the total power when
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Figure 5.21: The shielding parameter b, described in Section 5.2.2 for all of the
bending magnets in the MERL, including the second TA pass.

5.7 CSR in the MERL

As we have seen, the exact 1D CSR calculations can be quite involved even for
simple series elements. In order to simulate CSR in a realistic accelerator lattice,
we use the Bmad libraries to track particles through elements and apply the
CSR-wake calculated from the longitudinal bunch density. The Bmad method
is described in Sagan et al. (2008), and is thoroughly tested against other CSR

codes, including the exact 1D method described in this chapter.

These simulations can be relatively time consuming, as the details of the
bunch distribution constantly change as the bunch evolves. Nevertheless, we
can give estimates of the importance of CSR in the MERL using lattice infor-
mation such as chamber height, dipole bending radius, efc., along with bunch
lengths through particle tracking without CSR. For example, to see if shield-
ing is a factor, we plot the parameter b, described in Section 5.2.2 for each of
the bending magnets, including the second TA pass, in Fig. 5.21. According to
Fig. 5.8, shielding will be effective when b, < 3, and we see in Fig. 5.21(a) that

this is the case for Mode A. However, in Mode C the bunch becomes sufficiently
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Figure 5.22: The ratio of the steady-state incoherent radiation power Pj,con to the
coherent power P, plus one, for all of the bends in the MERL, including the
second TA pass.

short in the middle of the RA that shielding is no longer effective, as shown in

Fig. 5.21(b).

Even in free space, CSR is only important relative to incoherent radiation
when Eq. (5.93) is satisfied. To estimate this, the ratio of the incoherent radia-
tion power to the coherent radiation power, plus one, is shown in Fig. 5.22 for
free space and with shielding for each bend in the MERL. These quantities are
calculated for the steady-state, which typically gives the worst case effect. This
number is therefore the multiplicative factor of the incoherent power to give the
total radiation power. In Fig. 5.22(a) we see that the shielding practically elim-
inates the coherent radiation power in Mode A, whereas the short bunches in
Mode C produce coherent radiation which dominate the total radiation power,

as shown in Fig. 5.22(b).
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These estimates imply that CSR is not very important for Mode A, and this
is confirmed through particle tracking with Bmad (not shown). However, we
can expect that CSR in Mode C, due to the large number of particles and short
bunches, will play a dominant role. This is illustrated in Fig. 5.23, which shows
the bunch length through the MERL RA with and without shielding, and com-
pared with the the bunch length when the CSR effect is turned off in the code.
As expected, the shielding plays a negligible role. Also shown in the figure are
results from tracking a bunch with a lower charge of 77 pC, the same charge as

Mode A, and there we see that CSR becomes unimportant.

In all cases we see that the bunches can be compressed to 100 fs, but the
lengths of the 1 nC bunches degrade through the following cells. To explain this,
the longitudinal phase space slices at the first and last short pulse undulators in
the RA, for non-shielded, shielded, and lower charge bunches, are shown in
Fig. 5.24. There we can see, for the 1 nC bunches, that particles in the center and
the tail of the bunch lose energy due to CSR and are sheared to the left in the

plot due to high order time of flight terms.
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Figure 5.23: The bunch length o, for Mode C through the MERL RA using Bmad for particle tracking with CSR. The black
curve is for 1 nC of charge without shielding, and the red curve is for 1 nC of charge with shielding. The dashed purple
curve is for 77 pC of charge with shielding, and the green curve is with the CSR effects turned off.
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Figure 5.25: The shielding parameter b, described in Section 5.2.2 for all of the
bending magnets in the CERL. Note that Mode C uses the upgraded CE section.

5.8 CSR in the CERL

The same analysis in Section 5.7 can be done for the CERL lattice. For Mode C,
we will use the upgraded CE section. The shielding parameter b, for all of the
bends in the CERL is shown in Fig. 5.25. There we see that shielding plays a role
in both Mode A and Mode C for all sections other than the compressed bunch
section in the NA. The ratio of the incoherent power to the coherent power, plus

one, is shown in Fig. 5.26.

The bunch lengths from particle tracking with CSR effects using Bmad for
Mode C through the SA-CE-NA sections are shown in Fig. 5.27. Unlike the
MERL results, the compressed bunch lengths using shielded and non-shielded

tracking for 1 nC of charge are very different.
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Figure 5.26: The ratio of the steady-state incoherent radiation power Pj,con to the
coherent power P.q,, plus one, for all of the bends in the CERL, including the
second TA pass. Note that Mode C uses the upgraded CE section.

The longitudinal phase space slices in the first and last short pulse undula-
tors for these cases are shown in Fig. 5.28. There we can see that the CSR-wake
in the free space CSR case changes the energy distribution so much through the
partially compressed section from approximately s = 800 m to s = 1100 m, that
the time of flight terms for the final section before the first NA undulator shear
the bulk of the lower energy particles to the right of the plot, resulting in a rela-
tively long bunch length. When the shielding is taken into account, these energy
changes are less drastic, resulting in a moderately well compressed bunch. Like

the MERL, when 77 pC bunches are used the CSR effect is less apparent.
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5.9 Conclusion

The wake-field due to CSR of a 1-dimensional bunch traveling on a curve with-
out small angle or high energy approximations has been derived using Jefi-
menko’s forms of Maxwell’s equations. This exact solution allowed us to quan-
tify the accuracy of the approximations of the steady-state CSR-wake in a bend
given in Saldin et al. (1997) and Sagan et al. (2008) showing that the former is
inaccurate at low energies and long bunch lengths, and that the latter is much
more accurate down to low energies. All approximations tend to overestimate
the CSR-wake. For planar orbits the equations are extended to include shielding

by perfectly conducting parallel plates using the image charge method.

The formulas have been applied to the geometry of a bend preceded by a
drift, preceded by another bend, and show that the CSR-wake well inside the
downstream bend is influenced by the upstream bend for the parameters used.
In fact, a bunch near the entrance of a bend is influenced by the CSR-wake due to
the previous bend much more than by that due to the previous drift. Shielding
by parallel plates reduces the energy loss rate significantly, but the effect on
reducing energy spread increase is far less dramatic, in both the drift and bend

regions.
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Bunch compression has been added to this model by allowing the bunch
length to be time dependent, so that the retarded charge density seen by a test
particle is appropriately taken into account. This method has been compared to
simple methods used by particle simulation codes Bmad and elegant, and it

is shown that these tend to overestimate the effect.

Additionally, an exact expression for the coherent power lost by a 1-
dimensional Gaussian bunch moving in a circle has been derived by integrating
the power spectrum, following the method of Schwinger (1945). When com-
pared to the energy loss rate by the CSR-wake, the two show slight deviations.
This could be due to the regularization procedure for the 1-dimensional CSR-

wake that subtracts off the space charge term.

Finally, the effect of shielded CSR in the MERL and the CERL has been cal-
culated by tracking particles through the respective lattices using Bmad . There
we see that CSR in Mode A is well shielded, whereas the high charge in Mode

C can disturb the bunch compression process.
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APPENDIX A
EQUATIONS OF MOTION

Here an alternative derivation of the equations of motion in curvilinear coor-
dinates is given by directly using the geodesic equations. Background material
can be found in books by Carroll (2004) and Misner, Thorne, and Wheeler (1973).

For this section only, the speed of light ¢ = 1.

In curvilinear coordinates (z, x, y, s), the infinitesimal line element is

—dr? = —d? + d¥¥ + dy? + KH? ds?, (A.1)
where h = h(x,y, s) is a function of the space coordinates only. The time is ¢, and

7 is the proper time. The spacetime metric and its inverse are then
g = diag (=1, 1, 1,17, (A2)

g" = diag(~1,1,1,h7%). (A.3)

Now let a particle with mass m and charge g travel on a curve parameterized
by 7 with coordinates X¥(r). Written in the natural coordinate system e, = d,,

the components of the four-velocity V = V¥ e, are

dXx+

VH = , A4
dr (A-4)
or explicitly
, dr dx dy ds
LyE YY) = | —, — =L 2. A.
(V5 V5V V) (dr’ dr’ dr’ dr) (A.5)

The middle two terms can be written in terms of derivatives with respect to s,

since
dx B ds dx
dr deile (A.6)
=V—.
ds
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Also defining the relativistic factor y = dt/ dr, the four-velocity components are
(VLVEVL V) = (y,y s,y 8y, v $), (A7)
with primes denoting s derivatives and dots denoting ¢ derivatives.

In general, the motion of this particle in the presence of external electromag-

netic fields is governed by the equations of motion

dVvH
dr

o veve = Lpey, (A.8)
m

The Christoffel symbols are given in terms of the metric as

1
I_‘l;ﬁ = Egﬂv (dy gﬁv + (9‘3 8av — av g(lﬁ) , (A.9)

and the Faraday tensor components are

0 -E° -E' —-E

EE 0 -B B
Ff = . (A.10)
EE B 0 -B

E* -B B 0

Individual components are to be read from this with @ being the column and g

being the row. For example, F™* = E*.

Using the metric in Eq. (A.2), the only nonzero Christoffel symbols are

I, = —hd,h, (A.11)
I, = —hd,h, (A.12)
[ =0 =h"'d,h, (A.13)
L5, =T =h"' d,h, (A.14)
I8 =h'o,h. (A.15)
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The equations of motion for this system are then

1
dv = L(VE+VE + RVE), (Al6)
m
dv*
—Wﬁhawiﬂ B+ VB -IPV'B),  (Al17)
dr m
dv
~ (VY hoh=L(VE - VB + RV'BY),  (A18)
dr m
dv+li@v%h+2wah+vah) T (vE + VB - V'BY). (A.19)
dr h m

To bring these in line with Egs. (2.20-2.23), we have to address a subtlety
regarding vectors in the moving frame. The basis vectors used here are in the

natural frame e,, and are related to basis vectors in the moving frame e; by

e =e, (A.20)

e; =e, (A.21)

e = e, (A.22)
1

e; = Ees. (A.23)

This means that the usual three-velocity v can be written as

v \ % Vi

V=—e,+ —e, + —e (A.24)
Vt Vt 7 Vf
v \ %4 Ve
et Ve i n Ve, (A.25)
4 4 4
= Sx'e;c + Sy'e;, + Sheg, (A26)

which is exactly Eq. (2.9). Slightly more complicated is the Faraday tensor F

written in the two bases,

F=F%e,®¢; (A.27)
= FPe, e, (A.28)
(A.29)
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with the components of F* labeled similarly to Eq. (A.10), e.g. F* = E* and

F% = B, The bases are related by ;@ e; = ¢, ®e,, ;@ ¢e; = h”'e, ® e, efc., SO

equating components gives the following identifications

E* = E*,
E=F’,
ES = E&/h’
B* = BY/h,
B = B’/h,
B’ =B’

(A.30)
(A31)
(A.32)
(A.33)
(A.34)

(A.35)

Putting all this together, and converting r derivatives to s derivatives,

Egs. (A.16-A.19) give

3 = n%s(x’Ef‘ +Y'E + hEY),

1 dv¢ .
X X — —hoh=—L gty L
(y$)? dr my 2 mys

I dve q . q
"y —hoyh = E’ +

Yo aE T T e T s

I dv® .
: + X0 h+ 2y 0k + Ogh = —— EF + L
(y$)? dr mys? mys

Noting that
1odve 5y

= + =,
(y$)? dr §2 s

(VB -hB),
(h B* - ¥'BY),

(x'By - y'Bi) .

(A.36)

(A.37)
(A.38)

(A.39)

(A.40)

and with & = 1 + ko(s) x, the results in Egs. (2.20-2.23) are recovered. Also note

that 9,x # x’.
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APPENDIX B

LINEAR TRANSFER MATRICES

The six-dimensional transfer matrix for a drift with length L is

o o o O

' o o o o

1 L O
0

S o O
o

N O O

o o o O

-

1_

and for a dipole magnet with length L and radius 1/« is

_ cos (ko L)
—Ko sin (ko L)
0
0
—sin (kg L)

0

Ko

1
— sin (ko L)
Ko
cos (ko L)
0

0

0

! [cos (ko L) — 1]
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0

)

1 -
0 0 —[1-=cos(kyl)]
Ko

0

0
0
0

—_—

sin (ko L)
0
0
|
— S1n (KO L) - L

Ko
1

(B.1)

(B.2)



The transfer matrix for a quadrupole magnet focusing in the horizontal plane

with length L and quadrupole strength k; is

—\/k_lsin(\/k_lL)
0

0
0

0

cos(\/k_lL) %sin(\/k_lL)

cos ( \/k_lL)

=

=)

|
cosh ( \/k_lL) ﬁ sinh ( \/k_lL)
\/k_lsinh(\/k_lL)

0

0

0
0

0

0

cosh ( vk L)
0
0

)

o

0

1_
(B.3)

and for a quadrupole magnet focusing in the vertical plane with length L and

quadrupole strength k; is

Vki sinh (VK L)
0
0
0
0

7 cosh(\/k_lL) %sinh(\/k_lL)

cosh ( vk L)
0

0
0

1 .
COS(\/k_lL) ﬁsm(\/k_]L)
—\/k_lsin(\/k_lL)

232

0

0

0
0

0

0

cos ( \/k_lL)
0
0

(@)

=)




APPENDIX C
CSR FORMULAS FOR MULTIPLE BENDS AND DRIFTS

For ease of reading, the individual terms terms in Eq. (5.70) and Eq. (5.71)
have been deferred to here. They are calculated by applying Eq. (5.3), regular-
ized by Eq. (5.10), including image charges as in Eq. (5.45), to the geometry in
Eq. (5.65).

In Eq. (5.70), the first term d&/ds|p, is the sum of Eq. (5.29) and Eq. (5.47)

with k — k; and 0 — «; s, explicitly

@p

dEcsr ) f B%cos(a) -1 1 sgn(a) — B cos(a/2)) |,
=N ¢ d . — . A @
ds D, =Nreme N\ sin@] TR a-2Bsin@z)] )t
ki A(sy) | f” 1 X(z=A) f” 1 Xz +A)
_ L %e) A — A —
s, T) By a T ¥ETa
Ay Ap

a,n

@,
- -k A a,n “ 2 -1
+Zz(—1)"l—’“r(s A f da ﬁ—coi(“) /l'(sa,n)}
n=1 Qq an

(C.1)
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with the definitions

@, = k(s = By),

ap =K S,

Ay =s— 2,8/(—11 sin (%),

Ay,=B—s+ ZBKLI sin (@) , (C.2)

Fan = \/2— 2cosa + (nk H)?,
1
Sy = 85— 80— —(a—ﬁVZ—Zcosa/),

K1

1
S(x,n =S5—5 — _(a'_ﬁra,n)-
K1

Some trigonometric functions have been simplified, and the space charge inte-
grals have changed variables to A = (o — 8 V2 — 2cos @)/k;. These terms account
for the regularized CSR-wake and image charges in bend 1. The next terms are

D,

= Nrcmczf dL > (2-06,0)(-1)"

0

d(c-;CSR
ds

B

X TL A(Sp ) +
— s n
R b Ri. R,

L.n

{ﬁz cos(kis) T

/l’(SL,n)}

. (C.3)
- V2 —2cos (k; s) + 2k Lsin (k; ) + (k1 L)? + (kijnH)?
1

RL,n

o3
I

1
= Lcos(k; s) + —sin(k; §)
K1

Spn = -L — S0 +ﬁRL,n
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By

:Nrcmczde 2—-906,0)=D"
. ZO< o=

0

x {% Alsip) + lﬁz costastiol) g T ]A’(n,ﬂ)}
R RL’n

Ln RL’”

Ry, = \/(cos (k;8) — 1 . 1 — cos (k,L) )2 . (Dl . sin (k; ) N sin (ko) )2 + (uHY
K1 K3 K1 K2

dEcsr
ds

Ky — K1 . 1 .
sin(k; ) + —sin(k; s + k, L)
Kik2 K2

T; = Dycos(k; s) +

Stn=—L—D;— 5o +BRp,.

(C.4)
Note that the lower limit of the sums have been set to n = 0 to account for
the real charges as well as image charges, necessitating the use of Kronecker’s
delta. Alternatively, if only free space terms are desired, the above formulas can
be used with the n = 0 term only. The dummy variable s” has been rescaled to
L which integrates backwards over the length of the appropriate element. The
terms R, ,, T;, and s, , are redefined after each equation in order to keep the

naming sane.

Similarly, the wake at s > B after bend, as in Eq. (5.71), contains the terms

dEcsr
ds

Do (s —5)?

By
= —Nr.mc? {f ds’ [ ! A(s" = so +B(s — 5))

\— 00

Pl ity —so 4 Bls— )

S— 8

.\ i 21y AL 50 +B(s = B + (nH)?)
P V(s = B1)? + (nH)?

+p

+iz(—1)“f q Y EHB =50+ BN(s = B~ L)+ (HP) |
n=1 0 y>\(s — By — L} + (nH)?

(C.5)
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dEcsr
ds

= Nr.mc* Z(Z 0n0)(=1)" de{ A(SL.n)

. [,82 cos (L) _'BRzL :|/1/(SL,n)}
Ln

B

RL,n

, C.6)
2-2 L - B L (
Ry, = \/ cosal) o BosInGal) o ey umy
K1 K1
1.
T; =s— B;+—sin(k L)
K1
Sga = —L+ By — 5o+ BRr,,
d&
o ) = Nrmc? Z(z 8,0)(=1)" f dL{—/l(sLn)+
,€0s (k1 B1) L,
- /1 n
lﬁ RLJL ﬁRi’n‘| (SL, )}
sin (<, B))\’
(Rpn) = (L + (s — By) cos (k, By) + %) (C.7)
1

By -1
+(c0s(/<1 )

2
p - (s—Bl)sin(KlBl)) +(nH)?
1

1
T; =s— By + Lcos(kBy) + —sin(x;B1)
K]

Spa = —L— 50+ B[R + (nH).
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