
 

 1 

Chromaticity of the lattice and beam stability in energy-recovery linacs 

Vladimir N. Litvinenko* 
Brookhaven National Laboratory, Upton, NY, USA 

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA 

 
Energy recovery linacs (ERLs) are an emerging generation of accelerators 

promising to revolutionize the fields of high-energy physics and photon sciences. 
These accelerators combine the advantages of linear accelerators with that of 
storage rings, and hold the promise of delivering electron beams of 
unprecedented power and quality. Use of superconducting radio-frequency (SRF) 
cavities converts ERLs into nearly perfect “perpetuum mobile” accelerators, 
wherein the beam is accelerated to a desirable energy, used, and then gives the 
energy back to the RF field. One potential weakness of these devices is 
transverse beam break-up instability that could severely limit the available beam 
current. In this paper, I present a method of suppressing these dangerous effects 
using a natural phenomenon in the accelerators, viz., the chromaticity of the 
transverse motion. 

 

I. Introduction 
Energy recovery linacs (ERLs, see Fig.1) belong to a family of recirculating linacs 

(RL) that accelerate a beam of charged particles multiple times in the same linear 
accelerator, and accumulate the beam’s energy on each pass. The difference between an 
RL and an ERL is that the latter does not dispose of the accelerated beam, but instead 
recovers its energy by decelerating the beam down to the injection energy (Figure 1). 
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Figure 1. A simplified sketch of a three-pass ERL comprised of the linear accelerator 

and three returning loops. 
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In ERL low-energy particles are injected and accelerated on the crest (or near the 
crest) in the SRF linac to the top energy. After their usage at top energy, the beam’s RF 
phase is shifted by 180 degrees, and the beam is decelerated in the same linac. The later 
provides for the recovery of the beam energy into that of the EM field in the linac. 
Finally, the beam is ejected and disposed at a very low energy compared with the top 
energy. 

In 1965, Tigner suggested the idea of an energy recovery linac [1]. It took some 
thirty-five years of development of superconducting radiofrequency (SRF) ERLs to reach 
beam currents ~ 10 mA, and energy of few hundreds MeV. While this sufficed for the 
first spectacular demonstration of generating very high powerful coherent-radiation in 
2000 [2,3] at the Thomas Jefferson Accelerator Facility (JLab), there is a well-established 
need for ERLs with GeV-scale energy, and ampere-scale currents in fundamental- and 
applied-sciences. Such ERLs would find unique applications for next-generation light 
sources [4,5] and similarly for high-energy physics colliders [6-8].  

One main challenge toward achieving these goals is the transverse beam break-up 
instability (TBBU) that is especially severe for SRF recirculating linacs. The extent of 
this problem was recognized in early experiments with recirculating SRF accelerators at 
Stanford [9] and Illinois [10], where this instability was occurring at a few microamperes 
of the average beam current. Dipole high-order modes (HOMs) of the SRF cavities were 
identified as the culprits driving this instability [11-12], and several remedies were 
developed for raising this threshold [13]. 

Detailed theoretical approaches and simulation programs were developed in the late 
80s [14-16]. The renewed interest in this problem, the refinements of the TBBU theory, 
the simulation programs [17-19] and their experimental verification [20] all are driven by 
the need for high current ERLs, and also by the rewards of resolving this complex 
problem. Strong damping of HOMs in SRF linacs while maintaining high accelerating 
gradients remains one of the major unsolved issues.  

In this paper, I suggest a novel method of addressing TBBU instability by using a 
naturally occurring phenomenon, i.e., the chromaticity1 of the ERL’s return loops.  

Before discussing the working of the proposed suppression mechanism, I reiterate the 
fundamentals of TBBU instability, sketched in Figure 2.  
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Figure 2. A sketch of the driving mechanism of TBBU instability in ERLs. 

                                                
1 Chromaticity is a natural phenomenon caused by the energy dependence of the focusing strength 
of the magnetic elements in the ERL’s loops. 
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Let’s consider the SRF cavity with residual oscillations of a dipole transverse (TM) 
HOM that gives a transverse kick to the passing bunch (indicated by 

€ 

" x  in Fig.2). When 
the bunch returns to the entrance of the same cavity, it acquires a transverse displacement 
that is proportional to the T12  element of the transport matrix (map) of the returning loop: 

xr = T12 ⋅ "x      (1) 

which excites the field of the HOM2. The strength the HOM’s longitudinal electric field 
is proportional to its distance from the axis. For some of the many HOMs, the phasing 
can be such that the bunch sees a decelerating electric field and looses part of its energy; 
this energy is transferred into that of the HOM field. The next bunch in the beam would 
receive a stronger kick, will come back with a larger transverse-displacement, and would 
further excite the cavity. Hence, without the decay of the HOM field, such a system is 
prone to instability. The SRF cavities provide an environment wherein the Q-factor can 
reach values ~ 108-109, i.e., the decay times of the HOMs can be measured in seconds; 
thus, reducing the HOMs’ Q-factors to the required values, Q ~ 103 , is a very 
challenging problem [21]. 

In the general ERL case, one can write a complete set of dispersion relations in a 
matrix form [14-19], but an analytical solution of the TBBU’s instability threshold can be 
derived only for a single HOM mode, and a single-pass ERL, and as detailed in [12]: 

€ 

Ith =
2c 2

e  Rg ⋅ Q⋅ ω
⋅

1
T12 sinωtr

    (2) 

where c is the speed of the light, e is the elementary charge, 

€ 

Rg ⋅ Q  is the HOM’s 
impedance (measured in Ω) 3 , ω is its frequency, and 

€ 

tr  is the beam’s travel time through 
the returning loop. Thus, for 

€ 

T12 sinωtr>0, the 

€ 

Ith  >0 and TBBU instability occurs for 
beam current above the threshold, i.e.

€ 

I > Ith . What is important that, for a given cavity 
with 

€ 

2c 2 /eRgω = const , the threshold current is inversely proportional to Q ⋅ T12 sinωtr .  

Since there are many HOM modes in the cavities covering a large range of the 
spectrum, there can be modes with 

€ 

sinωtr ~ 1; then, the only meaningful way of 
increasing the threshold is by reducing the values of Q and the 

€ 

T12 .  

As shown in [17], eq. (66), in an ERL with N passes through its linac the TBBU 
threshold can be estimated by  

                                                
2 I focus here on the simple case of uncoupled motion in the loop; hence, the suppression mechanism does 
not require transverse coupling. As shown in [19], for a dipole HOM polarized at an arbitrary angle θ  and 
arbitrary transverse coupling described by 4x4 transport matrix T , T12  should be replaced in the TBBU 

dispersion relation by T12 cos
2θ + (T14 +T32 )sinθ cosθ +T34 sin

2θ . Since all consideration for T12 are 

applicable to T12,T14,T32,T34 , the suppression of the beam response by chromaticity will stay intact.  
3 The geometric impedance,

€ 

Rg  ,is a function of the cavity’s geometry and does not depend on the material 

(i.e., it does not depend on Q). However, the RF literature frequently uses a confusing form Rg = R /Q.  
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Ith =
2c2

e Rg ⋅Q ⋅ω
⋅

1

T IJ sinω tI − tJ( )
I=J+1

2N

∑
J=1

2N

∑
 ,   (3) 

where T IJ ≡ T12 (sJ sI )  is the element of transport matrix between Jth and Ith pass through 
the linac. Analyzing eq. (3) the authors of [17] come to a natural conjecture that the 
TBBU threshold scales as following: 

Ith ∝ Rg ⋅Q ⋅N
2 T IJ( )

−1
.    (4) 

One can argue that the linac HOM impedance scales with it length and therefore, for a 
fixed top energy of ERL, the geometrical impedance scales as Rg ~ Etop / N , and  

Ith ∝ Rg ⋅Q ⋅N T IJ( )
−1

.    (5) 

where Rg is HOM impedance for a unit length of the linac. On the other hand, typical 
values of β-functions, and therefore the typical values of T IJ , in the linac are proportional 
to its length (see footnote 7). This observation can bring back N-2 dependence of the 
TBBU threshold.  

In any case, this unfavorable scaling may have major implications on the cost of high 
energy ERL. Since SRF linac is usually more expensive than magnetic elements, the cost 
effective solutions [22-24] lead to a three to six pass ERLs. If such ERL designs suffer 
from severe current limitation, the extend of their use and their energy reach will be 
limited.  

One way of solving these limitation is reducing Q of all dangerous HOM by 
developing complicated HOM damping schemes and, in addition, limiting number of 
cells per linac module to avoid trapped high-Q HOMs [25-27]. These stringent 
requirements on HOM suppression frequently complicate the SRF linac designs, reduce 
the real-estate gradient and make them more expensive.  

The other way of increasing the threshold current is reducing T IJ . The latter is the 

topic of this paper, where I describe how the proposed suppression mechanism works. 
 

II. Suppression of the beam’s response using the chromaticity of the ERL lattice 
Since the bunch is an ensemble of particles, its transverse response to the kick will be 

the average if the responses of the individual particles are 

€ 

xr = T12 ⋅ # x ,     (6) 

where 

€ 

a  signifies the average value of a parameter, 

€ 

a. I suggest using the chromaticity 
of the returning loops and energy spread in the beam to reduce 

€ 

T12 →0 . 

In contrast to storage rings wherein the beam circulates for trillions of turns, in an 
ERL the beam passes through the system only once on the way up in energy, and once on 
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its way down. In storage rings, chromaticity must be compensated for assuring both the 
beam’s stability and a reasonable lifetime, while in ERLs this is not necessary, and, as 
discussed in this paper, may even be counterproductive. Hence, I consider a linear ERL 
lattice without sextupole fields4. 

Let’s consider transverse motion of an ultra-relativistic particle with momentum 
p = po(1+δ);  δ <<1  propagating through the linear transport system of the returning 
loop with a designed momentum, po , which is described by Hill’s differential equation5: 

€ 

" " x =
d2x
ds2

= −
K1(s)
1+δ

⋅ x ≅ − 1−δ( )K1(s)⋅ x ,    (7) 

where 

€ 

s is the longitudinal coordinate along the designed trajectory, and 

€ 

K1(s) is the 
rigidity of the transverse focusing for particle with the design energy [28]. The solution 
of this equation is well known in accelerator literature as the Courant-Snyder 
parameterization [29]: 

€ 

x = aw s( )cos ψ s( ) +ϕ( ); $ ψ =1/w 2;

$ x = a $ w s( )cos ψ s( ) +ϕ( ) − a
w s( )

sin ψ s( ) +ϕ( ),
   (8) 

where 

€ 

a and 

€ 

ϕ are constants of motion, and both the envelope function 

€ 

w s,δ( ) and 

€ 

ψ s,δ( )  depend on the particle’s momentum6. Taking the kick at s=0 as the initial 
condition, 

€ 

xo = 0;  " x o = " x , yields 

ϕ = −π / 2;   a =wi "x ;  wi ≡w 0( );
x = "x ⋅wiw s( )sinψ s( ).

    (9) 

If all particles in the beam have the same energy, 

€ 

Eo, they will respond identically to the 
kick with T12 0 s( )=wiw(s)sinψ(s) .7 For a particle with a small energy deviation, 

€ 

 δ <<1, 
the envelope function and the phase advance can be extended as 

w s,δ( ) ≅wo s( ) 1+δ ⋅υ(s)( ); ψ s,δ( ) ≅ψo s( )+δ ⋅φ(s) ,   (10) 

                                                
4 One can consider using nonlinear elements (sextupoles and octupoles) to introduce phase 
advance dependence on betatron action, i.e. a square of the amplitude of betatron oscillations. 
While possibly valid, such method would require introducing significant nonlinear field 
components on the scale of the transverse beam size and can negatively affect the beam quality.  
5 Throughout this paper I use the notations ! ≡ d

ds
; !!  ≡ d 2

ds2 .  
6 I use the simple case of constant particle energy and momentum connected by a standard 
relativistic relation E 2 = p2c2 +m2c4 , see [28] for a case of varying energy. 
7 The simple approach of choosing sinψ(s) = 0  is possible only for a single cavity ERL. In 
practice, the length of the linacs, L, is rather large in any high-energy ERL linac (L~ 100 m for a 
1 GeV SRF linac) and the average value of 

€ 

T12  is comparable to the length of the linac, i.e., 

max T12( )linac ~ L . 
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where the subscript “o” indicates values for particles with the designed energy. The 
straightforward perturbation theory (see Appendix A and Appendix C) yields the 
following expression: 

φ(s) = − 1
2

K(z)w2
o(z)

0

s

∫ 1+ cos2 ψo(z)+ϕo( )( )dz;

υ(s) = − 1
2

K(z)w2
o(z) ⋅sin2 ψo(z)+ϕo( )

0

s

∫ dz.
  (11) 

One important (and well known) feature of this solution is that the phase deviation (i.e., 
the chromaticity of oscillations) is defined by a monotonic function with average rate of 

€ 

− K(z)w2
o(z) z

/2 , while the envelope deviation is a fast oscillating function with double 
betatron frequency. Hence, in a large accelerator system, the chromaticity grows steadily, 
can reach significant values 

€ 

C(s) =
φ(s)
2π

>>1,     (12) 

and even for a modest deviation in relative energy, the phase variation can be large, while 
the relative variation in the envelope function remains small  

δ ⋅υ(s)<<1.     (13) 

The later assures absence of the beam emittance growth in chromatic transport line. 

Let us consider a bunch with Gaussian energy-distribution with a relative RMS energy 
spread 

€ 

σδ
8: 

€ 

f δ( ) =
1
2πσδ

exp −
δ 2

2σδ
2

& 

' 
( 

) 

* 
+     (14) 

and then calculate value of the electron bunch displacement, i.e. 

€ 

x : 

x(s) = !x ⋅wi0 w s,δ( )sinψ s,δ( ) f δ( )dδ
−∞

∞

∫ .   (15) 

Substituting (10) the integral (15) is easily evaluated: 

T12 =
x(s)
!x

= exp −
φσδ( )2

2

#

$
%
%

&

'
(
(⋅wiowo(s) sinψo (s)+υ(s)φ(s)σ δ

2 cosψo (s)( ) . (16) 

with the suppression factor exponentially dependent on the chromaticity and the energy 
spread: 

                                                
8 Such a beam can be produced in an ERL injector from a cold beam generated from 
photoinjectors. For example, creating an electron bunch at the photocathode with Gaussian 
longitudinal profile, and then accelerating it off-crest will assure the desirable distribution. See 
detailed description of the method in Section III. 
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€ 

T12 ∝ exp −
φσδ( )2

2

' 

( 

) 
) 

* 

+ 

, 
, ⋅ T12(max) .   (17) 

Figures 4 and 5, below, demonstrate in a simplest form the effect of chromaticity on the 
response of the electron beam on a transverse momentum kick. More detailed examples 
are presented in section IV. 
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Fig. 4. In an arc with zero chromaticity, a transverse momentum kick received from 

the linac (a), will translate (after rotation in the phase space) into a displacement of the 
entire bunch at the exit of the transport channel (arc) (b).  
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Fig. 5. In an arc with large chromaticity, a transverse momentum kick received from 

linac (a) will not displace the bunch overall because of the dependence of the phase-space 
rotation angle on the particles' energy spreads particle’s displacement evenly around the 
circle (b). 

Assuming a strong focusing lattice for return loops comprised of many periodic cells, 
similar to that designed for eRHIC electron-hadron collider [25], the loops’ chromaticity 
can be 

€ 

C(s) ~ −300 and 

€ 

φ(s) ~ 2⋅ 103 . Then, for a Gaussian beam with RMS energy 
spread of 0.2%, the response 

€ 

T12  will be suppressed 3,000-fold, and according to 
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formula (2) the threshold for TBBU instability will increase about this value or will be 
limited by other type of instability. 

While the chromaticity can exponentially suppress the dipole moment excited in the 
beam by a kick, it does not caused the growth of the beam emittance - see Appendix A. 

Naturally, the level of suppression of the beam’s response (transfer function, T12 ) 
will depend on the energy-distribution function; Table 1 gives a few examples.  

 
Table 1. Suppression of the beam’s response on a transverse kick by the chromaticity, C  

 In this table X = φσδ; Y =υσδ.  

         

€ 

f δ( ) Suppression factor 

€ 

T12 /w iowo  Name 

€ 

1
2πσδ

exp −
δ 2

2σδ
2

& 

' 
( 

) 

* 
+  e−X

2 /2 ⋅ sinψ + X ⋅Y cosψ( )  Gaussian 

1
πσδ

1+ δ
2

σδ
2

!

"
#

$

%
&

−1

 
e− X ⋅ sinψ +Y ⋅ sign X( )cosψ( )  

Lorentzian 

€ 

2
πσδ

1+
δ 2

σδ
2

% 

& 
' 

( 

) 
* 

−2

 

e− X ⋅ (1+ X )sinψ + X ⋅Y cosψ( )
 

κ − 2  

1
2σδ

θ δ −σδ( )−
θ δ +σδ( )

"

#

$
$

%

&

'
'  

sinX
X

sinψ +Y sinX − X cosX
X 2 cosψ

 

 

Rectangular 

1−δ /σδ

σδ

, δ ≤σδ  2  cosX  -1
X 2 sinψ +Y ⋅

2 cosX −1( )+ X sinX
X 3 cosψ

#

$
%

&

'
(  

 
Triangular 

 

Smooth bell-shape energy-distribution functions (Gaussian, Lorentzian, κ − 2 ) 
provide for a strong suppression of T12  whose value falls fast with the increase of 
X ≡ 2π C σδ , while sharp-edged distribution functions (such as a rectangular- or 

triangular-one) cause the oscillating behavior of T12  which declines slower with growth 
of X . In all cases highly chromatic lattice resulting in X >>1  provides for a effective 
method of suppressing the beam’s response to transverse kicks.  

 
III. Practical issues of the de-phasing 

In some cases, there is enough chromaticity in an arc and energy spread in the 
electron beam to suppress the beam’s response. If this this is not so, one can artificially 
create such a response suppressor using two RF cavities: One to create an energy spread 
at the entrance of the arc; the other to remove it at its end (Figure 6). Since most ERLs 
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use isochronous arcs (i.e., arcs with T56=0), neither the energy spread nor the beam’s 
bunch length would be affected by such system. The only effect will be the introduction 
of additional energy spread in the arc, thereby suppressing the beam’s response. 

Such system has many advantages. One is that electron beam generated from 
photoinjectors frequently have Gaussian longitudinal distribution, and a linear chirp in 
the RF cavity will introduce Gaussian energy-spread in the beam. This means that for 
φ(s) ≡ 2πCσδ >>1 , the beam’s response would be completely (exponentially) 
suppressed. 

This scheme provides a practical way to suppress TBBU instability in almost all 
ERLs. 9 
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Figure 6. A sketch of a dedicated TBBU suppressor: One RF cavity gives an energy chirp 
to the electron beam at the entrance to the arc, and the other cavity removes the chirp. 

 
IV. Examples 

Let’s consider two specific examples of multi-pass ERLs proposed for electron-
hadron colliders eRHIC and LHeC. Their low-emittance achromatic arc lattices are 
described in two recent papers [30,31].  

eRHIC’s 30 GeV ERL, shown in Fig. 7, comprises 0.6 GeV injector and  two 2.45 
GeV super-conducting RF linacs. All eRHIC linacs work in energy recovery mode: the 
injector is a single path ERL, while the main linacs are part of 6-pass ERL. The electron 
beam from a 10 MeV pre-injector is accelerated to 0.6 GeV in the injector-ERL and than 
accelerated further to 30 GeV passing six times through the main SRF linacs. After 
                                                
9 In the case of the eRHIC ERL with 6 passes [8], the energy of the electrons would affect its spin 
precession, and preserving the polarization of the electron beam would require alternating the 
sign of the chirp on consecutive passes. Since one arc in eRHIC is twice longer that the other and 
therefore has twice larger chromaticity, using the same amplitude of the chirp, would keep most 
the “memory loss” attained in the previous section. In LHeC case, the spin direction will be kept 
vertical in the arcs, and therefore this scheme can be used without the alternating the chirp sign. 
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collision in one of eRHIC’s detectors, the electron beam is decelerated to 10 MeV and is 
dumped.  The path-length of the 30 GeV beam-line provides for 180 degrees phase shift, 
and the used electrons decelerate at the same linacs in the reverse sequence. After 
reaching 0.6 GeV, they are bought to the injection ERL to recover the energy. 

eRHIC’s low emittance ERL lattice has natural chromaticity of 
Cx _ s = −28.571; Cy_ s = −20.242  per sextant. While mergers and combiners, as well as 
straight sections, add to natural chromaticity, their contribution is relatively small, i.e. can 
be just few units. It means that the total 360o turn chromaticities can be estimated as 
Cx _ t ≅ −175; Cy_ t ≅ −125  and φx _ t ≈1100; φy_ t ≈ 800

10. Further more, total accumulated 
chromaticity for six passes up and five passes down in energy is 
Cx _ERL ~ −2000; Cy_ERL ~ −1400  and φx _ERL ≈1.25 ⋅10

4; φy_ERL ≈ 8.5 ⋅10
3 . 
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Figure 7. A sketch of eRHIC with 30 GeV ERL. More about eRHIC design can be found 
in [32,33] 

 
                                                
10 The chromaticity is properly defined for a beam with constant energy E and δ = δE / E  
being constant. In linacs, where energy changes and δE  is no longer a constant, 
traditional chromaticity should be redefined.  
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Fig. 8 shows a BNL’s version of 60-GeV ERL for LHeC electron-hadron collider.  It 
is comprised of a single pass 0.3 GeV energy-recovery injector and two main 9.95 GeV 
super-conducting RF linacs. Electrons pass three times through the main linacs on their 
way up to 60 GeV, and, after colliding with LHC protons, three times on the way down in 
the energy.  

Low emittance ERL lattice for this ERL has natural chromaticity of 
Cx _ s = −254.29; Cy_ s = −227.37  per 180o arc. Similarly to eRHIC ERL lattice, the 
mergers, combiners and straight sections add to natural chromaticity just few units. The 
chromaticities of the 360o turn can be estimated as Cx _ t ≅ −510; Cy_ t ≅ −460  and 
φx _ t ≈ 3.2 ⋅10

3; φy_ t ≈ 2.9 ⋅10
3 . Similarly, the total accumulated chromaticity on three 

passes up and two passes down is Cx _ERL ~ −2500; Cy_ERL ~ −2300  and 
φx _ERL ≈1.5 ⋅10

4; φy_ERL ≈1.4 ⋅10
4 . 
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Figure 8. BNL’s design of 60 GeV ERL for LHeC linac-ring collider [35] 

 
In contrast with the cumulative beam break-up, the TBBU ERL instability relies on 

the feed-back provided by electron bunches returning to the same RF cavity. In other 
words such feed-back occurs only after e-beam goes through a complete 360-degree turn. 
Hence, one turn chromaticity will play a dominant role in suppressing a single-turn 
TBBU.  
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For a rough estimate of the TBBU suppression in the above ERLs, let’s consider an 
electron beam with a Gaussian energy spread of σδ = 5 ⋅10

−3 11. For eRHIC ERL, the 
vertical bunch response (i.e. a one turn response T12 (s s+C ) will be suppressed by a 
factor of 2.9 ⋅103 , while the horizontal suppression factor will be an astronomic factor of 
3.7 ⋅106 . Since chromaticity per turn is higher in the LHeC case, the suppression will be 
astronomical factor of ~1045 , i.e. other higher order effects and imperfection of Gaussian 
profile should be considered. It also means that in the LHeC case, σδ ≅1.3⋅10

−3  will be 
sufficient for suppressing single-turn response by a factor of 1,000.  

Very large values of accumulated chromaticity φ∝−104  for a beam passing through 
the entire eRHIC or LHeC ERL means that an average σδ ~ 5 ⋅10

−4

 
will be sufficient to 

erase memory of low beam returning to the ERL injector, i.e. to suppress T12 (in out  of 
the main ERL by three-to-four four orders of magnitude.  

As discussed in Appendix C, there are higher order effects, which can, in principle, 
reduce, or, at least, significantly modify prediction of eq. (17). To address this concern, I 
tested the concept by directly calculating a response of the beam with a Gaussian energy 
distribution propagating through a beam-line comprising of 1024 FODO cells. Each 
FODO cell is comprised of one focusing and one defocusing quadrupoles. 

Hence I can use paraxial approximation for the particle’s trajectory, it is very easy to 
write the exact analytical expression for the transport matrix of the FODO cell for an 
ultra-relativistic particle with arbitrary momentum p = po(1+δ) : TFODO δ( ) . The matrix is 
multiplied necessary number of times12 

Ttotal δ( ) = TFODO δ( )!" #$
1024

   (18)  

to form exact matrix of the beam-line. The beam displacement at the end of the beam-line 
to an angular kick θ  at its entrance will be a simple convolution:  

x = T12   total ⋅θ;     T12   total =   T12   total δ( ) f
−∞

∞

∫ δ( )dδ ,    (19)  

where T12   total δ( )  is an exact, analytical and nonlinear function of δ . For comparison 
reason, I define the suppression factor of the transverse response as: 

                                                
11 As it is discussed above, such energy spread can be correlated and can introduced intentionally 
by off-cress acceleration of the electron bunch with Gaussian longitudinal profile. Furthermore, if 
needed, the sign of the energy chirp can alternate from pass to pass. The later does not affect the 
conclusions. 
12 Cell number N= 1024=210 was chosen to reduce simulation time by reducing N matrix 

multiplications to log2(N)=10 via T 2n+1 = T 2n!
"

#
$
2

. 
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S =  
max T12   total δ( )( )
T12   total δ( ) f

−∞

∞

∫ δ( )dδ
,     (20)  

Here I present results for a FODO lattice with equal focusing in both directions13. The 
exact transverse matrix of such FODO cell comprised of two quarupoles with length l , 
and the nominal strength K1  and separated by two drift spaces with length L is: 

TFODO δ( ) = 1 L
0 1

!

"
#

$

%
&⋅

cosϕ κ −1 sinϕ
−κ sinϕ cosϕ

!

"

#
#

$

%

&
&
⋅ 1 L
0 1

!

"
#

$

%
&⋅

coshϕ κ −1 sinhϕ
κ sinhϕ coshϕ

!

"

#
#

$

%

&
&
;

κ δ( ) = K1
1+δ

;   ϕ δ( ) =κ δ( )l.

 (21) 

This exact matrix function was used for the direct numerical calculations of T12   total δ( )  of 
the beam-line and convolving it with Gaussian energy distribution (14) with relative 
RMS energy spread of σδ = 2 ⋅10

−3 . I did not observed any significant deviations for from 
expect theoretical behavior predicted by eq. (17) neither at a small values (as expected), 
not at large values of the of total beam-line chromaticity.  

For example, the beam-line with tune advance of 0.22285 per cell has chromaticity of 
C = −276.68  and the calculated suppression factor 428-fold, which compares favorably 
with theoretical estimation of 422-fold given by eq. (17).  

Increasing the chromaticity further to C = −328.51  by increasing tune advance per 
cell to 0.2499, increased the calculated suppression factor to 5.93.103. It also reasonably 
close to the theoretical estimation of 5.02 103 given by eq. (17).  

It is quite remarkable that at large values of the suppression, the exact value of the 
beam response suppression exceeds the theoretical predictions. Possible explanation of 
this phenomena is that high order effects increase particle’s de-coherence, compared with 
first order chromatic effects. As can be seen from Fig. 9, the behavior of theof the 
chromatic suppression does not deviate strongly from first order chromatic behavior 
represented by eqs. (10) and (11). 

The tune advance has mostly linear dependence on δ  with quadratic term 
contributing ΔQsnd

x ≅ 0.049  at δ = ±0.01 . As expected, neither the β -function, nor the 
enevelope of T12, do not significantly change within the δ = ±0.01 range. The β -function 
changes only for less than 1% at δ =σδ  and a smooth envelope of oscillating T12 
provides for a strong suppression of the overall response when convoluted with smooth 
energy distributions.  

                                                
13 Tests with non-equal strength of the quadrupole did not reveal any difference in 
behavior from this example. 
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Figure 9. The FODO beam-line optics parameters as function of the particle momentum 
for a nominal tune advance per cell ΔQx δ = 0( ) = 0.2499 : (a) Dependence of the total 
horizontal tune advance (red line) and beta-function  (blue line) on the relative 
momentum deviation δ ; (b) Dependence of the beam-line’s T12 element (blue line) and 
its convolution with the momentum distribution function (red line) on the relative 
momentum deviation δ . 

 
V. An ultimate case. 
 

Let’s consider an ERL comprising of a sequence of linacs and arcs (or transport 
channels): Linac1 -> Arc1 -> Linac2 -> Arc2 … When the product of the chromaticity 
and the energy spread in the arcs is very large φσδ >>1 , then the electron beam forgets 
the kick it received in the previous linac while traveling through an arc. In this case, the 
traditional ERL TBBU excitation scheme falls apart, and each linac sees fresh electron 
beams (to be exact, a combination two or more electron beams with various energies, 
both accelerating and decelerating). This means that the beam’s stability problem is 
reduced to the traditional cumulative transverse instability in long linacs. The nature of 
this instability [31] differs from the ERL TBBU because there is no feed-back and the 
corresponding exponential growth. This well studied and higher-threshold (compared 
with TBBU) instability [32-34] is outside the scope of this paper. 

In the TBBU theory [14-19], the low energy passes through the linac are considered 
to be most vulnerable to the TBBU instability. Specifically, the conclusion are that the 
TBBU threshold is proportional to the lowest energy in the recirculating path and it is 
also inverse proportional to number of the recirculating passes. Two examples described 
in the previous section, show that this rule is no longer applicable to an ERL where 
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product of the chromaticity of betatron oscillations and the relative energy spread is 
significantly larger than unity. 

Thus, in addition to improving stability of the beam, using highly chromatic lattices 
in ERLs allow to use cost-effective multi-pass ERLs as well as the very effective energy 
recovery by dumping the used electron beams at very low energies. 
 

VI. Discussions and Conclusions 
 

I had shown in this paper that using the natural chromaticity of the arcs in ERLs 
affords an opportunity of suppressing the beam’s transfer function (its response to 
transverse kicks), and either suppressing TBBU instability or significantly increasing 
allowable operating currents.  

The proposed method paves the way for multi-pass ERLs becoming an economic 
choice for high-energy electron accelerators. Using the natural chromaticity of the ERL 
lattice offers a win-win case: It does not require sextupole magnets to compensate for 
chromaticity (i.e., reduces the cost of the accelerator) while increasing the threshold for 
TBBU instability. Still, in special cases of compact machines wherein natural 
chromaticity is small or using lattice with large natural chromaticity is impractical, one 
can consider installing sextupoles and intentionally increasing chromaticity to the 
desirable level. The fact that in ERLs electrons used only once, provide much-relaxed 
requirements on the linearity of the lattice, compared with storage rings, and use of very 
strong sextupoles could be possible. 

In contrast to other mitigation methods, such as HOM damping, this method is 
straightforward, and can be established without significant investments into SRF 
technology. It also may allow us to use longer SRF linac strings, an increase in the real-
estate gradients in ERLs, and a lower injection energy. Overall, this method provides an 
additional tool in advancing ERL technology towards high-energy, high-current 
operations. 

Standard TBBU simulation codes presently do not have capability of including 
chromatic effects in the simulation, with one possible exception [36]. While a verification 
of the proposed suppression mechanism by a direct TBBU simulations would be 
beneficial, such tests are going beyond scope of this paper.  

The author would like to thank Ilan Ben Zvi, Yue Hao, Dmitry Kayran (BNL) and 
Eduard Pozdeyev (FRIB) for fruitful, in-depth discussions of the methods, and to Georg 
Hoffstaetter (Corbel University) and Frank Zimmermann (CERN) for their interest in the 
prospects of suppressing TBBU in high-energy ERLs.  

The work was supported by Brookhaven Science Associates under Contract No. DE-
AC02-98CH10886 with the U.S. DOE 
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Appendix A: Envelope and phase advance dependence on the particle energy 

Here I provide a very short 1-D derivation of the envelope and phase variation for 
of-momentum particle. More details can be found in [37,38]. 

Let’s consider a Hamiltonian of transverse 1D linear motion of a particle with 
constant longitudinal momentum p = po(1+δ)  in a beam-line with focusing function 
K(s) :14 

H =
px
2

2
+
K(s)
1+δ

x2

2
=Ho −νK(s)

x2

2
,   (A1) 

where ν = δ / (1+δ) , which we assume to be a infinitesimally small ν ≅ δ <<1 , and po  
is the momentum of the reference particle. Let’s us use know parametric solution for the 
reference particle [29],  

x = a ⋅wo(s) ⋅cos ψo s( )+ϕ( ); βo ≡wo
2; ψo

! =1/ βo ,  (A2) 

where a = 2I,   ϕ  are determined by initial conditions. It is well known [39] that 
parameterization (A2) is a Canonical transformation from {x, !x }  to the action-angle 
variables ϕ, I{ }  with reduced Hamiltonian: 

h =H−Ho = −ν I ⋅K(s)wo
2 (s) ⋅cos2 ψo(s)+ϕ( ) ,   (A3) 

and reduced equations of motion: 

ϕ =
∂h
∂I

= −ν ⋅K(s)wo
2 (s) ⋅cos2 ψo(s)+ϕ( );

$I = − ∂h
∂ϕ

= −ν ⋅ I ⋅K(s)wo
2 (s) ⋅sin 2 ψo(s)+ϕ( )( ).

,   (A4) 

Using standard perturbation method [40] one can easily integrate this equations: 

ϕ(s) =ϕo −δ ⋅ K(z)wo
2 (z) ⋅

1+ cos 2 ψo(z)+ϕo( )( )
2

dz
o

s

∫  + O(δ 2 );

I = Io 1−δ ⋅ K(z)wo
2 (z) ⋅sin 2 ψo(z)+ϕo( )( )dz

o

s

∫
$
%
&

'
(
)
+ O(δ 2 )

,  (A5) 

From this result one already can see that in a periodic lattice (i.e. 

 

K(s) = K(s+C); wo(s+C) =wo(s) ) the envelope (amplitude) variation has only an 
oscillating term (traditionally called a beta-beating), while the phase has both 

                                                

14 For example, Ky (s) =
e
poc

∂By

∂x
 or Kx (s) = −

e
poc

∂By

∂x
+
eBy

poc

#

$
%

&

'
(

2
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monotonically growing and oscillating terms. Substituting (A5) into (A2) and keeping 
only first order terms of ν  one gets: 

x ≅ a0 ⋅wε (s) ⋅cos ψo s( )+ϕ(s)( ); 

wε (s) =wo(s) 1−
δ
2
⋅ K(z)wo

2 (z) ⋅sin 2 ψo(z)+ϕo( )( )dz
o

s

∫
%
&
'

(
)
*
+ O(δ 2 ).

  (A6) 

Choice of the initial amplitude and phase, gives the required expressions in eqs. (10) and 
(11). 

 Finally, it is also well know that for a linear system the beam emittance is an 
average of the actions of individual particles:  

ε = I ,      

and averaging second equation in (A5) over initial betatron phase ϕo  gives expected fact 
that emittance of the beam15 does not suffer from the chromaticity of the beam-line: 

I = Io + O(δ 2 ) .    (A7) 

The later is a well know experimental fact that chromaticity of the betatron oscillations 
does not result in emittance growth in storage ring, where particles propagate for millions 
of turns and accumulate astronomic value of the phase spread caused by chromaticity. 

 
Appendix B. Finite bunch length effect and HOM frequency 

Traditional TBBU treatment assume that electron bunch is much shorter than period 
of HOM oscillations. Frequently such analysis is sufficient.  

Since I am considering a possibility of correlated energy spread, i.e. time dependent 
energy chirp, it is worth considering the details of the interaction of such a beam with a 
dipole HOM hawing frequency ω0 . Let’s consider a bunch of electron with RMS 
duration σ t  passing through the cavity at the HOM phase of ϕo . A central electron will 
receive a transverse kick !xo =θ ⋅sin ϕo( ) . After an interval t such electron arrives to 
another cavity with displacement x = T12 ⋅θ ⋅sin ϕo( )  and excites EM field in the HOM 
with frequency ω1  proportional to A∝ eRHOM ⋅T12 ⋅θ ⋅sin ϕo( ) ⋅sin ω1t( ) . If electron bunch 
is very short compared with the HOM oscillation period, ωoσ t <<1;  ω1σ t <<1 , all N 
electrons will excite the EM wave coherently and the total excited amplitude would be 
A∝qRHOM ⋅ T12 ⋅θ ⋅sin ϕo( ) ⋅sin ω1t( ); q = Ne . Otherwise one should consider effect of 
the finite bunch length on the bunch response. 

                                                
15 In this case we naturally assume that particles in the initial beam are evenly distributed 
over its betatron phases, i.e. the phase space density is a function only of the amplitude.  
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An electron deviated from the bunch center by τ  to would have kick 
!xo =θ ⋅sin ϕo +ωoτ( )  and would excite the second cavity HOM as follows: 

A∝ eRHOM ⋅T12 δ( ) ⋅θ ⋅sin ϕo +ω0τ( ) ⋅sin ω1 t +τ( )( ) .    (B.1) 

It is worth rewriting it in a following form: 

A∝T12 δ( ) ⋅ cos ϕo −ω1t + ω0 −ω1( )τ( )− cos ϕo +ω1t  + ω0 +ω1( )τ( ){ } .   (B.2) 

In the absence of the correlation between the energy deviation δ  and τ , and a Gaussian 
bunch length distribution f τ( ) = exp(−(τ /σ t )

2 / 2) / 2πσ t , averaging of (B.2): 

A ∝ T12 ⋅ e
−
ω0−ω1( )2σ t

2  
2 cos ϕo −ω1t( )− e

−
ω0+ω1( )2σ t

2  
2 cos ϕo +ω1t  ( )

$
%
&

'&

(
)
&

*&
.  (B.3) 

While second term can vanish when σ t >>1/ ω1 +ωo( ) , it is not necessarily correct for 
the first term, especially if ω1 ≅ωo : 

A ∝ T12 ⋅ cos ϕo −ω0t( )− e−2ω
2
0σ t

2

cos ϕo +ωot  ( ){ } .   

In the case of correlated energy spread with δ = µτ ;  σδ = µσ t , one should use 
T12 δ( ) =wi0w s,δ( )sinψ s,δ( )

 
and eq. (10). Integration is trivial and will result appearance 

of four exponential terms: 

exp
φ ±ζ1,2( )2σδ

2

2

!

"
#
#

$

%
&
&

; ζ1,2 =
ωo ±ω1

µ
;   (B.4) 

i.e. the exponential chromatic suppression will be valid when φ >> ζ1,2 . In other terms, 
for most interesting case of φσδ >>1  the suppression projected by eq. (16) is correct for 
any HOM whose period is comparable or longer than the bunch length. 
 

Appendix C: Alternative perturbation method 
This is a simplified version of an arbitrary case, which can be found in [37,38]. 

For an 1D linear system with Hamiltonian H = XT ⋅H ⋅X; XT = x, px{ } , there is a full set 
of two eigen vectors satisfying following equations and symplectic relations: 

Y ! = D(s) Y
Y *! = D(s) Y *

;  D =σ ⋅H;  σ = 0 1
−1 0

$

%
&

'

(
); 

Y = Yeiψ =
w

w+ i / w( )e
$

%
&
&

'

(
)
)
eiψ ;    Y *Tσ Y =Y *TσY = 2i;

   (C1) 
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with obvious ATσ A ≡ 0, ∀A . Let’s consider a slightly perturbed Hamiltonian with 
respect to that for an ideal case (in this case a particle with designed energy) 
H = Ho +εh;  D = Do +εΔ;   ε <<1.  With the known eigen vectors for the ideal case: 

Yo =
wo

wo + i / wo( )

!

"

#
#

$

%

&
&
eiψo ;  Y *

o =
woe

−iψo

wo − i / wo( )e−iψo

!

"

#
#

$

%

&
&
;

Yo( = Do (s) Yo;   Y
*
o
( = Do (s) Y *

o;   Do (s) = 0 1
−K(s) 0

!

"
#
#

$

%
&
&
;

  (C2) 

one can use perturbation theory similar to that used in quantum mechanics (see p.63 of 
[37]) to find perturbed solutions: 

D(s) = Do(s)+ε ⋅ Δ(s);  
Y = a Yo + b Y

*
o;  b =O(ε)<< a

   (C3) 

Using symplectic normalization of 
Y *TS Y = a* Yo

T* + b* Yo
T( )S a Yo + b Y

*
o( ) = 2i a 2

+ b 2( ) imposed by (C1), one finds that 

a =1−O ε 2( ) .  

It is important that to note that even though a  does not significantly deviates from 

unity, the complex amplitude a = a eiχ  can significantly deviate from a=1.  

Keeping only first order terms in (C3) one finds a linear equation for a and b: 
!Y = Do(s)+εΔ(s){ } Y ;  !Yo = Do(s) Yo;

!a Yo + !b Yo
* = εΔ(s) !a Yo + !b Y *

o( );
!a Yo + !b Y *

o = εΔ(s)a Yo +O(ε 2 ).

    (C4) 

Multiplying last equation from the left by the mode projection operators Yo
T*σ :  

, Yo
Tσ : and using obvious σ 2 = −1  , one gets linear equations  

Yo
T*σ : →  2i "a ≅ −a ⋅ε Yo

T*h(s) Yo( );
Yo
Tσ : → − 2i "b ≅ −a ⋅ε Yo

Th(s) Yo( ),
    (C5) 

which easily can be solve analytically.  
In our specific case of equation of motions for a particle with a small energy 

deviation 

ε = δ;  h(s) = −K(s) 0
0 0

"

#
$
$

%

&
'
'
;   

   

 (C6) 

the equations  
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!a
a
= −iδ ⋅K(s)w2

o(s);   !b = ia δ
2
⋅K(s)w2

o(z)e2iψo (s)

 

  (C7) 

can be easily solved: 

a(s) = eiχ (s); χ (s) = −δ
2

K(z)w2
o(z)

0

s

∫ dz;

 b = iδ
2

ei 2ψo (z)+χ (z)( )K(z)w2
o(z)

0

s

∫ dz;

   

 (C8) 

where I use natural initial conditions of a(0) =1; b(0) = 0 . From this result one already 
can see that in a periodical lattice structure (i.e. 

 

K(s) = K(s+C); Y (s+C) =Y (s) ) the 
error in phase of the betatron oscillations χ  grows monotonically with the azimuth, 
while the deviation from the ideal eigen vector oscillates with double betatron frequency.  

Combining this with (C2) we can write explicit expressions for linear part of 
modification to the envelope and the phase of the betatron motion: 

w(s) ≅w0(s) 1+δ ⋅υ(s)( );  ψo(s) =ψo(s)+δ ⋅φ(s);

   

 (C9) 

using straight-forward manipulations: 

w = wo
2 aeiψo (s) + be−iψo (s)

2
≅wo

2 1+Reb(s)e−i 2ψo (s)+χ (s)( )( )
ψ(s) = Arg aeiψo (s) + be−iψo (s)( ) ≅ψo(s)+ χ (s)+ Im be−i 2ψo (s)+χ (s)( )( )

   (C10) 

One can easily see that the first order terms are identical to that derived in Appendix A. 
For completeness, let me mention that in the case of an arbitrary linear betatron 

coupling, the system is fully described by the full set of four four-component eigen 
vectors [37,38], comprised of two complex conjugated pairs 
Y1,Y

*
1,Y2,Y

*
2   { } ,   Yk =Yk (s)eiψk (s);  k =1,2 : 

Y !1,2 = D(s) Y ;  D = S ⋅H;  S = σ 0
0 σ

#

$
%

&

'
(; 

  Yi
*TS Yk =Y

*TSY = 2iδik;  Yi
TSYk = 0,

   (C11) 

where δik  is the Kronecker’s delta. For a linear perturbation, I can expand any vector 
using full set of unperturbed eigen vectors: 

D(s) = Do(s)+ε ⋅ Δ(s);  
Yk = ak Yok + bk Y

*
ok + ck Yoi + dk Y

*
oi; i ≠ k;  bk , ck , dk =O(ε)<< ak ≅1

 (C12) 

with solutions obtained using symplectic projection operators: 
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Yko
T*S : →  2i "ak ≅ −ak ⋅ε Yko

T*h(s) Yko( );
Yko
TS : → − 2i "bk ≅ ak ⋅ε Yko

Th(s) Yko( );
Yio
T*S :→  2i "ck ≅ ak ⋅ε Yio

T*h(s) Yko( );
Yio
TS : → − 2i "bk ≅ ak ⋅ε Yio

Th(s) Yko( );

    (C13) 

which should be evaluated in exactly identical manner to that in (A7) for two pairs of 
{k,i} : {k=1,i=2} and {k=2,i=1}. After straight forward calculations [37,38] one can find, 
that similar to decoupled case, the phase advance in a periodic lattice is a monotonic 
function of s: 

ak = akoe
iχk (s);    χ k (s) = −i Yko

T*(z)h(z)Yko(z)
0

s

∫ dz;  k =1, 2    (C14) 

since in the periodic lattice the eigen vectors are periodic Yko(z+C) =Yko(z)  and the scalar 
y =Yk

T*hYk  under the integral is a real number: 

1. yT ≡ y  ⇒ Yk
T*hYk( )

T
=Yk

T*hYk; 

2. y* = Yk
T*hYk( )

*
=Y T

khY
*
k = Yk

T*hYk( )
T
=Yk

T*hYk = y.
   (C15) 

where use the fact that the Hamiltonian matrix is real h* = h  and symmetric hT = h .  

In contrast to the traditional perturbation methods, used in Appendix A, the approach 
described in this section is applicable only for linear system. At the same time, it is not 
limited to the second order. Similarly to quantum mechanics, except for some 
pathological and degenerated cases (such as a parametric resonance of one cell), this 
perturbation series can be extended to an arbitrary order. 
 


