

ntrabeam Scattering in OSC Lattice

Michael Ehrlichman

Intrabeam Scattering Reminder

- Bunch-charge dependent emittances
- Due to emittance, particles scatter off each other, transferring momentum between the bunch dimensions
- Scattering in dispersive regions particularly important: closed orbit jumps for scattered particles
- Seen in CESR as a growth rate that competes with radiation damping & excitation to create new, generally larger, beam emittances
- Growth rates scales roughly as 1/y⁴.
- Dispersion makes it worse
- Unlike SR growth & damping, IBS growth rates depend (nonlinearly) on emittance
- Iteration is required to find equilibrium.

IBS Theories & Beam Envelope

- Twiss Based: Piwinski or Bjorken/Mtingwa.
- Many descendants exist of these two.
- Sigma-Matrix Based
- General to arbitrary linear coupling conditions.
- Solution can be found by:
- Iterating analytic equations
- Envelope tracking
- NOTE: New to Bmad!
- CesrTA IBS work had invoked a "Twiss wrapper"
- Bmad now contains a native beam-envelope based, "Twiss Free" synchrotron radiation & intrabeam scattering modules.
- 1) envelope_mod.f90

Calculation Parameters

- chess-u 500mev 20170907 Rev5.6.1 10ccu
- chess-u_6000mev_20170815_Rev5.6.1.lat
- Simple periodic model for KYMA undulators
- 500 MeV
- 6 MV total RF (1.7 mm bunch length)
- 1 cm RMS η_y (pluged in to IBS formulas)
- Following slide used Bjorken/Mtingwa's theory is not significant. method, but to leading order, particular IBS

IBS Curves

OSC CHESS-U lattice at 500 MeV. Emittance vs. Current, IBS Included

$\varepsilon_{\rm x}$ increases 2589 x SR emittance.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Current (mA)

Beam parameters from radiation calculation:

emit_a
emit_b
sigmaE_E
sigma_z 1.73E-003 .07E-013

User-adjusted parameters 1.41E-011 at zero current:

emit_a
emit_b
sigmaE_E
sigma_z 2.93E-004 1.73E-003 1.00E-010

Beam parameters 3.65E-008 full current with IBS:

1.87E-010

emit_a
emit_b
sigmaE_E
sigma_z

Bunch Length (mm)

Strong Coupling & Lower RF

- Try to mitigate IBS with coupling and lower RF
- Tilt quads to couple beam emittances.
- "Roundish Beam"
- Good: Larger beam volume reduces scattering rate.
- Bad: generates vertical dispersion, which increases IBS & SR excitation
- Coupled lattice should be designed to couple beam with minimal impact to vertical dispersion.
- Decrease RF voltage from 6 MeV to 4 MeV to lengthen bunch.

9

Horizontal Emittance (nm)

g

G

Current (mA)

σ_z (mm)	ε _y (nm)	$\varepsilon_{_{\times}}$ (nm)	
3.3	5.1	9.6	6 MV
3.9	4.8	8.9	4 MV

To Note

- Large emittance vs current slope could be problem if lifetime is short.
- Need Touschek & RGS calculations.
- Determining RF voltage flexibility requires momentum aperture & Touschek study.
- OSC bypasses have been evaluated assuming 50 pm emittances
- Mitigation study should use more carefully designed coupling method.