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The optical field evolution of an optical klystron free electron laser is analytically described for both
low gain and high gain cases. The harmonic optical klystron (HOK) in which the second undulator is
resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field
evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic
generation, the quadratic gain regime) and the HGHG mode (high gain harmonic generation, the
exponential gain regime), the effects of energy spread, energy modulation, and dispersion in the whole
process are taken into account. The linear theory is given and discussed for the HGHG mode. The
analytical formula is given for the CHG mode.
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I. INTRODUCTION

An optical klystron (OK) consists of two undulators
separated by a dispersive section. In the first undulator
(modulation section) the energy modulation of the electron
beam is induced by interaction with the optical field. It is
transformed into density modulation (bunching) after pass-
ing the dispersive section, then the radiation in the second
undulator (gain section) is coherently enhanced [1]. An
optical klystron gives a higher small signal gain than an
undulator. In order to reduce the total length of the undu-
lator for SASE free-electron laser (FEL), an optical klys-
tron operating in high gain regime has been proposed and
discussed [2,3]. Optical klystron also has been used for
coherent harmonic generation (CHG) [4,5]. In this scheme
an external laser pulse is focused into the first undulator,
the wavelength of the laser is resonant with the fundamen-
tal radiation of the optical klystron, with optimized system
parameters the harmonic radiation in the second undulator
is coherently enhanced. Analysis has shown that if the
second undulator of an OK is resonant on a higher har-
monic, namely, the wavelength of fundamental radiation of
the second undulator matches with nth harmonic optical
field in the first undulator, it will enhance the harmonic
generation [6]. To distinguish it from the normal optical
klystron, we temporarily call such optical klystron the
‘‘harmonic optical klystron’’ (HOK). A similar configura-
tion was proposed and used for high gain harmonic gen-
eration (HGHG) [7], the scheme evolved from many earlier
ideals (e.g., Ref. [8]). In the HGHG mode the optical power
grows exponentially while in the CHG mode the optical
power grows quadratically. Cascaded optical klystron
[9,10] and cascaded harmonic optical klystron [11–13]
for x-ray FEL are also proposed and discussed.

The theory of optical klystron (and harmonic optical
klystron) has been studied by many authors (e.g.,
Refs. [1–4,14–16]) . The small signal gain of optical

klystron is given by using Madey’s theorem via the deri-
vation of spontaneous spectrum [14], or by using the
coupled Lorentz-Maxwell equations [15] but in a rather
lengthy form. In Ref. [7] the HGHG problem is solved for
the small energy-spread limit, in the second undulator the
electron beam is assumed to be monoenergetic and dis-
persive effect is ignored. The amplifying process of optical
klystron (and harmonic optical klystron) has been analyzed
mostly by calculating the bunching factor at the entrance of
the second undulator (the techniques developed for micro-
wave klystron). In this paper I derive the optical field
evolution equation completely analytically for OK and
HOK. The energy-spread effect and the dispersive effect
in the whole process will be considered in the derivation.

II. OPTICAL KLYSTRON

We use the one-dimensional FEL theory and start from
the paraxial optical field equation and the electron phase
equation:
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where ~as ! asei’s , as ! eEs=#mc2ks$ and au !
eBu=#mc2ku$ are the dimensionless vector potential of
the rms radiation field Es and undulator field Bu, respec-
tively; ks ! 2%=!s, ku ! 2%=!u are the corresponding
wave number; ’s is the phase of radiation field;# ! #ks %
ku$z"!st is the ponderomotive phase of electron, re is the
classical electron radius; ne and $ is the density and energy
of electrons; the angular bracket represents the average
over the electron’s initial phases and initial phase veloc-
ities. "p is the polarization modify factor: for circularly
polarized helical undulator "p ! 1; for linearly polarized
planar undulator with even nth harmonic radiation "p ! 0,*Electronic address: jiaqk@ustc.edu.cn
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and with odd nth harmonic "p ! &J; J'n,
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J is integer order Bessel function. We consider an optical
klystron where the two undulator sections have the same
magnetic field parameter au1 ! au2, ku1 ! ku2 but differ-
ent length.

In the second undulator the electron phase is

#2 ! #20 %#20
0z2 %!#2: (3)

The first term of the right hand side of Eq. (3) is the
electron phase at the entrance of the second undulator

#20 ! #1#l1$ % !#d ! #10 %#10
0l1 % !#1 % !#d;

(4)

where #10 and #10
0 is the initial phase and phase velocity

(detuning parameter), !#1 is the phase change due to
interaction with radiation field in the first undulator and
given from Eq. (2),
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!#d is phase change in the dispersive section
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where d andBd are the lengths and magnetic field of the
dispersive section, respectively, $r is the resonant energy;
the resonant relation of FEL and the phase velocity ex-
pression #0 ! ku&1" #$2

r=$2$' is used. By its definition
expression [Eq. (7)] the dispersive section parameter Nd is
the scale parameter of optical klystron itself and indepen-
dent on the electron beam.

The second term of Eq. (3) #20
0 is electron phase

velocity at the entrance of the second undulator
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The third term of Eq. (3) !#2 is phase variation due to
the interaction with the radiation field in the second un-
dulator [same as Eq. (5), but l1 ! z2, z1 ! z2

0, #1 ! #2].

Therefore Eq. (3) becomes
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Substituting the above expression into Eq. (1) we yield
the optical field evolution equation for linear regime in the
second undulator
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where ' is the Pierce parameter ' ! #1=2$$(
f#rene!2ua2u"2p$=2%g1=3. When Nd ! 0 the above equation
recovers the optical field equation for the normal undulator.
Multiplying two sides of Eq. (10) by ~a)s and taking real
parts, then using the simplification method in Ref. [17], we
obtain the small signal gain of optical klystron
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Actually this is the result given in Ref. [18] if Nd is an
integer. For low gain case ~as * ~as0 in the integral of the
right hand side of Eq. (11), and for large Nd it can be
proved that the gain would be maximum when optical
klystron is symmetric configuration #l1 ! l2 ! l$ [6].
Then the small signal gain becomes
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where the approximation is made for a large Nd. From
Eq. (12) we can see that the fractional part of Nd causes a
phase shift for gain curve, 2%Nd is the " defined in
Ref. [19].

For the high gain case, here we only indicate that
Eq. (10) is also valid.
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III. HARMONIC OPTICAL KLYSTRON WITH
SEEDING LASER

For the HOK generally the wavelength of the n1th
harmonic radiation field in the first undulator matches
with the n2th harmonic radiation field of the second un-
dulator, namely, one has

!u2#1% a2u2$=n2 ! !u1#1% a2u1$=n1: (13)

In the following we consider the case of n1 ! n, n2 ! 1.
Now the initial electron phase in the second undulator is

#20 ! n#1#z20$ % #ku2 " nku1$z20; (14)

#1#z20$ is given by Eq. (4). The second part in the right
hand side of Eq. (14) is a constant for all electrons. The
initial electron phase velocity in the second undulator is
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$
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0#l1$: (15)

Thus the electron phase in the second undulator is (we
drop the constant term)
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$2 Re

Z l1

0
&n#l1 " z1 % Nd!u1$
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where ks1 and as1 are the wave number and the dimension-
less vector potential of the seed laser field (rms), respec-
tively. The harmonic generation problem of HOK
including the electron beam quality effects and dispersive
effects for the whole process from beginning to saturation

can be numerically solved by substituting Eq. (16) into
Eq. (1).

For harmonic amplifier FEL the seed laser field is not
weak, so in the right hand side of Eq. (16) the third term
(the phase variation due to the interaction with the seeding
optical field) cannot be treated as a small quantity to
expand, according to the procedure exploited in obtaining
Eq. (10). Owing to the short length of the first section
undulator (modulator) the optical field in the modulator
can be considered approximately constant. The integral in
this term varies approximately linearly with z1, so taking
its median in the integral is a reasonable approximation
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!$m=$ is the maximum energy modulation induced in the
first section undulator
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$

! 4%N1
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: (19)

Substituting Eqs. (16) and (17) into Eq. (1) and linear-
izing it
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Here f##10$ is all other terms that depend on#10. It will be null after averaging over a uniform initial phase distribution of
electrons; we denote #!u1=!u2$#10

0 as #02
0 (note it is different with #20

0), it is the electron phase velocities (referenced to
the second undulator) at the entrance of the first undulator:
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%
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Finally the optical field evolution equation in the linear region for HOK is given by
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In the right hand side of the above equation, the first term
corresponds to the coherent enhancement process. We can
see that the dispersion effect (!() and energy-spread effect
(the exponential factor) include the contribution not only
from the dispersive section, the modulation section, but
also from the gain section. The second term corresponds to
the usual gain process. It gives usual gain results when the
seed laser is off. The Bessel function in it indicates the
effect of the additional energy spread due to energy modu-
lation. The contribution of the third term is small and can
be neglected in many cases.

Figure 1 is a numerical result of Eq. (22) compared with
the result given by solving Eqs. (1) and (16) (for 5:3 )m
HGHG experiment parameters of Ref. [20]). It shows that
the linear approximation is valid from the start up to near
saturation (linear region). For a harmonic optical klystron
with seeding laser the amplifying process has two parts: the
coherent enhancement process and the usual gain process.
For the initial distance z2 of the radiator the usual gain
process is in the low gain regime, the coherent enhance-
ment process is dominant; this is the CHG mode. As the
radiator distance z2 increases the usual gain process enters
the high gain regime (the exponential gain regime) and
becomes dominant; this is the HGHG mode.

For the HGHG mode, the electron beam current is
relatively high, and the length of the second undulator
must be sufficiently long to reach the exponential gain
regime. The asymptotic approximate solution can be given

for monoenergetic electron beam and weak modulation
[21]
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In the CHG mode, the electron beam current is low and
the length of the radiator section of HOK is short. We can
only consider the coherent enhancement process [the first
term of Eq. (22)]. Because N2 is small while the Nd may be
very large, it has Nd % N1=2 + N2=n , z2=n!u2 (for ex-
ample, in our CHG project N1 ! 10, N2 ! 12, Nd - 90
[22]). Therefore the z2 in !( [Eq. (18)] can be approxi-
mated with its median in the second undulator. Thus we
give the analytical result for the optical field of HOK in the
CHG mode
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(24)

For a Gaussian initial energy distribution of the electron
beam the corresponding radiation intensity is

~a2s2 !
$re!s2au2"p2nel2

$

%
2
J2n#n!($f2$;

f$ ! exp
(

" 1

2

#

4%n
$

Nd %
N1 % N2=n

2

%*$
$

&
2
)

:
(25)

If we substitute in Eq. (25)

au2!au; "p2!&J;J'1!"p!&J;J'n; N2=n!N2;

then we have the nth harmonic radiation intensity for OK
configuration. The advantage of HOK over OK for CHG is
obvious: the energy spread effect is reduced, the radiation
is also enhanced by proper selecting undulator parameters
to make (#au2&J; J'1$2 + #au&J; J'n$2 [6]. Moreover be-
sides the odd harmonic the HOK also can be operated at
the even harmonic of the seed laser.

FIG. 1. (a) The linear approximation [Eq. (22)] compared with
(b) the result given by numerically solving Eqs. (1) and (16).
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From Eqs. (23) and (25) the division of the CHG mode
(quadratic gain regime) and the HGHG mode (the expo-
nential gain regime) for monoenergetic electron beam can
be estimated: z2 * 3:73Lg &Lg ! 1=#2

***

3
p

ku'$' namely
about four gain length. Figure 2 gives a comparison of
the analytical formula [Eq. (25)] and the linear theory
[Eq. (22)] for the CHG mode (using the parameters of
Ref. [22]). It can be seen that the agreement between
them is very good.

For the CHG mode when modulation is weak it has
Jn#n!($ - #n!($n in Eq. (25), then the optimal dispersive
parameter can be given as

Nopt
d ! 1

4%
***

n
p
*$=$

" N1 % N2=n
2

: (26)

When the energy spread is small, the dispersive field and
the seeding laser field should be chosen to make Jn -
Jn;max, in this instance it has n!( - n% 1

Nopt
d ! n% 1

4%n!$m=$
" N1 % N2=n

2
: (27)

From Eq. (22) we noted that for the linear region the
additional energy spread due to energy modulation only
affects usual gain term but not the coherent enhancement
term. Therefore, for the CHG scheme, in which the coher-
ent enhancement term is dominant, generally one should
chose a large seeding laser field as1 (strong modulation)
and a small Nd (weak dispersion, to reduce the effect of
energy spread) to make Jn - Jn;max.

For the HGHG scheme the additional energy-spread
effect due to energy modulation must be considered, the
optimization of dispersive parameter and the seeding laser
field is more complicated [23]. The additional energy-
spread restriction gives the up limit for seeding laser

field as1.

!$m=$< '; as1 <
#1% a2u1$

4%N1au1"p1
': (28)

From Eq. (22) the effect of additional energy spread
!$m=$ on the usual gain process is independent of the
harmonic number, and the optimal !( ! #n% 1$=n for the
coherent enhancement process does not change much for
high harmonic, therefore the optimal seeding laser does not
change much with the harmonic number. But as the har-
monic number increases, the energy-spread effect factor
and the Bessel function term Jn decrease; both of them
make the gain degradation. The energy-spread factor is
more important by comparison. To reduce the energy-
spread effect we can reduce the dispersive field strength
(Nd), but in this case Jn#n!($ is also decreased. The
numerical calculation is needed to get the optimal parame-
ters for a given practical situation.

IV. SUMMARY

We have analytically derived the optical field evolution
equations for both the optical klystron and the harmonic
optical klystron FEL configurations. A concise optical field
evolution equation is given for the linear regime of OK,. It
not only gives small signal gain but also is valid for high
gain. The effect of the noninteger dispersive parameter Nd
is shown explicitly for the first time. The harmonic optical
klystron with seeding laser are analyzed for both the CHG
mode and the HGHG mode. By numerically solving
Eqs. (1) and (16) the harmonic generation problem includ-
ing the effects of energy spread, energy modulation, and
the dispersion in whole process can be easily described.
The linear theory is given [Eq. (22)]. It is valid from the
initial (CHG mode) to near saturation of the HGHG mode
and will be helpful to related theoretical analysis. For the
CHG mode the analytical formula is given further, and the
advantages of HOK over OK were demonstrated: the ra-
diation intensity can be increased with optimized system
parameters, the energy-spread effect will be reduced, and
besides the odd harmonic the HOK also can operate at the
even harmonic of the seed laser. At last the optimal pa-
rameters for harmonic amplifier FEL are discussed briefly.
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