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Abstract

The IR Upgrade design at Jefferson Lab uses an optical klystron in order to enhance the
flexibility of the free-electron laser system and to match the efficiency to the energy recovery
lattice. Most optical klystrons operate with a strong dispersion section [1]. The IR upgrade
design requires operation with a dispersion of only a few periods in order to allow the full
range of efficiency of the FEL to be explored. This paper will study the details of an optical
klystron in this small dispersion limit. The peak gain vs. dispersion section strength has an
oscillatory behavior, suggesting that the dispersion section strength should be adjusted in unit
steps rather than continuously. The gain vs. the effective number of periods is calculated and
found to be, on average, in good agreement with theory. Finally, some comments on the

relative merits of using an optical klystron or a uniform wiggler in a high power FEL will be

presented.
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1. Introduction

The design specifications for the IR upgrade FEL at Jefferson Lab called for the use of a wiggler capable of
operating to very long wavelengths at high electron beam energy and the need for a small Rayleigh range to
maximize the spot size on the mirrors. In addition, the number of wiggler periods had to be on the order of 40,
since the IR Demo proved that the energy spread produced by a 40 period wiggler could be efficiently energy
recovered. It is nearly impossible to meet all these requirements with a uniform wiggler so the option of using
an optical klystron was explored and accepted. This allowed the length to be less than 6 meters while allowing
operation at wavelengths up to 25 microns at an electron beam cnergy of over 130 MeV. The effective number

of periods can be adjusted from 25 to 60 by varying the dispersion section field. This provides an efficiency
knob for the FEL user.
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Simulations of the energy recovery system for the IR upgrade have indicated that operation with energy
spread much larger than in the IR Demo might be acceptable [2]. This implies that operation with an effective
number of periods much smaller than 40 is possible. McGinnis ct al. have shown [3] that the power output is not
enhanced for strong dispersion. The best area to operate is for Npy<Ny where Ny is the number of wiggler
periods in each wiggler of the optical klystron and N is the number of periods of effective length in the
dispersion section. It is useful to look in detail at the behavior of the optical klystron in this atypical range of

dispersion strength.

2. The IR Upgrade Optical Klystron

The optical kiystron for the IR Upgrade consists of two wigglers with a period of 20 cm. The rms wiggler
parameter can be varied from 0.4 to 4, yielding a very large tuning range. Each wiggler has 23 full strength
poles and two half-strength poles, providing an effective number of periods of 12.5. The two wigglers are
separated by 90 ¢cm. The dispersion section is a 3 pole design providing up to 40 periods of dispersion for the
strongest wiggler field. For weaker wiggler fields the dispersion can be much higher. Since the magnet is an
electromagnet, the magnet quality is nearly ideal, with 7ms phase noise of less than 1.5° over the full operating

range. The specifications for the optical klystron are summarized in table 1.

3. Details of the modeling

Theoretical models of optical klystrons assume two ideal wigglers and an ideal dispersion section. Since
effects such as end fields and the details of the dispersion section might be important for small dispersion, it is
useful to study the behavior of the optical klystron using the measured field of the optical klystron and Madey’s
gain-spread theorem [4]. The spectrum and phase shift can be calculated from the first integral of the magnetic
field using the computer code B2E [5]. The measured field from the optical klystron was scaled to set the
strength of the optical klystron wigglers and dispersion section. The phase shift was calculated by integrating the
square of the angular deviation (this is the added path length in the wiggler vs. a straight-ahead path) and
subtracting off the linear phase shift of a resonant pondermotive potential. The calculated on-axis spectrum was
then differentiated to find the gain curve. The gain curves were normalized to the peak gain for zero dispersion.
The field for K=2.1, and N, = 12 is shown in figure 1. The regions around the wiggler ends were adjusted to
zero the first and second integrals.

How much dispersion is necessary to keep the two wigglers in phase? In figure 2 the phase of the electrons
with respect to a co-propagating pondermotive potential vs. distance is shown for Np = 0,2,...12. The oscillation
with a 10 c¢m period is the figure-8 motion of the electrons in the wiggler. In the wigglers, the electrons’
longitudinal velocity is slowed by the magnetic field so that they stay in phase with the pondermotive potential.
In the space between the wigglers the electrons speed up and move ahead with respect to the pondermotive
potential wells. This is the equivalent of a negative dispersion in the gap between the wigglers. It is easy to show

that the number of periods of dispersion in a field free gap is




L K?
AN, =—— _ 1
TR (1)

where L is the effective distance between the wigglers, including the effect of the wiggler ends, Ay is the
wiggler period, and K is the rms wiggler parameter. The quantity L can be found empirically by solving

equation (1) for a calculated dispersion and a given value of K. For the IR upgrade wiggler, L is found to be
85.7 cm.

The peak gain is highest when the phase slip is an odd number of half periods (-3.5,-2.5,...). This 1s due to
the fact that the wigglers are separated by 4.5 wiggler periods. If one inserts 10 cm of extra drift into the
magnetic field map, the peak gain is highest for an even number of half periods. From equation (1), the
dispersion in the drift is a half integralvalue for K=2.105, 1.183, and 0.73.

The equation for the gain of an optical klystron derived using the gain-spread theorem is given by [1]
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where v is the usual detuning parameter, and & = Np/Ny. Dattoli and Ottaviani have derived an approximate

form of the peak of this curve vs. § [6]

1+0.057/6
where g, is the small signal gain parameter for one wiggler.
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Equation (2) does not take into account the dispersion of the drift. This can be fixed by inserting equation 1

into equation (2).
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4. Calculations vs. Theory

In figure 3, I show the gain vs. dispersion section strength using equations (3) and (4) as well as that
calculated from the measured fields for the case of K=2.105. The basic behavior of the calculated gain compared
to the results of equation (2) is the same. An oscillatory variation is secn that arises from the movement of the
fringes in the optical klystron spectrum with respect to the resonant wavelength. This is shown clearly in figure
4 where I have plotted the gain vs. dispersion vs. photon energy. The peaks move to lower energy as the
dispersion is increased. For integer dispersion the gain is maximized while for half intcger values the two peaks
are equal and the peak value switches from one peak to the other. Equation 3 is derived from a form of equation
(2) that is always anti-symmetric about the resonant wavelength. Thus, there is no oscillation in the gain. Note
however that the peaks in the gain curve agree quite well with Dattoli’s formula. If the dispersion is changed in
unit steps, equation (3) is quite a good approximation.

There is also an oscillation from peak to peak in the gain calculated from the field so that odd values agree

quite well with the theory but even values arc higher. For the case of K = 1.183, the odd values again agree well




with theory and the even values are lower. This may be due to an interference effect between the ends of the

wigglers. They can add constructively or destructively when the dispersion is even but cancel out for Np odd.

5. Conclusions

Except for some possible interference effects for even values of the dispersion, the gain curves calculated
from the actual wiggler fields agree well with theory. How then does an optical klystron compare with a uniform
wiggler? It is clear from equation (3) that the gain increases only linearly with the dispersion. If we instead
increase the number of wiggler periods in a uniform wiggler, the gain of a plane wave will increase as Ny’. For
a Gaussian cavity mode, the mode cross-sectional area grows linearly with the length of a wiggler so the gain
varies as the square of the number of periods. In both cases the gain bandwidth is inversely proportional to the
number of effective periods. Since the saturation efficiency tends to be proportional to the gain bandwidth, this
means that the gain-efficiency product is constant for the optical klystron but grows with period number for the
uniform wiggler.

Since we now believe that our energy recovery lattice can accept a much larger fractional energy spread, we
now know that one can tolerate a very small number of wiggler periods in a uniform wiggler. Increasing the
peak current of the electron beam can compensate the decrease in gain. This leads to a larger energy spread but
that is not a problem when the number of periods is small. The main remaining advantage of the optical klystron
is its flexibility of power variation and the ability to step taper the wigglers. If one wants the most power
however, it is not the best choice.

Acknowledgements

This work supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of
Virginia, the Air Force Research Laboratory, and by DOE Contract DE-AC05-84ER40150.

References

1. P.Elleaume, J. de Physique 44 (1983) CI-333.

2. “The Jefferson Lab 1 kW IRFEL”, Presented at the Linac 2000 conference, Aug. 2000

2

Monterey CA, http://www.slac.stanford.edw/econt/C000821/TH204 pdf.

3. R.D. McGinnis et al. Nucl. Inst. and Meth. A475 (2001) 178.

4. J.M.J. Madey, Nuovo Cimento, B50 (1979) 64.

5. P.Elleaume, X. Marechal, “B2E, A software to compute Synchrotron Radiation from
Magnetic field data”, ESRF-SR/ID-91-54 (1991), also see

http://www.estf.fr/machine/groups/insertion devices/Codes/software.html

6. G. Dattol and P. L. Ottaviani, IEEE J. of Quant. Elec. 35 (1999) 27.




6. Figure Captions

Figure 1. Measured field for the IR upgrade optical klystron. The field has been set to produce an rms K of

2.1. The dispersion section strength is 12.

Figure 2. Phase of the electrons with respect to the pondermotive phase space for Np=0, 2, 4, 6, 8, 10, and
12. See text for explanation.

Figure 3. Gain vs. N calculated from the measured field, and from equation (3) and (4).

Figure 4. Contour plot of gain vs. photon energy vs. dispersion over two periods of dispersion.




Table 1. Optical klystron specifications. The dispersion strength did not take into

account the negative dispersion of the drift..

Specification Achieved
Wavelength(cm) 20 20+0.01
rms wiggler parameter K 0.5-4 0.5-4.2
rms phase noise <5° <1.5°
Periods/Wiggler 12 12.5
Polarization Linear, vertical
Disp. Streng. N, 40 at K=4 36 at K=4
Total length(m) <6 5.8
gap (mm) >26 26.5
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