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Transit-time method of optical stochastic cooling
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A transit-time method for stochastic cooling is extended and developed for optical stochastic
cooling. Limitations on the damping times are analyzed. Illustrative applications of the method to
the cooling of electrons, protons, and heavy ions are considered.
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I. INTRODUCTION

In Ref. [1] the utilization of a broadband optical am-
plifier was proposed for the stochastic cooling process in
order to enhance the ultimate possibilities of the conven-
tional microwave stochastic cooling technique [2]. It was
shown that the radiation of a particle in a quadrupole
wiggler can be amplified and applied back to the same
particle in a dipole wiggler, producing therein an en-
ergy kick in proportion to the particle's transverse po-
sition in the quadrupole wiggler. It was also shown that
this scheme is capable of providing damping for both
transverse and longitudinal oscillations, but that cooling
takes place only in the case of a small beam exnittance
& 10 m. We show how to avoid this limitation by using
a difFerent approach.

II. DESCRIPTION OF THE WORKING
PRINCIPLE

Typically, in conventional microwave stochastic cool-
ing, a cooling system is comprised of a pickup, an ampli-
fier, and a kicker [2]. Although optical stochastic cooling
deals with the same cooling principle as the microwave
stochastic cooling, all components of the cooling sys-
tem mentioned above undergo substantial modifications.
These modifications, which are associated with a transi-
tion into the optical frequency regime, will be highlighted
below.
Consider an insertion in a storage ring designed for

optical stochastic cooling, which includes two undulators,
an optical axnplifier, and a bypass. A schematic drawing
of this insertion is shown in Fig. 1.
As shown elsewhere [3], the stochastic cooling method

obeys the principle that, when passing the cooling sys-
tem, each particle receives a correcting kick that is a
superimposition of the coherent and incoherent compo-
nents. The coherent component is responsible for damp-
ing, and is proportional to the deviation of the particle
from the equilibrium momentum or the reference orbit.
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FIG. 1. Scheme of a cooling insertion in a storage ring.

The incoherent component is due to the efFects associated
with other beam particles.
We first consider how the particle receives a coherent

kick in the cooling insertion shown in Fig. 1. Moving
along the insertion, the particle radiates an electromag-
netic (EM) wave in the first undulator. This wave goes
to the optical amplifier, while the particle follows the by-
pass trajectory and meets its amplified radiation in the
second undulator. A subsequent interaction between the
particle and the EM wave from its own radiation results
in a change of the particle energy. The axnount of the
energy change depends on the phase of the EM wave of
the radiation at which the particle enters the undulator.
The variation of this phase from particle to particle

is due only to the particle traveling time in the bypass,
since EM waves radiated by difFerent particles propagate
&om f,he first undulator to the second undulator iden-
tically. Therefore, in order to have the energy change
proportional to, for example, the particle momentum de-
viation:
First, adjust the propagation time of the EM wave and

the traveling time of a particle with a zero momentum
deviation such that this particle will enter the undulator
at a phase with a zero electric field, and thus will not
undergo any energy change.
Second, design the bypass optics such that particles

with difFerent momenta follow trajectories with differ-
ent path lengths, so they will enter the second undulator
with phase shifts (relative to the phase with zero electric
field) proportional to their actual value of momentum
deviation.
A similar approach is applicable to betatron xnotion.
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What is required in this case is to link the particle travel-
ing time in the bypass with some quantitative character-
istic of the betatron motion (say, the betatron coordinate
or angle, or a linear combination of them) at the begin-
ning of the bypass, and to install undulators in a region
with a nonzero dispersion function.
In the general case, particles can have a momentum de-

viation and a deviation in betatron coordinate and angle
simultaneously. We now consider this case in more de-
tail. Assume that at the entrance of the cooling insertion
some arbitrary test particle has a momentum deviation
b, = AP, /P, a betatron coordinate z;, and a betatron
angle x,'. Neglecting higher-order terms, the length of
the trajectory of this particle in a bypass could be writ-
ten /; = Io+z,IU+z;'Iv+b, (qoIU+q&Iv —ID) [4], where
lp is the trajectory length of the reference particle having
zero momentum deviation and zero betatron coordinate
and angle, gp and gp are the dispersion function and its
derivative in the Grst undulator, and the symbols IU, I~,
and ID stand for integrals:

U(s) ds V(s) ds D(s) ds
C (s)

'
L, C (s) '

L. ~(s)

where U(s) and V(s) are two independent cosinelike and
sinelike solutions of the homogeneous equation of the mo-
tion, p is the bending radius of the magnets, I denotes
the position of the second undulator with respect to the
first undulator, and D(s) represents the contribution of
the bypass magnets to the primary dispersion function.
In the 6rst undulator, the test particle radiates an EM

wave propagating in the z direction; E, = Eo sin(kz-
ut + P;) is the electric field of the EM wave with am-
plitude Eo and phase P;, and k = 2n/A and w = kc
are the wave number and the frequency, respectively;
A = [A„(l+K /2)]/2p is the wavelength, c is the speed
of light in a vacuum, p is the Lorentz factor, A„ is the
undulator period, and K is the undulator parameter [5].
This radiation goes to the optical amplifier, while the
particle follows the bypass and traverses it in a time
At, = E;/c . The time Ato required for radiation to
pass all the way between undulators, including the am-
pli6er delay, must be constrained and maintained by a
feedback system to yield a condition Eo —cb, to ——A/4 .
Thus the particle arrives at the second undulator with
a time delay b(At) = b, t; —Dto and with a phase shift

pli6er, and bP; is the amount of the momentum change
related to the coherent longitudinal kick Ab; = bP;/P.
In order to calculate a transverse kick from the energy

kick, we define the dispersion function and its derivative
in a location of the second undulator. For a lattice with
a mirror symmetry relative to the central point of the
bypass, these are gp and —gp, so that the changes of
the particle betatron coordinate and angle at the exit of
the second undulator are b,z, = go(—bP, /P) and bz', =
rlo(bP, /P).
Thus, after passing the entire cooling insertion, the test

particle has received coherent longitudinal and transverse
kicks that are proportional to a linear combination of the
particle's momentum deviation and betatron deviations.
We will see in the next section that a proper choice of
the parameters of the bypass lattice Inakes it possible to
use these kicks to simultaneously damp transverse and
longitudinal oscillations.
The cooling technique described above has certain sim-

ilarities with the transit-time method proposed in Ref. [6]
for microwave stochastic cooling. This is why we have
chosen to use the same name for this method, and re-
fer to it as the &ansi'-time method of optical stocha8tic
cooling.

III. COOI INC RATES

We have so far considered the interaction of the arbi-
trary test particle with the EM wave of its own radia-
tion. However, each particle also interacts with the EM
waves emitted by other particles moving behind it within
a distance & MA. These interactions constitute the in-
coherent component of the kick received by the particle.
Assume that a test particle interacts with N, electromag-
netic waves (including its own wave) and consider again
a change of the particle's momentum at the exit of the
cooling insertion:

b,, = b, + G sin(b, P;) + G ) sin(AP; + g;q) .
kgi

Here, b,, is the relative momentum of the ith particle
after the longitudinal kick, g, i, = P; —P~ and

AP, = k(E; —Ep)

qEpMA„EG=g
2CQ P (4)

= k[z I~ + z, Iv + b;(goIU + rl'Iv —I~)], (1)

relative to the phase with zero electric Beld. In the second
undulator, the particle interacts with the electric field of
its own radiation and changes its momentum by

2cp

where q is the particle charge, Iis the number of undula-
tor periods, g is the ampli6cation factor of the optical am-

In the right-hand part of Eq. (3), the contribution of
the test particle to the total kick is subtracted from the
sum, so that the sum depicts only the incoherent compo-
nent of the kick.
Expressions similar to Eq. (3) can also be written for

transverse coordinates. We do this for a bypass with a
mirror symmetrical lattice and with a —I transfer matrix
between undulators. In this case, IU ——0, Iy ——2Dp, and
gp ——Dp, where 2Dp is a contribution to the value of the
dispersion function in the second undulator coming solely
from the elements of the bypass lattice. Thus, using the
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above definition of the transverse kick, we write

x;, = z; + Dp G sin(b, P,) + Dp G ) sin(AP; —Q;~),
kgi

x',, = x'; —gp G sin(AP;) + gp G ) sin(AP; + @;i,) .
A;gi

Here z; and x,', are the betatron coordinate and angle
after correction.
We can now evaluate the averages of the quantities:

b, (b ) =b —b b(x ) =x. —x and b, (x ) =x.
x,-2 taken over the ensemble of N, particles and over the
distribution of the particles in betatron coordinates and
angles and momentuin deviations. Then, using Eqs. (3)
and (5) and applying the same technique as in Ref. [3],
we can write for damping decrements:

b, (b2) G2N 1= 2G(ID —2Dp gp) k expb2
I

2 0,''
1 / 6(z2) b, (z'2) ) 1 QgP+ = — 4GDp gp Al exp
2 ( z2 x'& ) 2 2

G2N, (,, D,') P
2
'

I
nP' + P, )I —,

(6)

where A/2 = k [(2Dp)zx' + (2Dp imp
—ID) b ] and sub-

stitutions b2 = o, , x2 = e P, and z'2 = e /P are used,
and where e is the beam emittance and P is the beta
function in the undulator. The exponential term appear-
ance in the first terms of Eqs. (6) is due to the sinelike
dependence of the coherent kick from the particle's phase
shift. We can now de6ne the optimal G by maximizing
the sum of the decrements a~ + ag so that

independent &om the current values of e and o.g. Ac-
cording to Eq. (9), increasing 2Dp and (2Dp ivp —ID) will
compensate for the reduction of e and O.g. In order to
do this, small adjustments in the bypass lattice during
the damping process are required.
We can further simplify Eqs. (8) and (9) by assuming

(gpog) e /P and Dp (& Pqp . For example, for a case
of equal decrements, when ID is adjusted to be equal to
3Dp gp,

and

2(Io —Do rfo)o&~ k exp (—6P; /2)
N, 1+ 2~ o~2 g'2+ p

0'g

+eN, '

1
A~ = Ck'g ~

2eN,

(loa)

(10b)

- 2
2(ID —Dp rIp) o& k exp —EvP2/2

g'+ ~ (8)

Consider at this point the limitations on the maximum
attainable damping rates. First of all, k exp( —b,$2/2j
reaches its maximum k/+e (e is the base of the natural
logarithm) at

We see here that the number of passes through the
cooling insertion required for a 1/e reduction of the beam
emittance (and the beam energy spread in the second
power) is equal to 2eN, . Recall that N, is equal to the
number of particles in the bunch within the distance MA,
if the transverse beam size in the undulator does not
exceed the size of the transverse coherence of the EM
waves. Otherwise,

= k (2Dp) —+ (2Dp rjp —ID) 0'g = 1 . (9)

Notice that the reduction of e and og during the
damping leads to a decrease of b,$2 and, correspond-
ingly, to a decrease in the phase shifts of the individual
particles. As a result, the coherent components of the
particles' kicks are reduced, whereas the incoherent com-
ponents of the kicks that do not depend upon e and
op remain the same. Since only coherent components of
the kicks are responsible for damping, a decrease of AP;
leads to a slowdown of the damping process. Fortunately,
we can prevent this by keeping EP2 at a constant level,

where N is the number of particles in the bunch, Eg is
the bunch length, and F is ratio of the beam transverse
area in the undulator to the transverse coherence area of
the light.
For the next step, we introduce in formula (ll) the

bandwidth of the undulator radiation using the well
known relation between the number of undulator periods
and the width of the spectral line [full width at half max-
imum (FWHM)] on the first harmonic F = b,~/ur = 1/M
[5]. Then, the damping time due to the optical stochastic
cooling can be written
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where T is the revolution period (we assume only one
cooling insertion in the ring).
Equation (12) was derived under the assumption that

the bandwidth of the cooling system is defined by the
bandwidth of the undulator radiation. However, the
bandwidth of the undulator radiation can be made wider
than the bandwidth of the optical amplifier. Therefore,
in a more realistic case, the bandwidth of the optical am-
plifier should replace I' in Eq. (12).
Although we have considered only the damping of hor-

izontal betatron oscillations and energy oscillations, the
analogous cooling technique could equally be used for
damping the vertical oscillations. In the latter case, we
need vertical dispersion in the undulators, and the orbit
bend between undulators must be in the vertical plane.

IV. AMPLIFICATION FACTOR

ing, then we can define the absolute minimum emittance
&~~0, corresponding to the case where the only source of
the emittance excitation is the radiation fluctuation in
the undulators of the cooling scheme:

roX
6~~0 —+e

Notice that in this case g = 1.

V. POWER LIMIT

We have so far assumed that we are not limited by
amplifier power. Although it is very likely for electrons,
this might not be correct if we try to reach the optimal
damping time, Eq. (12), working with protons and/or an-
tiprotons and heavy ions. If, in order to reach the optimal
damping, the required output power of the amplifier ex-
ceeds the available power, then the available power of the
amplifier would determine the damping times:

In order to determine the amplification factor of the
optical amplifier one can rewrite Eq. (10a) using G from
Eq. (4):

N...A o~ (Es/ql'
)R' cT K2 ~0

(17)

q Eo MA„K
g 2cpP +eN,

In Eq. (13) the only unknown parameter besides the
amplification factor is the amplitude of the electric field
of the particle radiation Eo . We evaluate Eo in the waist
of the light beam where the cross section of the coherent
mode of the radiation (defined at the one 0 level of the
intensity distribution) is A = 2A MA„. During one pass
of the undulator with K 1 (we assume the undulator
with the maximum yield of the photons into the coherent
mode) the particle emits into the coherent mode q2/hc
photons of the energy Ru. Therefore

—EoAAt~ ——kq,
8m

(14)

where DtR = MA/c is the duration of the radiation pulse.
Using Eqs. (13) and (14) and substitution (12) for N„
we finally find

1 e() I'F
~e roN

where ro ——q2/mc~ is the classical radius of the par-
ticle, m is the particle mass, and e~~

——pgs ob/~2m is
the invariant longitudinal emittance. Notice that e~~ in
Eq. (15) represents the current emittance at each mo-
ment of the damping process. Therefore a reduction of
the amplification factor to follow the emittance reduc-
tion is required during the damping process (as well as
the adjustments mentioned above in the bypass lattice).
The equilibrium emittance is reached when all sources
of damping are balanced by all sources of the emittance
excitation. After that, the scheme remains stationary. If
the optical stochastic cooling is the only source of damp-

Here R' is the available average output power of the opti-
cal amplifier, Ep is the equilibrium beam energy, Zo is the
free-space impedance, and K & l. In deriving Eq. (17),
we assume I' ) 1/M Notice .that Eq/q Bp, where Bp
is the magnetic rigidity, does not depend on the particle
charge and the atomic number.

VI. NOISE AND MIXING

There are two additional parameters usually associated
with the stochastic cooling technique. These are the noise
of the amplifier and the so-called mixing —a process of
the re-randomization of the beam on the way from the
kicker to the pickup.
The noise of the optical amplifier is due to spontaneous

emission from the active medium, and is roughly equiv-
alent to one noise photon in the value of the coherence
at the amplifier front end. We should compare it with
the noise we have already considered above: the N, q2/hc
photons radiated by the X, particles in the first undu-
lator. Clearly, at this level, the noise of the amplifier is
negligibly small.
As for mixing, the rule here is that the particles must

not stay together with the same neighbors for more than
one turn, since otherwise the incoherent heating will grow
up [3]. It seems relatively easy to comply with this
rule in the optical stochastic cooling. A complete re-
randomization will occur if, during the passage &om the
second undulator to the first undulator, particles change
positions inside the bunch on MA. Another possibil-
ity for randomization exists when the beam emittance is
larger than 1/2 k. In this case, mixing in the transverse
phase space will also occur.
As for the beam path from the first undulator to the

second undulator, the rule is completely di6'erent. There
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must be no mixing here. It was realized in the scheme
discussed above that in the linear approximation, there
is no mixing. If the beam emittance is larger than 1/2 k,
then second-order geometric and chromatic aberrations
can significantly affect the synchronism between the par-
ticle and its radiation. One more precaution has to be
taken in this case; namely, the optical system and the
bypass lattice must possess identical focusing properties,
including second-order geometric and chromatic aberra-
tions.

VII. EXAMPLES

For purposes of illustration, we consider very schemati-
cally the application of optical stochastic cooling to three
type of particles: electrons and/or positrons, protons
and/or antiprotons, and heavy ions.

B. Protons

As an example, for the proton-antiproton machine we
considered the collider TEVATRON (Fermilab). We
ass»med two cooling insertions —one for longitudinal-
horizontal cooling and one for longitudinal-vertical cool-
ing; six bunches with 1 x 10ii protons/bunch, a relative
momentum spread of 3x10,and a revolution frequency
of 47.7 kHz. We also assumed a dye ampli6er with an av-
erage output power of 100 W and a central wavelength
of A = 0.8 pm. The undulator radiation with this wave-
length could be obtained in the undulator with a peak
magnetic 6eld of 8 T and A„= 1.5 m. For this set of
parameters, we estimate damping times; we get 5 min
damping time for betatron oscillations and 2.5 min
damping time for synchrotron oscillations.

A. Electrons

Since electrons already have a good damping mech-
anism due to the synchrotron radiation, we examined
what optical stochastic cooling can do in the low en-
ergy regime, where synchrotron radiation damping is
weak. Therefore we considered a 150 MeV ring of a
60 m circumference having two cooling insertions: one for
longitudinal-horizontal cooling and one for longitudinal-
vertical cooling. We assumed typical beam parameters
based on a positron beam after the conversion and accel-
eration to 150 MeV: N = 5 x 10, normalized horizon-
tal and vertical emittances of 5 x 10 4 m, bunch length
E& = 2.5 cm, and a relative energy spread of 1 x 10
For the amplifier, we assumed a Ti:AlqOs optical ampli-
6er with a central wavelength of 0.8 pm and a bandwidth
of 10%. With this set of parameters we calculated an op-
timal amplification factor of g = 350, the damping time
for betatron oscillations of r „30ms, and the damp-
ing time for energy oscillations of rs = 15 ms. With one
bunch in the ring and with the amplification factor spec-
i6ed above, the average output power of the ampli6er is
about 5 W in each cooling insertion.

C. Heavy ions

In this example, we considered damping of lead ions
(Z = 82) in the Super Proton Synchrotron (CERN) at
an ion energy of 32.8 TeV. The following beam parame-
ters, taken &om the Large Hadron Collider design report
[7I, were used: 124 bunches of 1 x 10s ions/bunch, a rel-
ative momentum spread of 3 x 10 4, and a revolution
&equency of 43 kHz. Assuming two cooling insertions,
an undulator with a peak magnetic 6eld of 8 T, and
A„= 0.3 m, and the same optical ampli6er as above,
we get 2 min damping time for betatron oscillations
and 1 min damping time for synchrotron oscillations.
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