CesrTA Machine Studies Task Overview

Experimental Topic	BPM tilt calibrations		
Classification [*]	LET		
Coordinator/	JSh JSh		
Experimenters			
Primary Goals	Calibrate BPM tilts using two methods. Also measure zero-corrector optics for		
	validation		
Description [†]	The following should be done in multiple sets of conditions, ideally at different		
_	energies. Repeat for both positrons and electrons.		
	1) BPM tilt studies:		
	1. In each set of conditions, time in BPMs and correct optics (orbit,		
	 phase/coupling). 2. Re-time BPMs and acquire phase/coupling data in well-corrected optics. Acquire three measurements back-to-back, then re-time BPMs and repeat, to determine the effects of BPM timing on the 		
	stability of Cbar22/11 data.		
	3. For a subset of BPMs, use a horizontal closed bump to perturb the		
	orbit in a known fashion, and observe the change in vertical orbit		
	at the BPM. This vertical perturbation should be due to the BPM's		
	tilt, assuming there are no sources of coupling within the bump		
	itself. Choose BPMs where the surveyed quad tilt is small, and the		
	quad-to-BPM offset is relatively small.		
	4. For completeness, also acquire a 300k-turn TBT BPM data set in		
	each set of well-corrected conditions. Make sure this is with all		
	 BPMs enabled (including drift triplet) 2) Zero-corrector studies: Re-time BPMs. Document the existing well-corrected conditions 		
	(orbit, phase/coupling, dispersion [AC+DC]		
	2. For each of the following, cumulatively, node off and disable, then		
	time in BPMs and remeasure orbit, phase/coupling and dispersion		
	(AC and DC):		
	1. Skew quadrupoles		
	ii. Vertical steerings		
	in. nonzonial steerings (if possible)		
Special	IV. SEXIMPOLES (II POSSIOLE) Machine recovery at 1.8/2.1/2.2CeV/4CeV/(if applicable)		
Special Noods/Rogmosts	$\frac{1}{10000000000000000000000000000000000$		
inceus/nequests			

I. Experiment Description

* Machine Studies Classifications:

- EC Electron Cloud
- LET Optics Correction and Low Emittance Tuning
- IBS Intra-beam scattering studies
- xBSM x-ray Beam Size Monitor
- INST Instrumentation (BPM development, RFA development, other)
- MDEV Machine Development (includes injection configuration, injection tuning, custom orbit setup, instrumentation preparation, etc.)
- MREC Machine Startup (recovering conditions after down period or access)
- [†] Attach additional pages for experimental description if needed

Prerequisites [‡]	Personnel	Description
Machine recovery	MJF et al.	Machine recovery at each energy of interest (both e+/e-)
Time Requested [§]	No. Shifts	Principal Tasks
3-4x3hr	3-4	Tasks outlined above, at 1.8/2.1/2.3GeV, 4GeV (if applicable)

[‡] Indicate other machine work that is required in preparation for this machine studies experiment. [§] Indicate the principal shift topics and estimated number of shifts required

II. Machine Studies Assignments

Reserved for Project Management Team Use				
Topic ID				
Priority ^{**}				
Shift Assignments	Date	Shift		

** Priority Scale:

3. High – results are of immediate interest but not require

^{1.} Critical – results are necessary for preparation for subsequent down/run periods

^{2.} Very high – results are strongly desired for achieving program milestones or in preparation for subsequent down/run periods

^{4.} Moderate – results should be pursued at the first convenient opportunity

^{5.} Low - results are not presently a high priority for either project milestones or planning