Experimental Setup:

Initial Line Alignment (6 hours):
- Initial setup after installation (once per line)

Detector Alignment Study (4 hours)
- Rotate detector versus PH and CA and find minimum beam size
- Beam axis check (knob scans?)

Pinhole Optic Width Setup (1 hour)
- For each energy

DAQ Timing Setup (2 hours)
- Initial time in (once per line)

Experimental Tune Up (1.5 hours)
- DAQ Detector Calibration
- DAQ Pedestal Collection
- DAQ Timing Trim
- Coupling Scans

Instrument Systematics Study:

Bunch To Bunch Crosstalk (1 hour)
- Load a single bunch and collect many bunches and many turns
- Vary the current from 0.5 to 4 mA

Gain Calibrations/Linearity Check (2 hours)
- Use straight through beam from 0.25 mA to 10 mA at 2 GeV
- Collect single bunch many turns
- White beam

Large Turn Count Acquisitions (2 hours)
- Collect 300k turns over a range of currents, single bunch
- Collect synchronous BPM measurements

Timing Sensitivity Measurement (1 hour)
- Trim timings and collect 0.75 mS single bunch data
- Introduce 20 pS shifts in all timings and collect data

Detector Alignment Study (4 hours)
- Rotate detector versus PH and CA and find minimum beam size
Optics Research:

- 4 GeV Tuned Beam Imaging (4 hours)
 - Smallest beam size at 4 GeV CA images collected with slow and fast readout

HE Optic Burn Test 5.3 GeV (2 hours)

- 5 um HE chip
- D Line optic
- 250ish mA
- Imaging before and after

4 GeV Tuned Beam Imaging (2 hours)

- Smallest beam size at 4 GeV CA images collected with slow and fast readout

Smallest beam calibrations (4 hours)

- 2 GeV XR2M or Norm
- Coupling bump scans
- Multiple current levels

Filter Response (3 hours)

- Diamond, Aluminum, Molybdenum
- 1.8, 2.085, 2.3 GeV
- PH and CA

Bunch Slicing:

- New Diode Response (4 hours, end of run)
 - Collect DAQ and scope traces of diode response