E/TT OSC Design, 40 cm depth

Michael Ehrlichman, Jim Shanks, et. al.

40 cm Bypass Layout \& Optics

Depth	40 cm
$\Delta \mathrm{~s}$	4.23 cm
Bend Angle	6.7°
$\Delta \varphi_{x}$	3.452π

Isochronous

TTOSC

Recall from Nov 282017 OSC Slides:

Sample Lengthening Parameters

- Recall sample lengthening metrics:

$$
\begin{aligned}
& \text { action: } \quad \sigma_{\Delta s \epsilon}^{2}=J \underbrace{\left(\beta_{p} M_{51}^{2}-2 \alpha_{p} M_{51} M_{52}+\gamma_{p} M_{52}^{2}\right)}_{\tilde{J}} \\
& \text { energy: } \quad \sigma_{\Delta s p}^{2}=\left(\frac{\Delta p}{p}\right)^{2} \underbrace{\left(M_{51} D_{p}+M_{52} D_{p}^{\prime}+M_{56}\right)^{2}}_{\tilde{M}_{56}} \\
&
\end{aligned}
$$

Note: There are higher orders of the energy and action dependence of the sample lengentning that are not described by these quantities.

Parameters of TTOSC Bypass on previous page:

$$
\begin{aligned}
\tilde{\mathrm{J}} & =2.2 \times 10^{-4} \\
\tilde{\mathrm{M}}_{56} & =5.8 \times 10^{-7} \\
\mathrm{M}_{56} & =8.2 \times 10^{-4}
\end{aligned}
$$

Gradient Dipole Options

Name	Field	Gradient	Length
	$[\mathrm{T}]$	$[\mathrm{T} / \mathrm{m}]$	$[\mathrm{mm}]$
DQ1	0.56	36.8	1028
DQ2	0.39	31.2	800

- "Magnets for the ESRF DiffractionLimited Light Source Project," Dec. 18, 2015.
- This OSC design requires bend $\mathrm{K}_{1} \sim 2$ or $3 \mathrm{~m}^{-2}$.
- $\mathrm{K}_{1}(500 \mathrm{MeV})=3$ or 5 T/m.
- For Comparison CHESS-U

$$
\mathrm{K}_{1}=0.438
$$

Conclusion

- With strong quadrupole moments in the bends, the linear optics of a 40 cm depth bypass are compatible with both EOC \& TTOSC.
- Except that π phase advance is not met.
- Seems reasonable to assume shallower bypasses also OK or better.
- Open issues:
- Particle tracking \& nonlinearities not checked.
- Matching into CESR.

