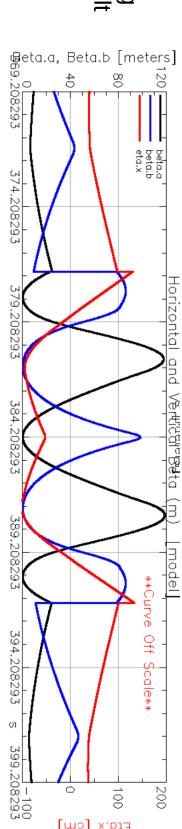

OSC Bypass with Moderate Focusing Strength

Michael Ehrlichman

Classifying OSC Bypass Designs

- bypass dispersions. Classify OSC designs based on focusing strength & manipulation of
- Weak focusing.
- IOTA Design
- No focusing in bypass, aside from central quad.
- Bypass treated like a drift.
- Little control over M₅₁, M₅₂, M₅₆.
- Does not benefit from extra real estate: properties dominated by delay length.
- considering 1 mm bypass delay w 0.8 µm light. Per IPAC conversation: IOTA currently at 2 mm bypass delay w/ 2.2 µm light,


$$M_{56} \approx 2\Delta s$$
,
 $\tilde{M}_{56} \approx 2\Delta s - \Phi D^* h$,
 $\lambda_x / \lambda_s \approx \Phi D^* h / (2\Delta s - \Phi D^* h)$,
 $n_{\sigma p} \approx \mu_0 / ((2\Delta s - \Phi D^* h) k \sigma_p)$,
 $n_{\sigma x} \approx \mu_0 / (2kh \Phi \sqrt{\varepsilon \beta^*})$,

Classifying OSC Bypass Designs

- 2) Isochronous: strong focusing in legs to make M_{51} , M_{52} , M_{56} zero.
- Needed for EOC.
- Not just zero, but manipulate near zero to control TTOSC parameters.
- Required focusing is large.
- Large TOF nonlinearities require strong sextupoles
- Not easily incorporated into storage ring
- Big optics derivatives, big chromaticity, big nonlinearities
- Additional constraints imposed on dispersion & phase advance through bypass.
- segment of wigglers. Big optics derivatives also mean optics only optimal for OSC for short

typical strong focusing result with large derivatives

Middle approach

- 3) Focusing in legs, control M₅₁ & M₅₂, but not M₅₆.
- Focus M₅₂ small.
- Take M_{56} as is.
- Manipulate M_{51} to obtain desired damping envelope.

$$\widetilde{J} = \beta_p M_{51}^2 - 2\alpha_p M_{51} M_{52} + \gamma_p M_{52}^2$$

$$\widetilde{M}_{56} = M_{51} D_p + M_{52} D_p' + M_{56}$$

$$\mathbf{Small M}_{52}$$

$$\widetilde{M}_{56} \approx M_{51} D_p + M_{56}$$

OSC Envelopes given by:

$$\epsilon_{max} = rac{\mu_0^2 \lambda_L^2}{4\pi^2 \widetilde{J}} \qquad \sigma_{p,max} = rac{\mu_0 \lambda_L}{2\pi \widetilde{M}_{56}}$$

OSC envelope no

optics derivatives

longer depends on

Maximize
$$\sigma_{ extsf{p,max}}$$
 : $M_{51} = \frac{-M_{56}}{D_p}$

Notice emittance envelope is determined: $\epsilon_{max} = \left(\frac{\mu_0 \lambda_L}{2\pi}\right)^2 \frac{1}{\beta_p M_{51}^2}$

For storage ring optics: want small β_x , big D_x , to minimize M51, and maximize $\epsilon_{\rm acc}$.

Middle approach (back of envelope)

Incoming optics (not optics at pickup):

$$-\beta_{x} = 24.7 \text{ m}$$

$$- D_x = 0.98 \text{ m}$$

• Bypass $M_{56} = 7.3 \ 10^{-3}$

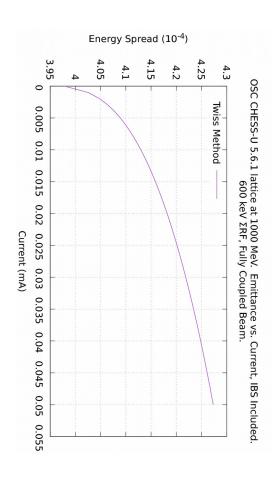
$$M_{51} = \frac{-M_{56}}{D_p} = -7.4 \times 10^{-3}$$
; This makes $\sigma_{p,max}$ big.

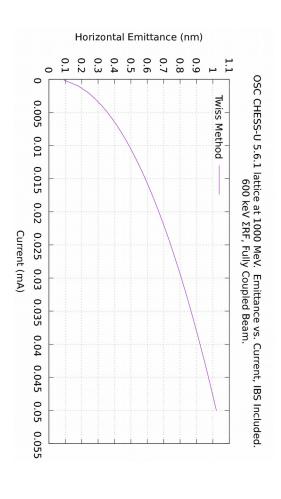
$$\epsilon_{max} = \left(\frac{\mu_0 \lambda_L}{2\pi}\right)^2 \frac{1}{\beta_p M_{51}^2} = \left(9.38 \times 10^{-14}\right) \frac{1}{\beta_p M_{51}^2} = 71.3 \text{pm}$$

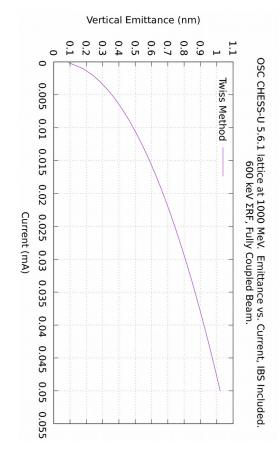
damping rates

$$\lambda_x = \frac{k\xi_0}{2} \left(M_{56} - \tilde{M}_{56} \right)$$
$$\lambda_s = \frac{k\xi_0}{2} \tilde{M}_{56}$$

0.8 µm light


Just back of envelope number.

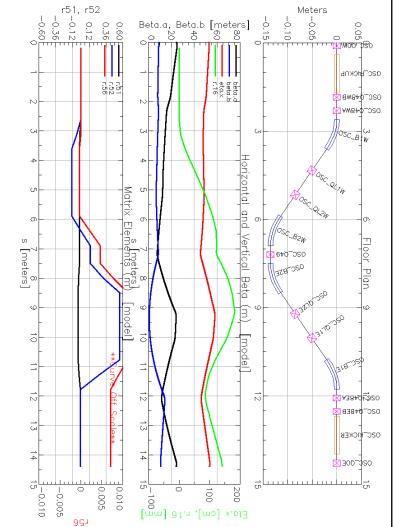

$$\lambda_{\rm x} = 28835 \; \xi_0 \; {\rm turns^{-1}}, \; {\rm for} \; \xi_0 = 10^{-10}, \; {\rm get} \; {\sim} 350,000 \; {\rm turns} \; {\rm damping} \; {\rm time}$$



Intrabeam Scattering

- 10 $\mu A \rightarrow \epsilon_x = \epsilon_y = 500 \text{ pm}$
- Fit in undulators?
- If $\beta_y = 5$ m, then $\sigma_y = 50 \mu m$
- Coupling method: tune to coupling resonance, broaden resonance width with skew quads it needed ... Add to MS program

Bypass Design


•
$$M_{52} = 8 \ 10^{-9}$$

•
$$M_{56} = 7.1 \ 10^{-3}$$

•
$$M_{51} = -7.6 \ 10^{-3}$$

• Actual
$$\sigma_{p,max}$$
= 29.

• Actual
$$\varepsilon_{x,max}$$
= 74 pm

- This bypass is a drop-in match to CESR.
- 5 mm delay.

Note: With these β_x and D_x concerns in mind, Jim is working on a new 1 GeV CHESS-U OSC lattice

Perhaps $\beta_x = 10$ m and $D_x = 2$ m is obtainable

Back of envelope yields: $\varepsilon_{x,max} = 1 \text{ nm}$

(7.6 nm with 2.2 µm light)

Conclusions

- Middle approach is distinct from IOTA design and overcomes shortcomings of IOTA design.
- Storage ring properties are critical.
- Incoming $\beta_x & \eta_x$.
- IBS at 10 μA (500 pm x & y)
- Round beam necessary
- Should add coupling resonance studies to machine studies.
- New 5.6.3 based CHESS-U 1 GeV lattice in works
- 2 or 3 times ε_x acceptance @ 0.8 µm light.
- colossal σ_p acceptance (although no σ_p damping)