

Demonstration of DA Optimization via RDT Minimization in tao

Michael Ehrlichman

Introduction

- Recall: Summation and PTC methods of RDT calculation implemented and vetted in tao.
- Recall: This work driven by general tao development and need to optimize OSC lattice.
- These slides show RDT minimization works to optimize DA, then shows OSC results.

Optimization Steps

- 1) Use chromaticity response matrix (CRM) to find least squares solution to set chromaticity to +1, +1.
- Use tao to minimize weighted sum of 7 geometric RDTs and 3 ADTS terms.
- Weighted boundary for sextupoles
- A good solution requires about ~1 hour of CPU time.
- Experience so far: "drilling away" with lots of CPU time has not yielded useful improvements

CHESS-u 5.6.2

- Sext mirror symmetry
- Comparable to existing "2 stage method" results
- Demonstrates this technique works.
- For scaling:
- $\epsilon x = 30.65 \text{ nm}$
- $\epsilon y = 30.65 pm$

OSC ambi-40cm

For scaling

$$\epsilon_x = \epsilon_y = 5.6 \text{ nm} / \text{sqrt}(2) = 4 \text{ nm}$$

ı—	arges:	t Sext K2
E	18E	.889E
SEX_2	26W	5.338E+01
Ξ	34W	. 223E
Z	34E	.077E
Ξ	26E	.057E
,E	12W	.895E
,E	40E	.614E
,E	32E	.290E
Z	20W	.273E
Ë	'38E	.582E

Going Forward

- Optimizing summation RDT terms in tao is one method for reliable, fast method for optimizating DA in CHESS-u lattices
- tao/PTC w/ lattice hybridication in the works.
- Higher orders.
- Optimization w/ Fringes, Undulator Fields
- Potentially Faster (for higher orders)
- ambi-20cm OSC bypass is in the works
- Many strikes against ambi-40cm: marginal TTOSC acceptance, eyebrow raising bend radiation, daunting sextupole strengths, doubtful DA.
- Techniques have been implemented and ready to apply:
- Bypass depth setting w/ correct lattice floor locations for closure
- OSC K1 strengths for EOC & TTOSC operation.
- OSC K2 strengths for optimizing nonlinear TOF.
- CESR Matching.
- CESR K2 strength optimization to compensate OSC nonlinearities & optimize