Alexander Mikhailichenko, Jan 52018

UNDULATORS FOR OSC (1)

Variant 1: WIDE CHAMBER

Variant 2: SEPARATE CHAMBER

ZOOMED...

TWO ORIENTATIONS OF BYPASS- INSIDE OR OUTSIDE...
U1W

KICKER

Inside allocation might give some relief for design of crotch

Numbers in meters from center of Q49

Two types of undulators are possible: the planar one and the helical one

In planar undulator the odd harmonics only have nonzero intensity in straightforward direction In helical undulator the first harmonic only has nonzero intensity in a straightforward direction;

$$
\begin{aligned}
\lambda_{\text {planar }}^{n} \cong & \frac{\lambda_{\text {Uplanar }}^{1}}{2 \gamma^{2} n} \cdot\left(1+K^{2} / 2\right) ;
\end{aligned} \quad \lambda_{\text {helical }}^{n} \cong \frac{\lambda_{\text {Uhelical }}^{1}}{2 \gamma^{2} \cdot n}\left(1+K^{2}\right), \quad n=1,2, \ldots .
$$

When the energy is higher, period of undulator should be bigger or amplifier should work at higher frequency;
Dependence on the K-factor is favorable for a helical undulator;

$$
K \leq 1, \gamma \approx 800(\text { for now })
$$

$\mathrm{Cr}: Z n S e$

$\mathrm{Ti}: \mathrm{Al}_{2} \mathrm{O}_{3}$

So, two wavelengths are:

$$
\lambda_{\mathrm{T}: \mathrm{AlO}} \approx 750 \mathrm{~nm} \quad \text { and } \quad \lambda_{\mathrm{Cr}: Z \mathrm{ZnSe}} \approx 2500 \mathrm{~nm}
$$

With $K \approx 1, \gamma \approx 800(400 \mathrm{MeV})$ this yields:

$$
\begin{array}{ll}
\lambda_{\text {Uplanar }}^{T i: A l_{2} O_{3}} \cong 0.64 m ; & \lambda_{\text {Uplanar }}^{\text {Cr:ZSe }} \cong 2.13 \mathrm{~m} \\
\lambda_{\text {Uhelicalr }}^{T i: A l_{2} O_{3}} \cong 0.48 \mathrm{~m} & \lambda_{\text {Uhelical }}^{\text {Cr:ZSe }} \cong 1.6 \mathrm{~m}
\end{array}
$$

With $K \approx 1, \gamma \approx 600(300 \mathrm{MeV})$ this yields:

$$
\begin{aligned}
& \lambda_{\text {Uplanar }}^{T_{i: A l} l_{2} O_{3}} \cong 0.36 \mathrm{~m} ; \\
& \lambda_{\text {Uhelicalr }}^{T i: A l_{i} O_{3}} \cong 0.27 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{\text {Vplanar }}^{\text {Cr:ZnSe }} \cong 1.2 \mathrm{~m} ; \\
& \lambda_{\text {Uhelical }}^{C r: Z n S e} \cong 0.68 \mathrm{~m}
\end{aligned}
$$

PLANAR UNDULATOR

$\lambda_{U} \cdot\left(1+\frac{K^{2}}{2}\right)$
--keep constant, while tapering at the edge with $K=1 / 4 ; 3 / 4 ; 1$

CROSS SECTION SCALED VIEW

More detailed view...

Field elevation \rightarrow

First integral

Field elevation across the pole apart from center

Current density is
$2.5 \mathrm{~A} / \mathrm{mm}^{2}$;
1kA total;
$\mathrm{K} \approx 1.15$

Central region zoomed...

HELICAL UNDULATOR

Could have an option to be tilted

Dipole mode
$\lambda_{\mathrm{U}}=35 \mathrm{~cm}$
$\mathrm{I}=3+0.75 \mathrm{kA}$ (total)

For current density $15 \mathrm{~A} / \mathrm{mm}^{2}$, the cross section comes to be

Area $\approx 250 \mathrm{~mm}^{2}$

HELICAL UNDULATOR IN A QUADRUPOLE MODE

The same as in previous slide, but without painting the boundaries...

Period of helix $=35 \mathrm{~cm}$

20 kG in few places...

Planar dipole undulator is a no risk option (design and construction)

Helical dipole undulator is the same

Smallest operational energy of CESR is a decisive parameter...
Drawings could be made in one month after the final version is chosen

THE END

Titanium Sapphire $\mathrm{Ti}^{\mathbf{3 +}}: \mathrm{Al}_{2} \mathbf{O}_{3}$

