

SW OSC Lattice with Nonlinearities

Jim Shanks

2017.10.17

2017.10.17

Overview

- Start with SW 500MeV OSC lattice, based on present-day layout
- Technically two lattices—one without CCUs, and one with 2 CCUs
- With-CCU lattice has local optics modifications to account for distortion from undulators
- Check two sextupole distributions:
- Start with basic 2-family sextupole distribution (chromaticities approx. unity)
- Optimize from 2-family using RDTs only (new Tao implementation of Bengtsson)
- For each scenario, check frequency map analysis (FMA)
- See next slide for overview of method

Frequency Map Analysis

Method:

- Scan starting amplitude through x/y plane or x/δ plane
- Track for 2048 turns
- FFT first and last 1024 turns; compute tunes
- Plot tune shift as color scale: $dQ = \log_{10} \sqrt{\Delta Q_x^2 + \Delta Q_y^2}$
- Multiple representations of data:
- Plot tune shift vs. $x/y \rightarrow dynamic aperture (DA)$
- Plot tune shift vs. $x/\delta \rightarrow$ momentum aperture (MA)
- Plot tune shift vs. tunes from first 1024 turns \rightarrow tune footprint
- Primary questions:
- Are the DA and MA sufficiently large?
- Is the tune footprint reasonable?
- For today, focus mostly on DA, and in particular, horizontal DA

2016.06.17

2-fam, no multipoles or CCUs

2017.10.17 4

NOTE: North Arc (10w-10e) multipoles only

2017.10.17 J

Accelerator-based Sciences and 2-fam, with multipoles, 2 CCUs Education (CLASSE)

2017.10.17 0

Comments

- For 2-tamily sextupoles, DA looks fine up to including multipoles*
- remaining 1/6 of the ring will significantly affect the results. to a typo in the input file. However, I do not believe the *note: only 10w:10e multipoles were included in this test, due
- Including the 2 CCUs at 7-8W drastically impacts DA
- A better sextupole distribution may improve matters
- Next step: optimize from 2-family distribution, using new Tao-based RDTs (Bengtsson)
- Note: Because Bengtsson is analytic, only elements with a true contributions directly! b2 or b3 multipole are included—there is no method presently implemented in Tao which would account for the undulators'

RDT-optimized; no multipoles or CCUs

Somewhat expected result—DA/MA already looked good with 2-family

Almost no difference in DA or MA

2017.10.17 ∞

Compare to slide 5 (2-family, with multipoles, no CCUs)

Almost no difference in DA or MA

RDT-optimized; with multipoles, 2 CCUs

2017.10.17

Compare to slide 6 (2-family, with multipoles, 2 CCUs)

Almost no difference in DA or MA

Comments

- New sextupole distribution doesn't really change matters
- Not terribly surprising. The starting point for 2-family without IDs already incorporate IDs into the optimization looks pretty good; the only way we'll make an improvement is to
- Including IDs in optimization will require PTC
- MPE has started looking at RDTs in PTC; still needs some work to get this implemented in Tao. Perhaps before end of 2017?