Multiple scattering in injection channel

$$
\begin{aligned}
& \phi_{r m s}=\left\langle\phi^{2}\right\rangle^{1 / 2}=\frac{21 M e V}{E} \sqrt{\frac{t}{X_{0}}} \\
& X_{0}(\text { helium })=4.8 \times 10^{3} \mathrm{~m} \quad t=1 \mathrm{~m} \\
& X_{0}(\mathrm{Be})=353 \mathrm{~mm} \quad t=0.075 \mathrm{~mm} \\
& \sigma^{\prime}=\phi_{r m s}=\sqrt{\frac{\epsilon}{\beta}} \quad \epsilon=\phi^{2} \beta \\
& \text { At } 300 \mathrm{MeV} \\
& \phi_{r m s}=1.4 \times 10^{-3} \rightarrow \epsilon=(40 \mathrm{~m}) \phi^{2}=8 \times 10^{-5} \mathrm{~m}-\mathrm{rad}
\end{aligned}
$$

If $\beta=5$ at the injection point then

$$
\epsilon=9.8 \times 10^{-6} \mathrm{~m}-\mathrm{rad}
$$

And $\sigma=\sqrt{\beta \epsilon}$

$$
\beta=5 \rightarrow \sigma=7 \mathrm{~mm}
$$

