Test of Optical Stochastic Cooling in CESR

September 1, 2017

 $\Delta S = 2mm$

bypass

Undulator

$$\begin{split} K &= \frac{B_0 e}{m_0 c} \frac{\lambda_u}{2\pi} = 93.36 \ B_0 \lambda_u \quad \text{(B}_0 \text{ in T, } \lambda_\text{u} \text{ in m)} \\ \lambda &= \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \theta^2 \gamma^2 \right) \end{split}$$

Example

 $B_0 = 750 \text{ G}$ $\lambda_u = 0.4 \text{ m}$ K = 2.8

$$E = 0.5 \text{ GeV} => \gamma = 1000 => \lambda = 1 \ \mu \text{m}$$

L3 bypass

Components of OSC experiment

- Delay bypass beam line
 - Delay electron beam by about 2mm/c to compensate for time delay of optical amplifier and
 - Couple transverse phase space to longitudinal position to enable cooling
 - Tolerances consistent with optical wavelength (~1 micron)
- Low energy (<0.5 GeV) operation of CESR
 - Lattice design
 - \circ Injection
 - Power supply stability, quads and dipole
 - o Undulators
 - o IBS
- Demonstration of interaction of radiation from pickup undulator with radiation in kicker as a function of delay
 - Detector?
- Optics and optical amplifier amplifier
- Demonstration of cooling

Some questions that require new modeling tools

- What is the optical error tolerance of the delay bypass?
- What are the alignment tolerances?
- What is the intensity of the radiation for the relatively low bunch charge that we expect to circulate?
- What is the optimal wavelength for the optical radiation?
- What is the optimal undulator magnetic field?
- What kind of signal do we expect to see?
- Is there sufficient mixing?
- What is the optimal emittance, energy spread, bunch length?
- Gradient undulator or dipole undulator?

It is essential that we demonstrate the efficacy and tolerances of our design in simulation

=> Code for modeling radiation and absorption by electrons

CESR TA configuration

Beam Energy [GeV]	0.5	(Δp/p) _{max} X 10 ⁻⁴	3.7 (n _s = 1.85)
ε [nm-rad] (radiation)	0.5	Wiggler period [m]	0.43
(Δp/p) X 10 ⁻⁴	2.01	Wiggler peak field [T]	0.07
Radiation damping times [s]	2.9/1.4	OSC Undulator parameter [K]	2.8
B _{max} (Damping Wigglers) [T]	0.5	Radiation wavelength λ [nm]	1130
Chicane delay [mm]	2.0	Particles/bunch	2 X 10 ⁹
R ₅₁ /R ₅₂ /R ₅₆ X 10 ⁻⁴	3.7/-7.2/24.4	Bunch length [mm]	10
ε _{max} [nm-rad]	16 (n _x = 32)	OSC cooling time τ_x/τ_z [sec]	3.5/0.5

L3 bypass

CESR TA configuration

Schedule

Activity

Start date

1.	Lattice design	9/17
2.	Bypass optics design -	10/17
3.	Develop code and simulate cooling 60 days	10/17
4.	Test of low energy operation of CESR	12/17
5.	Bypass line magnet design -	1/18
6.	Pickup/kicker undulator design	1/18
7.	Bypass line vacuum component design	4/18
8.	Second test of low energy operation	4/18
9.	Bypass line engineering design -	6/18
10.	Undulator engineering design	6/18
11.	Undulator fabrication	10/18
12.	Bypass line magnet fabrication	10/18
13.	Bypass line vacuum fab	11/18
14.	Fabricate support stands for bypass	1/19
15.	Design optical amplifier	1/19
16.	Test low energy optics in CHESS-U configuration	4/19
17.	Design optical detector to measure interference	5/19
18.	Installation of delay bypass	7/19
19.	Commission bypass and demonstrate interference	12/19
20.	Install optical amplifier and laser and detector	1/20
21.	Demonstrate cooling (machine studies)	4/20

CHESS U 750 MeV

10 chess U undulators at 0.95T 750 MeV Damping time 0.72 sec Emittance 52 pm V_RF=0.6MV => sigma_l=8.1mm

CHESS U 750 MeV

10 chess U undulators at 0.45T 300 MeV Damping time 8.3 sec Emittance 6.5 pm V_RF=0.6MV => sigma_l=2.2mm

Formalism not explicitly dependent on charged particle type