Alexander M, Feb. 92018
Feb. 162018

ESTIMATION OF IBS AT CESR AT 500 AND 300 MeV (II)

Emittance growth defined by [see CBN 03-11 for details]

$$
\frac{d \boldsymbol{\varepsilon}_{x, y}}{d t} \cong\left\langle\left(H_{x, y}+\frac{\boldsymbol{\beta}_{x, y}}{\gamma^{2}}\right) \frac{d(\boldsymbol{\Delta E / E})_{t o t}^{2}}{\boldsymbol{\jmath}}\right\rangle-2 \boldsymbol{\alpha}_{x, y} \boldsymbol{\varepsilon}_{x, y},
$$

where dispersion invariant defined as

$$
H_{x, y}=\frac{1}{\boldsymbol{\beta}_{x, y}}\left(\boldsymbol{\eta}_{z, y}^{2}+\left(\boldsymbol{\beta}_{x, y} \boldsymbol{\eta}_{x, y}^{\prime}-\frac{1}{2} \boldsymbol{\beta}_{x, y}^{\prime} \boldsymbol{\eta}_{x, y}\right)^{2}\right),
$$

$\eta_{x, y}$-are dispersion functions. Partial decrements $\alpha_{x, y, s}$ defined as $\alpha_{i}=\frac{J_{i}}{2 \tau_{s}}$, where $J_{x} \cong 1, J_{y}=1, J_{s} \cong 2, J_{y} \nmid J_{s}=3$.
Partial decrement for energy spread is the same as for the emittance.
The rate of energy spread growth includes additive component from IBS .

$$
\frac{d(\boldsymbol{\Delta} E / E)_{I t t}^{2}}{d t}=\frac{d(\Delta E / E)_{I B S}^{2}}{d t}+\frac{d(\Delta E / E)_{r}^{2}}{d t}-\boldsymbol{\alpha}_{s}\left(\frac{\Delta E}{E}\right)^{2},
$$

INTRA-BEAM SCATTERING

Collisions inside moving bunch equalize temperature; the same processes responsible for the shortening of a beam lifetime.

The temperature of electron gas can be expressed as the following

$$
\frac{3}{2} N k_{B} T \cong N \cdot m c^{2} \gamma\left[\frac{\gamma \varepsilon_{x}}{\beta_{x}}+\frac{\gamma \varepsilon_{y}}{\beta_{y}}+\gamma\left(\frac{1}{\gamma^{2}}-\langle\psi\rangle\right)\left(\frac{\Delta p_{\|}}{p_{0}}\right)^{2}\right], \quad \psi=\frac{\gamma}{l} \frac{\partial l}{\partial \gamma}
$$

Longitudinal part of temperature has this form because the longitudinal mass is

$$
\frac{1}{m_{\|}}=\frac{1}{m \gamma}\left(\frac{1}{\gamma^{2}}-\alpha\right), \alpha=\left\langle\frac{\gamma}{l} \frac{\partial l}{\partial \gamma}\right\rangle, \alpha=\langle\psi\rangle
$$

For values as

$$
\begin{gathered}
\beta_{x, y} \cong 10 m, l_{b} \cong 1 \mathrm{~cm}, \Delta p / p \cong 5 \cdot 10^{-4}, \gamma \varepsilon_{s} \cong 310^{-4} \mathrm{~cm} \cdot \mathrm{rad}, \gamma \varepsilon_{y} \cong 3 \cdot 10^{-6} \mathrm{~cm} \cdot \mathrm{rad} \\
\left|\frac{3}{2} k_{B} T\right| \cong m c^{2} \gamma\left|3 \cdot 10^{-7}+3 \cdot 10^{-9}-4 \cdot 10^{-11}\right| .
\end{gathered}
$$

One can see that the longitudinal temperature is the lowest one and it is negative above the critical energy (for CESR $\alpha \approx 0.011 \rightarrow \gamma_{c r} \approx 10$).
Other important moment is that during equalizing the vertical emittance becomes rising even without coupling associated with imperfections of magnetic structure.
In a moving frame, the velocity of transverse motion is dominant and the speed of diffusion can be expressed by simple formula

$$
\frac{d p^{\prime 2}}{d t^{\prime}}=\frac{4 \pi e^{4} n^{\prime} L n_{C}}{v^{\prime}}
$$

where $L n_{C}=\ln \frac{a_{\max }}{a_{\min }} \cong \ln \sqrt{\frac{\left(v^{\prime} / c\right)^{6}}{4 \pi r_{0}^{3} n^{\prime}}}$ is Coulomb's integral, n^{\prime} is the density in the moving frame, v^{\prime} stands for speed of transverse motion in moving frame. Transforming in the Lab frame

$$
\frac{d\left(\Delta p_{\|} / p\right)^{2}}{d t} \cong \frac{d(\Delta E / E)^{2}}{d t}=\sqrt{\frac{2}{\pi}} \frac{L n_{C} N r_{0}^{2} c}{\gamma^{3} \varepsilon_{x} \cdot \sqrt{\varepsilon_{y} \boldsymbol{\beta}_{y}} \sigma_{s} \cdot \sqrt{1+\frac{\left.\eta \Delta p_{\|} / p\right)^{2}}{\boldsymbol{\varepsilon}_{x} \boldsymbol{\beta}_{x}}}} .
$$

For simplest FODO structure solution of this equation can be expressed as

$$
\varepsilon_{x} \cong l \cdot\left(\frac{N r_{0}^{2} c \tau_{x} L n_{C}}{4 \kappa_{0} \gamma^{3} \sigma_{s} R^{2}}\right)^{0.4}, \quad(2 l-\text { is period of FODO })
$$

where coupling $\kappa_{0}=\sqrt{\varepsilon_{y} / \varepsilon_{x}}$ defined the the square root of emittance ratio. In some publications under this name now in use the square of this value.

So the IBS generates coupling what is

$$
\boldsymbol{\kappa}_{I B S}^{2} \cong \frac{\left\langle\boldsymbol{\beta}_{y}\right\rangle}{\gamma^{2}\left\langle H_{x} \cdot \sqrt{\frac{1}{\boldsymbol{\beta}_{y}}}\right\rangle} .
$$

For FODO structure this can be estimated as $\kappa_{I B S} \cong \frac{R}{\gamma l}$. Geometrical coupling defined by rotation of quads by random angle within amplitude ϑ_{0}. So resulting coupling coefficient comes to

$$
\kappa^{2}=\kappa_{0}^{2}+\kappa_{I B S}^{2} .
$$

For vertical emittance

$$
\varepsilon_{y} \cong\left(\frac{N r_{0}^{2} c \tau_{x} L n_{C}}{4 \gamma^{3} \sigma_{s} R^{2}}\right)^{0.4} \gamma \cdot l \cdot\left(\kappa_{0}^{2}+\kappa_{I B S}^{2}\right)^{0.8}=
$$

$$
=\left(\frac{N r_{0}^{2} c \tau_{x} L n_{C}}{4 \gamma^{3} \sigma_{s} R^{2}}\right)^{0.4} \gamma \cdot l \cdot\left(\vartheta_{0}^{2} 2 \pi R l^{1 / 4}+\frac{R^{2}}{\gamma l^{3 / 4}}\right)^{0.8} .
$$

After reminding these formulas, on the next page there are results of numerica calculations. CESR approximated just by regular structure. Numerical calculation carried with beta functions corresponding the regular structure.

This slide reminds that calculations carried just with regular part of CESR

LIFETIMES, sec

EMITTANCES cm x rad

EmITANCES 50OMeV

TABLE FOR ALL ABOVE

* TUSHEK_OSC										
$9 \text { Cols }$ 10 Rows	$\square \square$ Current, mA	$\begin{array}{ll} \mathrm{c} & \square \\ \mathrm{Zl}, \mathrm{~cm} \end{array}$	C \square Lifetime, sec	C) \square ex, cm-rad x e7	C \square ez, cm-rad x e10	$\begin{gathered} \square \\ \mathrm{Zl} 500, \mathrm{~cm} \end{gathered}$	Lifetime 500, sec	ex500, cm-rad x e7	ez500, cm-rad x e10	\pm
1	0.01	0.63	3154571	566.34	143.98	0.501	1259831	214.81	19.8	
2	0.02	0.71	2082425	719.05	182.75	0.56	803185	272.83	25.14	
3	0.03	0.76	1648384	826.76	210.1	0.605	627709	313.77	28.91	
4	0.04	0.799	1404929	912.81	231.94	0.636	529597	346.47	31.93	
5	0.05	0.83	1241752	985.63	250.45	0.661	464029	374.16	34.48	
6	0.06	0.86	1125202	1049.45	266.64	0.682	417987	398.44	36.71	
7	0.07	0.88	1034873	1106.66	281.14	0.7	382954	420.16	38.72	
8	0.08	0.9	964908	1158.68	294.35	0.717	355407	439.96	40.54	
9	0.09	0.92	905094	1206.6	306.51	0.731	332798	458.17	42.22	
10	0.1	0.936	856710	1251.08	317.82	0.745	314062	475.1	43.78	-
0 Selected										\bullet

Current in mA
ZI, cm - bunch length @ 300 MeV
ZI 500,cm - bunch length @ 500 MeV
Ex, cm-rad xe7 -emittance in $10^{-7} \mathrm{~cm}$ xrad @ 300 MeV Ex500, cm-rad x e7-emittance in $10^{-7} \mathrm{~cm} x$ rad @ 500 MeV

Addendur
0
0.01
0.02
0.03
0.04
Current (mA)

0.1		

- ε_{x} increases $2589 \times$ SR emittance.

Beam parameters from radiation calculation:

emit_a	$: 1.41 \mathrm{E}-011$	
emit_b	$: 1.07 \mathrm{E}-013$	
sigmaE_E	$:$	$2.93 \mathrm{E}-004$
sigma_z	$:$	$1.73 \mathrm{E}-003$

User-adjusted beam parameters at zero current: emit_a
: $\quad 1.41 \mathrm{E}-011$

$$
\text { emit_b } \quad: \quad 1.00 \mathrm{E}-010
$$

$$
\text { sigmaE_E } \quad: \quad 2.93 \mathrm{E}-004
$$

$$
\text { sigma_z }: 1.73 \mathrm{E}-003
$$

Beam parameters at full current with IBS:

$$
\text { emit_a } \quad 3.65 \mathrm{E}-008
$$

因 TUSHEK_OSC										
${ }_{10 \text { Rows }} 9 \text { Cols }$	G \square Current. mA	$\begin{array}{ll} \square \\ 71 \\ 7 \end{array}$						- \square ex500 cm-rad x e7	[ez500, cm-rad x e10	-
1	0.01	0.63	3154571	566.34	143.98	0.501	1259831	214.81	19.8	
2	0.02	0.71	2082425	719.05	182.75	0.56	803185	272.83	25.14	
3	0.03	0.76	1648384	826.76	210.1	0.605	627709	313.77	28.91	
4	0.04	0.799	1404929	912.81	231.94	0.636	529597	346.47	31.93	
5	0.05	0.83	1241752	985.63	250.45	0.661	464029	374.16	34.48	
6	0.06	0.86	1125202	1049.45	266.64	0.682	417987	398.44	36.71	
7	0.07	0.88	1034873	1106.66	281.14	0.7	382954	420.16	38.72	
8	0.08	0.9	964908	1158.68	294.35	0.717	355407	439.96	40.54	
9	0.09	0.92	905094	1206.6	306.51	0.731	332798	458.17	42.22	
10	0.1	0.936	856710	1251.08	317.82	0.745	314062	475.1	43.78	
0 Selected	1									\checkmark

