1 Optical Cooling

Consider optical stochastic cooling using dependence on transit time through the bypass to couple transverse
and longitudinal phase space in the pickup to phase in the kicker. The packet emits radiation in the pickup
undulator that will arrive in the kicker with some relative phase ¢ = kAs, where k is the wavenumber of the
characteristic undulator radiation and As = s — sq is the change in path length through the bypass. The
interaction of the packet with the radiation in the kicker shifts its energy by

Ap/p = Esin(@) = Esin(kAs). (1)

In order to effect cooling, the phase is necessarily correlated with the phase space coordinate of the packet
in the kicker, ¢(Z,). That is, the phase depends Z,. The linear dependence of As on &, is written

As = Msyxp, + Msox, + Msez, (2)

where M is the 6X6 transfer matrix from the center of the pickup undulator to the center of the kicker.
Since x = x5 + z, and 2’ = x; + x| equation 2 becomes

AS = M51(I5 + Z‘e) + M52(I23 + e'e) + M562;
As = M51],‘5 + +M52.13/ﬂ + (M5177 + M52’l7/ + M56)ZI/7 (3)

Next we write phase space coordinates at the pickup in terms of betatron amplitude and phase

Tpg = ar/Bpcost

oy = : a0y o8 — —— sin ¢ (4)
B 2 /ﬁp /ﬁp
= —L(ap cos 6 + sin 0) (5)
v Bp
and likewise at the kicker for future reference
Tpg = av/Prcos(d+ @) (6)
/ a .
Tpg = *\/ﬁ(ak(msw + ¢) +sin(6 + ¢)) (7)
Then
o, cos B + sin 6 , o, cos6, +sinf,
As = a(Ms \/Ecos 0) — MSQ(Z)\/E)) — a,(Ms1m + Msan' + Msg) (@ NGE )) (8)
As = Agsin(0; + 0.0) + A, sin(0, + 6,9) (9)
where
Aw = Qg [Mglﬁx + M5227w - 2M51M52ax] 1z (10)
A, = a.(Msin+ Mson' + Msg)y. (11)
2 Cooling

The cooling is quantified as the change in the invariant amplitude due to interaction of packet with radiation
in the kicker undulator. At the kicker Azyg = —nAp/p and Azj 5 = —n Ap/p. And Az, =0, Az, = Ap/p.

If = az+/By cos ¢y, Or 2 = az/B, cos ¢, then the amplitude

a2 = Ba'* + ya? + 20ma’



Ae; = 2a;Aa, = _2(Ap/p)(5m$;cﬁ77;: + YaTrpMe + ax(xkﬁn;c + xﬁcﬁnk)) (12)

, Qv cos 6 +sinf
Aer = —2(Ap/P) (Ve + aan)V/ Br cos b — (Bary, + i (—— =)
azny, sin 0

Ae, = _2(Ap/p)((7x77x + Oélefg - 049077/ - 3 )\/ﬂixcose - (ﬁxn; + %Uk)(\/?)

Ber = —2Ap/o)(=cost = (B + ) )

= —2(Ap/p)E,sin(0up + ) (13)

where

B et £ 204677’77)1/2
B B
(> + Bn'* + 2an'n)/?

E, = (

and

Ae, =2a,Aa, = 2(Ap/p)(B.z; + azz) (14)
= 2(Ap/p)a.(—+/B-(a. cosb, +sinb.) + a.+/Bcosb.)

= —2(Ap/p)a.+\/B.sinb,
= —2(Ap/p)E,sinb,

Combining equations 1 and 12 we find

A, = —2(Esin(kAs)) ((Bathsly + VoTrpne + Ca(Trpn), + Thpmi)) + (B22; + a22)) (16)
—2¢sin(kAS))(Ey sin(0zx + 02c)) (17)
—2&sin(k(Ag sin(Oyp + 0g¢) + Az sin(b., + 0.1)) (Ey sin(yp + 0ic)) (18)

Now let’s average over all betatron phases

27
/ A€, db,do, —2¢ / sin(k(Ag sin(bzp + 0zt) + Az sin(b.p + 0.1) ) (Ey sin(bzr + 02c))d0:db,  (19)
0

—2¢ / sin(k(A, sin(6,,) + A, sin(0, + 0,4))(E, sin(0, + 0o + 0z — 04¢))db,.d0. (20)

where we use the fact that thet betatron phase advance from pickup to kicker is 0, that is 0,1 = 0, + 09
Then

(Ae,) = —28E, / [sin(k(A, sin(6,)) cos(kA, sin(0, + 0.4))+ (21)
cos(k(A sin(8;)) sin(kA, sin(0, + 0,+))] (sin(0, + 0 + O0zc — 0¢))d0,.d0, (22)
We will use the Bessel integral

In(z) = 1 /O7T cos(nt — xsin(r))dr = 1 /OW (cos(nT) cos(zsin ) + sin(nt) sin(zsin 7)) dr

T T
To be checked but it looks like, using the Bessel integral

(Ae) = —SE (kA Jo(kAL) (23)

™



In that limit where kAs < /2, and with substitution of equation 2 into 16 we have
Ae, = —2(Ek(Msimp + Mspx, + Mse2,,) (Betiam, + YaTrsne + u(Trany + Thatk)) (24)

We compute the average change in the emittance (Ae,) where the average is over betatron phase. Substi-
tuting Equations 4-7 into 24 and averaging over betatron phase (see Appendix for details)

2
(Aez) = —QWfk%(Mm <—\/ BpBi sin ¢, + \/?Z%(COS ¢ — ay sin ¢)> (25)

+Ms9 L —=n).(cos ¢ + apsin @) + 1 N (sin (1 + agay,) + cos d(o — ) (26)
ﬁp ﬁkﬁp

Consider a couple of special cases. If the phase advance ¢ from pickup to kicker is ¢ = 7 then

(Aey) = —27r.£k (M51 (—\/gnk> —|—M52< \/> 1/ 77kCOS¢ )))

and if the optics are symmetric so that 8, = By, ar = —ap, M = MM, = —1;, then

2
<A€T> = 27T§k%(M51’r] =+ M52 (77;C + % COS ¢(20¢k))

3 Sample Lengthening
As noted above, cooling requires that the change in path length be less than the optical wavelength, As < A.

Substitution of Equations 4 and 5 into the expression for the change in path length 3
The average change in path length is of course (As) = 0. The mean square change in path length is

v
((As)?) = 5 (a®(M3, By + MZyy — 2Ms51 Msaar) + aZ(Msin + Mson' + Mse)*vz)) (27)

a? and a? are the horizontal and longitudinal emittances respectively. Particles with amplitudes within one
standard deviation of the emittance will be cooled if /((As)2)) < A.

4 Damping

The matrix that maps from kicker to pickup is My, and from pickup to kicker M. At the kicker

0 00 0 0 0O 0 0 0

I N . _loo o0 o o o0 0 0 |.

AT=1 o | =MMIy =\ o o ol | My M 0 M|
Ap/p 0 0 ¢ 0 0 0 0 0

where &), is the phase space vector in the pickup. Then the effect of a single turn is
a_l/:k’nJr] = MpkMkpfn + AT = (MeMl + Mpk)Mk:pfk,n = T{)_S’k’n (28)

The full turn matrix at the kicker is
T=AM+M

where

AM = M,.M;My,
M = MMy,



Compute the eigenvectors (7;) and eigenvalues of M. We know how to do this since we have standard
methods for diagonalizing a symplectic matrix. (The eigenvalues are A\X = e*#+ and A} = e*=) where y,
and p, are the horizontal and longitudinal tunes.) Then in the limit where AM is small, (it clearly scales
with kogjk) the shift in the eigenvalues (tunes) is given by

AN ~ T (AM)7;

An imaginary component will correspond to damping.

4.1 Pickup to Kicker matrix

Next to work out the matrix M, that maps pickup to kicker. We can write
Apr By,
M _ D D
ph (Cpk D,,k>
And

The symplectic condition requires that

ASAT + BSBT = §
ASCT + BSDT = 0
CSAT + DSBT = 0
csct+ pspT = §

from which we can conclude that
B = ASCT(DT)"'s

For simplicity we suppose oy, = a3 = 0. Then

COS fz [ SIN iy
Apk = _sinp, Cos i
B. @
N 1 Msg

B . COS [y Bz sin puy 0 1 Ms1 0 1 0 0 1
Pk = —5";3% COS [hz -1 0/ \Mso 0) \—Ms 1 -1 0
o COS [hg Bz sin g Mss O 0 1 _ [ COSHg B Sin fig 0  Mso (29)
R ELLLV/E S ~Ms1 0) \—1 —Mss)  \—F=  cospy, 0 —Ms

x x

where 4, is the phase advance from pickup to kicker. We assume 3, = B. If 0, = 1, and n;, = 1, = 0 then

Bpr = (I —Apk) (8 g)

then from 29

_ _ 0 n\ _ 0 Mso

Bpe = (I~ Apr) (O n’>_Apk (O —M51)
_ 0 n 0 M,

AN - Ap) (0 n,)=(0 _Aj;)

_ 0 n 0 Ms

el (1 )



Evidently Ms5; and dispersion are dependent and the product of dispersion and Ms5; in Equation 11

_ M,
nMsy +n'Msy; = (Msy Mss) (7777’> = (Ms1 Ms) Apkl(I* Age) (—]\zl>

Not sure what we learned with the above but at least now I know how to write the full turn at the pickup
and the kicker, that is assuming they are the same, and neglecting RF.

CSAT + DSBT = 0— C=-DSBT(AT)"'S

- () E e
co o s

co— _ n cosp  ysinp 0 1\ _ (n n'\(—vysinp cosp
- 0/) \—Qsinp cospu -1 0] 0 0 —cosp  —fsinp

(777 sinp+1n'cosp  —ncosu+n'B sinu)

o3

0 0
0
S )
M = , "
non (AT)—ls 1 Msg
0 0 0 1
The coupling matrix
0 0 —
T n _ QAT Ul
m+n' = (0 77/>+ SA (0 77)
— 0 7 To (0 nY\ _ 1, (0 7
_ (0 n,>+SA 5(0 n,)—(I+A )(O "
o = m+nt

tr(A — D) + |m + nt|
The eigenvectors of the rotation matrix are v = ( ilz) with eigenvalues e=**. It appears that

U = VMV = Ry, p.) =G 'VIMVG
Then the eigenvalues of M are

m; = VG — A\ =0 GTVTAMV Gy,
_ aar (v —(CHTN [0 0 QAN G
= 'Ui G <C v Ml M,,‘ —CT ~y GUZ

_ AT AT (Y —(CT)T 0 0 =
B viG (C 0 Ml’Y—MrCT Mlc+'yMr GUZ

The eignvectors of the full turn matrix are

<y
Il

5 Generalized kicker parameters

At the kicker Axgg = —nAp/p and Azj 5 = —n; Ap/p.The action

a’? = ﬂx’Q +yz? + 20xa’



2aAa = —2Ap/p(Bxygmy, + vTrenk + a(zrsn), + ThaMk)) (30)

Now if the phase advance from pickup to kicker is 180 degrees, then x3 = —z,g and xﬁcﬁ = —x;ﬁ and
2a8a = 2Ap/p(Byamy + YEpsii + (Tpay + Tpamk))
= 20p/p (M (Bays + 0ps) + mi(Yaps + 0ay))

=2(Ap/p)a (nk(—\/ﬁsme) T nk(c‘)se—\/gsm@))

6 Cooling

Since Ap/p = £sin(kAs) we have that

2aAa = 2a¢ sin(kAs) (n;(—\/ﬁk sin @) + nk(COSH—aksm@))

VBr

o 3 0
2aAa = 2a€ sin lka <M51«/,8p cosf — M52W_|_sm)>

VB»

(U;g(—\/ﬁiksinﬁ) + nk(cosa_aksme))

VBi

In the limit where kAs < /2, we can write that

Aa=¢ [ka <M51\/@cos0 - M52W\/%Sin9)>] <n,’€(\/@sin0) + nk(cosﬂ\/%ksinﬂ))

B m(ap —ax) | B
Aa) = — ¢k [ Myympy |22 + My | 2222 —2) gy [E
(Aa) 25 ( 1Mk B + Mso ( NN + N 5,;))

If o, = —oy, and B, = Bp

(Aa) = *gfk (Msmk + Mss (2771@;041@) + 772))

7 Longitudinal excitation

While the momentum shift Ap/p is designed to damp the transverse motion, it is apparently adding noise
to the longitudinal. As long as sychrotron and betatron tunes are not related the average momentum shift
will be zero. Not a problem? If Msg is finite then

As = (Ms1n+ Msan' + Msg)d

Ap/p = Esin(k(Msim + Msan' + Mse)d)

and there will be longitudinal cooling if the sign of £ is chosen appropriately. But this in turn will add
uncorrelated noise into the transverse.

8 More general

Suppose the betatron phase advance from pickup to kicker is 6y so that

zrg = a/Brcos(¢+ o)

Thy = —\/% (o cos(¢ + ) + sin(¢ + 0p))



Since

Tpg = a/Ppcos(o)
thy = ——= (aycos(¢) +sin(9))

VB»

we can write

Tpp
acos¢p = P
/By
o
asing = — Bp,@xéﬁ——p Tpp
v Bp

Then

- ﬁ(

/
xkﬂ

cos by + (\/Bpp,3 + —=1pp) sin o
By 0 PBLpp \/67;0 P8 0)
Tpp .
cos@ + (V/Bpphs + —=xps) sinbp) + —2= sin Oy — (\/Bpp¥hz + —=Tps) cos O
< 0 pBLps \/5: pB 0 \/E 0 pBLps \/@ pB 0

Let’s write 2aAa in terms of xpg, 5.

9 Another try

200a = —2Ek(Msyxpp + Msoxy,s) (Brysmy + YTepie + (T + Thamk)) (31)

Then we have terms like

2
(Zprr) = (VPBe <\$/pﬂ£ cos 0o + (\/Bpprpr,s + a—\/%xgﬁ) sin90>>

2

@) = GV ( .

NG cos By + (—+/Bppap +
P

2
(xpar) = %\/ﬁkﬁp(cosﬂo)

) sin By
\/70 )

Next

/ a? LpLpp
<$P‘Tk,3> = <_ﬁ (ak( \/F
P

Qp . LpTps

mexpﬁ)smeo) + 5, sinfo — (v/BppTpryp + ﬂxpxpﬁ)cosﬁo>)
» »

cosfy + (\/ﬁpgxpx;ﬁ—i—

a2
<93p1';€5> - ; VBe ( (\5* cos o + (\/@(*O‘p)+

Qp

\/EBP) Sln 00) \5;; Sin 90 -V /Bp Ofp \/ﬂ—p COS 00)
2
)

<xpx;c,8> = 2 W



Another term

(xhars) = (2hv/Br (%cos&ﬂr( Bpsty,s + \/prﬁ)ﬁna())

2

B 2
(x;ka = %*/51« (\/Oél cos by + (v/Bpsrps — \j%) sin00>
p i

(o) x = ﬁ Br in gy — 0
» kg) = 2\, (sinfy — v, cosbp)

Finally
(T x)s) = —x’i ag( e cosby + (\/Bpptls + —=upp) sinbp) + b sinfy — (\/Bppz,s + —==1xp3) cos by
bl = s (O s v s
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Now we can write Equation 31 Step 1
208a = —26k(Msixpp + Msow,,g)(Bryamy + kst + (Trpn), + Thami))
—28k(Msy (xpBxyn), + Wenkprr + ok (Mrp2r + Nrpz),)) +
Mss (Benixyay, + yemaycr + a(npx,ze + new,ay,))

Step 2
—28k(Ms1 (g, (Brpxy, + axrprr) + Mk (VeTpTr + appry)) +
Mo (g, (Brap, + OéfU;,fEk) + e (W + ax;xz))

Step 3
72§k (M51 (a /BB (g, cos Oy + sin 0011l + e/ BrBy cos 0

e (\/ BBy cos by — 4 | %ak (v cos B + sin 00)%)

+Mso ((1 + agoay) cos by + (ap — ay) sinbyp) %nk + %(Sin B — o cos Oo) v+
\ Pr \/ p

B (1 + agay) cosby + (o — a) sin90)>

1
ar (4| 5= (sin 8y — a, cos 0, + Ny ———
By ? : V/BiBy



Step 4

2
= —2§k%(M51 <—\/ﬁp6k sin Oony, + \/%mc (cosfy — g sin 90))>

1
+Mso ( /&nz(cos 0o + apsinby) + Wnk (sinfo(1 + apay) + (ar — ap) cos 00)>
P kPp

Step 5

2
= —2§k%(M51 (—\/ﬁpﬁk sin Oony, + \/ %nk(cos 0o — oy, sin 90)>

1

+ M5 < /@n;(cos 0o + apsinby) + W%(Sin%(l + agay) + cos by (ay — a,,)))
P kPp

If we have symmetry
2
= —2§k%(M51 (—Bp sinomy, + ni(cos By — ay sinby) + Mso (n}c(cos 0o + apsinby) + %k(sin 0o(1 — a?) + 20y, cos 00)
and if g =7
a2 / Nk
= 25’“3(M517lk + Msamy, + QFOék)
And if 0o = 7/2
2

= —2€k%(M51 (=Bpm, + M (—ou) + Mo (n;(ap) + %((1 — a2))

2aa = =2Ap/p(Bxi sy, + YTrsnk + ok (Thpmy, + Trpnk))



