OSC Updates

Discrepancy in ξ resolved

Error in field calculations

Discrepancy in ξ

Two approaches to modeling OSC:

- average corrected $\langle x \rangle \rightarrow (1-f) \langle x \rangle$ 1) Each turn, each slice of the beam has its
- sqrt[N] corrected $x_i \rightarrow (1-f)x_i + noise proportional to$ 2) Each turn, position of each particle is

Discrepancy in ξ (cont.)

In first picture, we want $f \approx 1$ to correct each slice times revolution time – leads to $\xi \sim 10^{-5}$ each turn – then, damping time is particles/slice

In second picture, pick f to balance cooling and time similar to above, and noticeable shift from regular dampıng tıme heating – leads to $\xi\sim 10^{ ext{-}10}$ – obtain damping

Discrepancy in ξ (cont.)

- In first picture, we correct all particles by the same amount, so $x_i \rightarrow x_i - f < x > = (1-f/N)x_i + noise$ proportional to 1/sqrt[N]
- This models the kick seen by one particle as even the total kick goes down with more particles – not what our device will do in reality being reduced by the presence of other particles

Error in Field Calculations

Derived field of (e K $k_u \gamma^3$)/($\pi \epsilon_0 R [1+K^2/2]$)

Really should be (e K $k_u \gamma^3$)/ $(\pi \epsilon_0 R [1+K^2/2]^2)$

Confirmed by simulating Leonard-Wiechart fields myself

Energy transfer should now be 49 meV

Sloppy Models Updates

Working to reconcile expected lattice distributions with simulated ones

Converting emittance-minimization for use on PISA genetic algorithms

Simulated and Expected Distributions Comparison of

Squares of dot products of ith singular vector in simulated distribution (horizontal) and jth singular vector in expected one (vertical)

Speed of Light Updates

Observed timing shifts

Timing Shifts

- Compare tbt files from two consecutive nights separately timed in
- Shifts in timings are up to 3 units = 30 ps also, the four buttons move together
- Will see what effect this has on orbit reconstruction