Sloppy Models Updates

Revisiting genetic algorithms

Derive distribution of lattices from Jacobian of orbit, dispersion, and coupling

Lattice Distribution from Jacobian

space goes as According to Sethna, probability density of lattices in magnet

$$= \mathcal{C} \exp\left(-\frac{\Omega_{\alpha\beta}\,\theta_{\alpha}\theta_{\beta}}{2} + b_{\alpha}\,\theta_{\alpha}\right),\tag{5}$$

where

$$\Omega_{\alpha\beta} = \sum_{i} \frac{J_{i\alpha}J_{i\beta}}{s_{i}^{2}} - \frac{\delta_{\alpha\beta}}{\sigma_{\alpha}^{2}}, \text{ and } b_{\alpha} = \sum_{i} \frac{J_{i\alpha}d_{i}}{s_{i}^{2}}.$$
 (6)

- Ignore second term (assume measurements di consistent with zero)
- Ω should have same singular directions as our empirical distribution and inverse squares of its singular values

Lattice Distribution from Jacobian (cont.)

- Compute Ω and compare with empirical lattice distribution
- but later ones are typically ~0.2 0.3) most-corrected directions in the two systems are over 0.9, insufficient to understand the other (dot products of first two There is a correlation in their singular vectors, but the one is
- Using Jacobian-based distribution to derive knobs gives worse results than using empirical distribution

Vertical Emittance (m)

mpircal Knobs Distribution Based on

Vertical Emittance (m)

Jacobian **Knobs** Based on Distribution

Vertical Emittance (m)

Distribution Assumption Knobs with Isotropic

Conclusion

More information needed than just the Jacobians with useful knobs

Perhaps affected by use of other magnets and merit functions in initial corrections?

OSC

Can get destructive interference in long (98 period undulator)

Issues with translating this to 3-period undulator

Difference In Intensity in Long Undulator (Interf – No Interf)

Long Undulator, No Interf

Difference In Intensity in Short Undulator (Interf – No Interf)

Short Undulator, No Interf

