

Northern Illinois University

Single Pass Amplifier for a Proof-of-Principle Optical Stochastic Cooling Experiment at IOTA

M. Andorf (*NIU*), V. Lebedev (*FNAL*), P. Piot (*FNAL/NIU*) and J.Ruan(*FNAL*)

> COOL 15 Workshop Sept.28-Oct.2 Thomas Jefferson National Accelerator Facility Newport News, VA

OSC BASICS

bandwidth available for faster cooling. radiation. Same principle as stochastic cooling. Larger Particles made to interact coherently with their parent

beam direction

Wavelength Selection

horizontal and longitudinal planes is Cooling range for the case of equal damping rates in

$$n_s \approx rac{\mu_{01}}{\sigma_P k \Delta S}$$
 $n_x \approx rac{\mu_{01}}{2k \Delta S} \sqrt{rac{D^{*2}}{\epsilon \beta^*}}$ Here k=2 π / λ radiation wavevector, and Δ S is delay in the chicane.

chicane center. ϵ is horizontal emittance. σ_p is rms $\mu_{01} \approx 2.405$, D^{*}, β^* are dispersion and beta function at momentum

crystal. A longer crystal yields higher gain. cooling range. A larger delay allows for a longer A larger wavelength permits more delay for fixed Cr:ZnSe (2490nm). Hence Ti:Sapphire (800nm) was abandoned for

Cr:ZnSe: Characteristics for gain

conductivity, expansion coefficient. Other important parameters are index of refraction, thermal

pumping trequency and intensity determine gain. The large absorption spectrum prompted us to study in detail how

Population Dynamics

Cr:ZnSe is a 4 level system. κ_1 and κ_3 are fast so that $N_0 >> N_3$ and $N_2 >> N_1$ And so $N_t \approx N_2 + N_0$, N_t is total doping concentration of crystal.

Pick-up undulator radiation is on the order of mW/cm² which is neglible in the rate equations.

state solutions to the rate equations This fact along with CW pumping allows us to look for steady

There is an overlap with the emission and absorption cross sections.

This means not only does the signal cause spontaneous emission....so can the pump!

Population Dynamics

We can solve for the ground state population density:

$$N_0 = \frac{N_t (1 + I_p \sigma_{pe} A)}{I_p A (\sigma_{pa} + 2\sigma_{pe}) + 1}$$

And relate this to the attenuation of the pump as it propagates through crystal:

$$\frac{dI_p}{dz} = -I_p N_t \left(\frac{(1+I_p \sigma_{pe} A)(\sigma_{pa} + 2\sigma_{pe})}{I_p A(\sigma_{pa} + 2\sigma_{pe}) + 1} - \sigma_{pe} \right) \quad A \equiv \frac{\tau_2}{h\nu_p}$$

When $\sigma_{pe} = 0$ can solve with Lambert W function $z = W(z) \exp[W(z)]$

$$I_p = I_{sat} W \left(\frac{I_{po}}{I_{sat}} e^{-\alpha T + \frac{I_{po}}{I_{sat}}} \right) \qquad \alpha \equiv N_t \sigma_{pa} \qquad I_{sat} \equiv \frac{h v_p}{\sigma_{pa\tau_2}}$$

decay. state. Lower intensities approach exponential High intensities cause depletion of the ground

Amplification

The undulator intensity grows as it propagates

$$\frac{dI_s}{dz} = I_s \sigma_s (N_2 - N_1) \quad \text{loss of the pump as:}$$

$$\frac{dI_s}{dz} = -\sigma_s A \frac{dI_p}{dz} \longrightarrow G = e^{\sigma_s A (I_{po} - I_p)} \quad G = I_s / I_{so}$$

2p

||

11

$$v_s = 2.49 \ \mu m$$

L=1.4 mm (2mm optical delay)
N_t =2.0*10¹⁹ ion/cm³

1.5

1.6

1.7 1.8 1.9 Pump Wavelength (μm)

2.0

2.1

Thermal Lensing

temperature dependence of index of refraction: Primary contribution to thermal lensing comes from dn-7*10-5 K

$$f = \frac{\kappa A}{P_h} \left(\frac{1}{2} \frac{dn}{dt}\right)^{-1} = \frac{\kappa}{I_h} \left(\frac{1}{2} \frac{dn}{dt}\right)^{-1} \qquad \frac{dt}{\kappa} = 1 \text{ W/m}^*$$

ス

I_h is the fraction of absorbed intensity that goes into heat

$$I_h = \Delta I_p (1 - \frac{\lambda_p}{\lambda_s})$$

wavelengths from also from cross sections explicit dependence but heat for higher Decrease in absorbed

Thermal Lensing

bulging of the ends Another contribution to thermal lensing comes from

$$f_b = \frac{\kappa}{I_h} \frac{\alpha r_o (n_o - 1)}{L}$$
 $n_o = 2.44, \alpha = 7.3 \times 10^{-6} \text{ K}^{-1}$
L=1.4mm

~160 cm. spot size of 100 μ m at an intensity of 200 KW/cm² f_b This contribution is much smaller. For a laser with a

but this is also expected to be small. Another contribution comes from heat induced strain

Pump Selection

Two candidate pumps. Erbium fiber laser at 1550 nm or a Thulium fiber laser at 1930 nm. Assume both have 50 W.

by pump. Higher wavelengths absorb less heat. So pumping can be done with a higher intensity with Amplifier will be pushed close to damage threshold Thulium laser, and so performs better.

keep laser power reasonable Additionally RMS spot size must be small at crystal to analysis we set $D_1=D_4$ Lens placement constrained by beam optics. For further Then choose $M_1 M_2$ to be inverses so. $M_1 I M_2 =$ This requires $D_1 = D_3$, $D_2 = D_4$ and $F_1 = F_2 = (D_1 + D_2)/2$. \mathbb{A}^{1} undulator pick-up Requirement for inside system to be identity D1 $F=LL_1/(L+L_1)$ Ξ D2 Г × Ш $F_x = L_1^2 / 2(L + L_1)$ П \Box $=M_{2}$ D3 F2 undulator **P**4 kicker

Optics

Optics

Synchrotron Radiation Workshop (SRW) is used to find Wigner function numerically.

$$\mathcal{W}_x(x,k_x) = \frac{1}{\lambda^2} \int_{-\infty}^{+\infty} E_x \left(x - \frac{x'}{2} \right) E_x \left(x + \frac{x'}{2} \right)$$
$$\times e^{ik_x x'} dx'$$

Can then calculate Courant-Snyder parameters for photon beam.

$$\begin{pmatrix} \langle x_i^2 \rangle \\ \langle -x_i x_i' \rangle \\ \langle x_i' \rangle \end{pmatrix}$$

Table 1: Undulator Parameters

Darm Francis	
beam Energy	I UU Mev
Undulator Period	12.9 cm
Number of Periods	6
Peak Magnetic Field	664 G
Zero angle wavelength	$2.2 \ \mu m$

Optics

2 lens system results in a 600 µm spot size at the crystal. Would require 2300 W of laser power!

Additional lenses reduce size to 100 µm or 60 W.

Spot size can not be reduced further beam optics. because of constraints brought on by

Future work Dispersion: -Optics must be chosen to reduce dispersion.
-Optics must be chosen to reduce dispersion. -Fortunately Cr:ZnSe has an opposite dependence of most glasses that can be used for lenses (for example CaF ₂)
Phase distortion: -Amplification can cause phase distortion that can spoil cooling.
-Interferometry experiment will be done with an OPA as a stand in for broadband undulator radiation. Similar work is being done with Ti:Sapph.