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An important necessary condition for transverse phase space damping in the optical stochastic
cooling (also applicable in the microwave stochastic cooling) with transit-time method is derived.
The longitudinal and transverse damping dynamics for the optical stochastic cooling is studied.
An optimal laser focusing condition for laser-beam interaction in the correction undulator was also
obtained. The amplification factor and the output peak power of the laser amplifier are found to
differ substantially from earlier publications. The required laser amplification power can be large
for hadron colliders at very high energies.
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I. INTRODUCTION

The stochastic cooling, invented by S. van der Meer in 1968, has been first experimentally demonstrated at the
Intersecting Storage Ring (ISR) at CERN, and used for anti-proton cooling and collection facilities. The success of
the stochastic cooling leads to many new discoveries in particle physics [1, 2].

Applications of the stochastic cooling to high energy storage rings encounter a few difficulties. First, the phase
space areas of beams in a high energy accelerators are adiabatically damped, thus the stochastic cooling method
becomes less efficient. Furthermore, the bunch length (στ ) is shorter in high energy storage colliders, the cut-off
frequency (∼ 1

στ
) for the coherent signal is extended upward to the GHz region. The Schottky signal has often been

contaminated by the coherent beam signals [3]. Without a good Schottky signal, it would be difficult to carry out the
stochastic cooling.

High energy charged particles emit photons in dipoles. The photon emission is a random process. Using the
photons instead of microwave signals in beam cooling would solve the problem of coherent signal contamination, and
may dramatically enhance the cooling rate. The optical stochastic cooling (OSC) was proposed by Mikhailichenko
and Zolotorev [4], in which a quadrupole wiggler and a longitudinal kicker system at a high dispersion location were
applied to damp betatron and synchrotron motions via the synchro-betatron coupling. Subsequently, Zolotorev and
Zholents applied transit-time method, which is a traditional method in stochastic cooling, to optical stochastic cooling
[5]. The scheme of a typical optical stochastic cooling and formula related to damping were also derived in Ref. [5].

In general, a high energy charge particle emits synchrotron radiation in a synchrotron. The critical frequency is
ωc = 3

2γ3c/ρ, where γ is the relativistic Lorentz factor, c is the speed of light, and ρ is the bending radius. The number
of photons emitted per revolution is Nγ = 5παγ/

√
3, where α = q2/(4πϵ0!c), q is the charge of the particle, ϵ0 is the

electric permittivity of free space, and ! is the Planck constant divided by 2π. In an undulator with planar magnetic
field, the wavelength of the undulator radiation is λ = λu(2 + K2)/(4γ2) with a bandwidth of ∆ω|FWHM = ω/Nu,
where Nu is the number of undulator period, K = qBuλu/(2πmc) is the undulator strength parameter, Bu is the
undulator field strength, and λu is the undulator wavelength. The number of photons, emitted within the solid angle
λ/(Nuλu) and bandwidth ∆ω|FWHM, is Nγ = πξα[JJ]2 where ξ = K2/(2+K2), and the factor [JJ] = J0(1

2ξ)−J1(1
2ξ).

The emitted photon can be amplified and used to give proper kick in energy and betatron coordinates. With a proper
choice of the beam parameters, the phase space volume of the beam can be damped.

Although the basic principle of the optical stochastic cooling has been published in 1994, the requirements of the
beam cooling section have not been fully analyzed. In particular, there are deficiencies in an earlier paper [5] on
the beam transport properties in the derivation of the optical stochastic cooling. This paper is intended to derive
the necessary conditions for the beam transport system for the optical stochastic cooling with transit-time method,
and study the OSC cooling dynamics. In section II, the principle of transit-time method of optical stochastic cooling
is briefly introduced. In section III, the damping rates and the transfer matrix condition of equal decrements are
derived. In section IV, the amplification factor, an optimal optical focusing condition for the inverse free electron
laser, and the peak output power requirement are discussed. The conclusion is given in Sec. V.
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II. TRANSIT-TIME METHOD OF OPTICAL STOCHASTIC COOLING

A typical stochastic cooling system consists of a pickup, an amplifier, and a kicker [1, 2]. The optical stochastic
cooling includes two undulators, a particle beam bypass, and an optical amplifier. A schematic drawing of this
insertion can be found in Fig. 1 of Ref. [5]

The electromagnetic (EM) wave radiated by a charged particle in the first undulator is amplified by the optical
amplifier, while the particle travels in the beam-bypass. The amplified EM wave and the particle are brought together
to interact in the second undulator. This will change the particle’s energy. The amount of energy change depends on
the magnitude of the EM wave and the relative phase between the particle’s and the EM wave’s transit times from
the first to the second undulators.

We consider a test particle with a momentum deviation δi = ∆Pi/P , and the betatron phase space coordinates
(xi, x′

i). In the Frenet-Serret coordinate system, the path length of the test particle in the bypass section is [6]

ℓi =
∫ s2

s1

√

x̃′2 + z̃′2 + (1 +
x̃

ρ
)2 ds ≈

∫ s2

s1

(1 +
x̃

ρ
)ds, (1)

where x̂, ŝ and ẑ form a curvilinear coordinate system with a horizontal bending radius ρ, the coordinates x̃ and
z̃ are the deviation from a reference orbit, and s is the longitudinal coordinate along the reference orbit. We have
also assumed x̃′ ≪ 1 and z̃′ ≪ 1 to obtain the last approximate equality. For a bypass with planar geometry, the
transverse displacement of an orbiting particle is given by x̃ = xco(s)+M11(s, s1)x1 +M12(s, s1)x′

1 +D(s)δ, where x1

and x′
1 is the betatron phase space coordinates at s1, M11(s, s1) and M12(s, s1) are transport matrix elements of the

Hill’s equation, xco(s) is the closed orbit around the reference orbit, and D(s) is the dispersion function. The path
length for an i-th particle in the bypass region becomes

ℓi = ℓ0 + xi1I1 + x′
i1I2 + δiID, (2)

where xi1, x′
i1 are the conjugate phase space coordinates for the i-th particle at the location s1, and the integrals I1,

I2, and ID are

I1 =
∫ s2

s1

M11(s, s1) ds

ρ(s)
, I2 =

∫ s2

s1

M12(s, s1) ds

ρ(s)
, ID =

∫ s2

s1

D(s) ds

ρ(s)
. (3)

where the integrals are carried out from the first undulator at s1 to the second undulator at s2 via the particle beam
bypass.

In the first undulator, a test particle radiates an EM wave propagating in the s-direction: Ei = E0 sin(ks−ωt + φi)
with electric field amplitude E0 and phase φi. The wave number and frequency are k = 2π/λ and ω = kc. This
radiation propagates to the optical amplifier, while the particle follows the bypass and traverses it in a time ∆ti =
ℓi/βc, where βc is the speed of the particle.

The time ∆t0 required for radiation to pass all the way between undulators, including the amplifier delay, must be
constrained and maintained by a feedback system to yield the condition ℓ0 − c∆t0 = (n ± 1

4 )λ, where n = 0, 1, 2, · · · ,
and the ± sign depends on the beam transport property in the bypass. The test particle arrives at the second
undulator with a time delay δ(∆t) = ∆ti − ∆t0 and with a phase shift

∆φi = k(ℓi − ℓ0) = k [xiI1 + x′
iI2 + δiID] , (4)

relative to the phase of the electric field at zero crossing. For simplicity, hereafter, we use xi, x′
i, and δi as the betatron

phase-space coordinates and fractional off-momentum variable of the i-th particle at the first undulator location. In
the second undulator, the particle interacts with the electric field of its own radiation. The fractional change of its
momentum is [7]:

δPi/P = − [sgn(ID)] G sin(∆φi), (5)

where sgn(ID) is the sign of ID, G = gq E0NuλuK[JJ]/(2cγP ) is the amplitude of the fractional momentum gain-
factor, q is the magnitude of the particle charge, Nu is the number of undulator periods, g is the amplification factor
of the optical amplifier, and δPi is the amount of the momentum change related to the coherent longitudinal kick
∆δi = δPi/P .

Let D2 and D′
2 be the dispersion function and its derivative at the second undulator. The changes of the particle

betatron coordinates at the exit of the second undulator are ∆xi2 = −D2(δPi/P ) and ∆x′
i2 = −D′

2(δPi/P ), where
xi2 and x′

i2 are the phase space coordinates of the i-th particle at the second undulator location.
Thus, after passing the entire cooling insertion, the test particle has received coherent longitudinal and transverse

kicks that are proportional to a linear combination of the particle’s momentum deviation and betatron deviations.
We will see in the next section that a proper choice of the parameters of the bypass lattice makes it possible to use
these kicks to simultaneously damp transverse and longitudinal oscillations.
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III. COOLING RATES

We have so far considered the interaction of a test particle with the EM wave of its own radiation. However,
each particle also interacts with the EM waves emitted by other particles in a sample within a distance less than
Nuλ. These interactions constitute the incoherent component of the kick received by the particle. Assume that a test
particle interacts with Ns electromagnetic waves (including its own wave) in a sample. The change of the particle’s
momentum at the exit of the cooling insertion becomes

δic = δi − [sgn(ID)] G
Ns∑

j

sin(∆φi + ψij) (6)

where δic is the relative momentum of the i-th particle after the longitudinal kick, Ns is the number of particles in
the sample, ψij = ∆φj − ∆φi, and sgn(ID) is the sign of the integral ID.

A. Longitudinal effects

Hereafter, we assume that ID > 0 with a proper phase shift. A test particle interacts with the electromagnetic
waves radiated from the sample of Ns particles. We have to evaluate the ensemble average of the quadratic change:

∆(δ2
i ) = δ2

ic − δ2
i = −2δiG

Ns∑

j

sin(∆φi + ψij) + G2

⎡

⎣
Ns∑

j

sin(∆φi + ψij)

⎤

⎦
2

.

Using the fact that ⟨sin2(∆φi + ψij)⟩ = 1
2 for a random sample of Ns particles, the ensemble average of the second

term is

⟨G2[
Ns∑

j

sin(∆φi + ψij)]2⟩ =
1
2
G2Ns,

which contributes to heating. The ensemble average of the coherent kick term is ⟨−2δiG
∑Ns

j sin(∆φi + ψij)⟩ ≈
⟨−2δiG sin(∆φi)⟩, i.e.

⟨−2δiG sin(∆φi)⟩ = −ℑ
{

2G

∫
δeik(xI1+x′I2+δID)ρ(x, Px, δ)dxdPxdδ

}
(7)

where ℑ{· · · } stands for the imaginary part. The distribution function is given by

ρ(x, Px, δ) =
1

(2π)3/2σ2
xσδ

exp
[
−x2 + P 2

x

2σ2
x

− δ2

2σ2
δ

]
(8)

with x and Px = βx′ + αx as the normalized betatron phase space coordinates at the first undulator location s1, and
δ as the fractional off-momentum coordinate. The integral can be carried out easily, and the longitudinal damping
decrement becomes

αδ ≡ −⟨δ2
ic − δ2

i ⟩
σ2

δ

= 2GkIDe−u − G2Ns

2σ2
δ

(9)

where

u =
1
2
k2[(β1I

2
1 − 2α1I1I2 + γ1I

2
2 )ϵx + I2

Dσ2
δ ], (10)

is a measure of the total thermal energy of the beam. The optimal momentum gain-factor and the maximum damping
decrement are

Gδ =
2kIDσ2

δ

Ns
e−u; αδ|max =

2k2I2
Dσ2

δ

Ns
e−2u. (11)
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B. Transverse effects

As the particle gains or loses energy by its interaction with the electric field of itself and its sampling partners, the
corresponding momentum closed orbit is also modified. Thus the betatron phase space coordinates are changed as
well. This may generate heating and cooling effect to the beam. The change of transverse betatron coordinates are
(for ID > 0)

xi2c = xi2 + D2G
Ns∑

j

sin(∆φi + ψij), (12)

x′
i2c = x′

i2 + D′
2G

Ns∑

j

sin(∆φi + ψij), (13)

where (xi2, x′
i2) and (xi2c, x′

i2c) are the betatron phase space coordinates of the i-th particle before and after correction
at the second undulator location, and D2, D′

2 are the value of the dispersion function at the second undulator location.
Now we transform the phase space coordinates into the normalized phase space coordinates (x, Px = βxx′ + αxx).

The change of the invariant action of the betatron phase-space coordinates is β2∆ϵi = P 2
xi2c + x2

i2c − (P 2
xi2 + x2

i2),
where β2 is the betatron amplitude at the second undulator location and ϵi is twice the action of the i-th particle.
We find

β2∆ϵi = +2Pxi2PD2G
Ns∑

j

sin(∆φi + ψij) + 2xi2D2G
Ns∑

j

sin(∆φi + ψij)

+β2H2G
2

⎡

⎣
Ns∑

j

sin(∆φi + ψij)

⎤

⎦
2

(14)

where Pxi2 = β2x′
i2+α2xi2 is the normalized betatron coordinate for the i-th particle at the second undulator location,

PD2 = β2D′
2 + α2D2 is the normalized dispersion phase space coordinate at the second undulator location, β2 and

α2 are the value of the βx and αx at the second undulator location, and H2 = 1
β2

(D2
2 + P 2

D2) is the value of the
H-function at s2.

The ensemble average of the quadratic terms is 1
2G2Nsβ2H2, which contributes to quantum fluctuation like

that of synchrotron radiation damping. The ensemble average of the coherent kick is given by ⟨Kc1⟩ =
⟨2Pxi2PD2G

∑Ns

j sin(∆φi + ψij)⟩ ≈ ⟨2Pxi2PDG sin(∆φi)⟩, and ⟨Kc2⟩ = ⟨2xi2D2G
∑Ns

j sin(∆φi + ψij)⟩ ≈
⟨2xi2D2G sin(∆φi)⟩, i.e.

⟨Kc1⟩ = ℑ
{

2G

∫
PD2Pxi2 eik(xI1+x′I2+δID)ρ(x, Px, δ)dxdPxdδ

}
, (15)

⟨Kc2⟩ = ℑ
{

2G

∫
D2xi2 eik(xI1+x′I2+δID)ρ(x, Px, δ)dxdPxdδ

}
. (16)

The distribution function, shown in Eq. (8), is a function of the phase space coordinates at the first undulator. The
ensemble average is equivalent to integrating over the phase space coordinates of the ensemble at the location of the
first undulator, while xi2 and Pxi2 are the phase space coordinates of the particle at the second undulator location.
Expressing xi2 and Pxi2 in terms of x and Px at the first undulator location, we obtain the relative transverse cooling

αx = −⟨P 2
x2c + x2

2c − (P 2
x2 + x2

2)⟩
σ2

x2

= 2GkI⊥e−u − G2NsH2

2ϵx
, (17)

where

I⊥ = −β1

β2

{
PD2

[(
(β2M21 + α2M11) −

α1

β1
(β2M22 + α2M12)

)
(I1 −

α1

β1
I2)

+
1
β2

1

(β2M22 + α2M12)I2

]
+ D2

[
(M11 −

α1

β1
M12)(I1 −

α1

β1
I2) +

1
β2

1

M12I2

]}
. (18)

The transverse cooling requires the condition I⊥ > 0 (for ID > 0). This is an important condition for the design of
the bypass optics.
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If the betatron phase space coordinates are properly chosen, the coherent kicks will also produce coherent cooling
to the transverse emittance. The necessary condition is I⊥ > 0. The optimal gain factor and the maximum damping
decrement for the transverse cooling are

Gx =
2kI⊥ϵx

NsH2
e−u, αx|max =

2k2I2
⊥ϵx

NsH2
e−2u. (19)

Making a constraint of −I with reflection symmetry for the bypass insert and having the undulators placed at the
betatron waists (α1 = α2 = 0 = D′

2 = 0), as that of Ref. [5], we obtain I⊥ = D2I1. Our resulting damping decrements
does not agree with Eq. (6) of Ref. [5].

C. Stochastic Cooling Dynamics

The cooling process can be expressed as

dϵx

dt
= −2GkI⊥ϵx

T0
e−u +

G2NsH2

2T0
, (20)

dσ2
δ

dt
= −2GkIDσ2

δ

T0
e−u +

G2Ns

2T0
, (21)

where T0 is the revolution period. The momentum gain-factor G is set by the laser amplifier [8]. If the optimal gain
factors for the momentum and transverse cooling are the same, we can set the laser gain factor to obtain an optimal
momentum gain-factor. The condition for equal optimal gain-factors is IDH2σ2

δ = I⊥ϵx. In this case, the ratio of the
damping decrements becomes αδ/α⊥ = ID/I⊥. However, if ID ̸= I⊥, the equal gain condition can not be fulfilled at
all time.

1. Cooling Dynamics for equal decrements

For the equal decrement condition, the particle bypass line should be designed with the condition: I⊥ = ID. The
beam will maintain the equilibrium condition with ϵx = H2σ2

δ . Let G0 be an initial gain factor. The equation of
damping dynamics becomes

du

dt
= −2G0kID

T0
ue−u +

G2
0Nsv

2T0
, (22)

where

v =
1
2
k2[(β1I

2
1 − 2α1I1I2 + γ1I

2
2 )H2 + I2

D]. (23)

The equilibrium emittance is reached when du/dt = 0. Figure 1 shows the right hand side of Eq. (22). Note that
cooling is possible when ueq ≤ u ≤ uth, where ueq is the equilibrium thermal energy and uth is the cooling threshold
energy. The initial laser power gain should be adjusted so that the beam condition falls within the cooling limit.

2. The optimal gain factor

The optimal gain factor G for the cooling equation with equal decrement is

Gopt =
2kID

vNs
ue−u. (24)

With this optimal gain factor, that depends on the lattice and beam conditions, the cooling equation becomes

du

dt
= − 2k2I2

D

vNsT0
u2e−2u. (25)

The solution of the damping equation is
∫ u0

u

e2u

u2
du =

2k2I2
D

vNsT0
t, (26)
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FIG. 1: The cooling dynamical function for a fixed gain G0 with G0Nsv/4kID = 0.1 (used only for an illustrative example), is
shown as a function the parameter u. Note that beam cooling occurs only when u ≤ uth, and the cooling stop when u = ueq is
reached. In this case, cooling appears to be possible for u ≤ uth ≈ 3.6. However, the sinusoidal nature of the momentum kick
in Eq. (5) renders this parametric region not applicable.

where u0 is the initial value of u in Eq. (10), and u ≤ u0 during the beam cooling process. Figure 2 shows the integral
of the left-hand side of Eq. (26) assuming that u0 = 3.0. As time increases, the corresponding emittance function u
can be obtained from the graph. Note that when the beam is sufficiently cold with u ≤ 1, the cooling process will
behave like u ∼ 1

t at the optimized gain factor.
It appears that at the optimized gain factor, a hot beam could be very efficiently cooled. However, the OSC takes

place through Eq. (5), which is proportional to sin(∆φi), and the correction will be in the wrong direction if the phase
shift |∆φi| > π/2. Thus, for a large thermal energy, like u0 = 3, only the part of the beam sufficiently close to the
on-momentum particle will be cooled while the rest will be heated instead. To ensure OSC, we must make sure that
all the particles in the beam (usually 95% is assumed) be within the π/2 phase shift. Since a bypass can be designed
with very small I1 and I2, this phase shift requirement translates into

u = u0 ≈ 1
2
(kIDσδ)2 ≤ π2

48
. (27)

As a result, OSC at optimum gain factor is rather inefficient because the emittance of a cold beam decreases inversely
with the cooling time. As will be seen below, OSC at small gain turns out to be more efficient. Although the cooling
represented by Eq. (25) is not exponential, an initial cooling time can nevertheless be defined by

τcool = − u

du/dt

∣∣∣∣
u=u0

≈ NsT0

4
e2u0

u0
(28)

for an optimum gain factor.
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FIG. 2: The integral of Eq. (26) with u0 = 3 is shown as a function of u with optimal gain factor. The resulting thermal energy
parameter u can be obtained from this graph with the value given by the right hand side of Eq. (26).

3. One dimensional optical stochastic cooling dynamics

If the second undulator location is designed to be non-dispersive, i.e. D2 = PD2 = 0, the betatron cooling and
heating vanish. The optical stochastic cooling is a one-dimensional momentum cooling device. This will simplify the
cooling bypass design. Let ux = 1

2k2(β1I2
1 − 2α1I1I2 + γ1I2

2 )ϵx, and uδ = 1
2k2I2

Dσ2
δ . The damping equation becomes

duδ

dt
= −2GkID

T0
e−uxuδe

−uδ +
G2Nsk2I2

D

4T0
. (29)

The optimal gain is

Gopt =
4

NskID
e−uxuδe

−uδ . (30)

At the optimal gain, the cooling dynamics equation becomes

duδ

dt
= − 4

NsT0
e−2uxu2

δe
−2uδ . (31)

Note that the longitudinal damping rate is reduced by the factor e−2ux of the thermal energy of the transverse plane.
The longitudinal cooling rate can be increased by a reduction of the transverse thermal energy ux, which can be made
zero by the additional design constraints of I1 = 0 and I2 = 0. The dynamical evolution of the one-dimensional OSC
is similar to that of the equal-decrement cooling dynamics discussed in earlier sections.

When the bypass optics is designed such that I1 = I2 = 0, i.e. ux = 0, we obtain a one-dimensional optical
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stochastic cooling with

duδ

dt
= −2GkID

T0
uδe

−uδ +
G2Nsk2I2

D

4T0
. (32)

The optimal gain is

Gopt =
4

NskID
uδe

−uδ . (33)

Since the phase shift condition requires 2
√

6kIDσδ ≤ π, or uδ ≤ π2/48, the condition for a maximum optimal gain
with uδ = 1 assumed in Ref. [5] is incorrect.

IV. AMPLIFICATION FACTOR

The total energy of the photon emission in the first undulator is

W1 =
1
2
ϵ0E2

1A1c∆tR =
1

4πϵ0
πξkq2[JJ]2, (34)

where E1 is the peak electric field amplitude produced in the first undulator, A1 is the cross-section area of the
coherent radiation [9], and ∆tR = Nuλ/c is the duration of the radiation pulse. We also use the fact that a particle
with a charge q emits about πq2ξ

4πϵ0!c [JJ]2 coherent photons at the energy !ω during one pass of the undulator.
The input and output peak powers of the laser amplifier are

P̂1 =
W1

∆tR
Ns =

1
2
ϵ0E2

1A1cNs,

P̂2 = g2P̂1, (35)

where g2 is the power gain from the laser amplifier,

Ns = NB
Nuλ

2
√

6cστ

(36)

is the number of particles in a sample within a bandwidth of ∆ω|FWHM = ω/Nu. Here, we have assumed 100% photon
transmission in the optical amplifier, and assume that the bandwidth of the laser amplifier is larger than that of the
undulator radiation.

The peak electric field at the second undulator depends on the amplifier gain factor and focusing property through
conservation of energy, i.e.

E2
2A2 = g2E2

1A1, (37)

where E2 and A2 are the peak electric field amplitude and the photon beam area at the waist [9], presumably at the
mid-point, of the second undulator. The momentum gain-factor G is given by

G =
q⟨E⟩2NuλuK[JJ]

2cγP
, (38)

where the average electric field that the charged particle sees in the second undulator is

⟨E⟩2 =
2E2

L

∫ L/2

0

ds√
1 + (s/β∗)2

, (39)

where L = Nuλu is the length of the second undulator and β∗ is the betatron amplitude function for the photon beam
at the waist.

For a given momentum gain factor, the peak power becomes

P̂2 = G2 Ns(Eb/q)2

Z0ξNu[JJ]2
F2, (40)
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where Eb is the beam energy, Z0 is the impedance in vacuum,

F2 =
A0/A2

8[ln(A0/A2 +
√

1 + (A0/A2)2)]2
, (41)

A2 = 2πσ2
∗ is the rms photon beam area at the waist of the second undulator [9], and A0 = Nuλuλ/4. Minimum laser

amplifier occurs when A2 = 0.3012A0, where F2 = 0.1132 [10].
The average laser power is equal to the peak power multiply the duty factor, i.e.

⟨P ⟩2 = P̂2
nb2

√
6στ

T0
= G2 (Eb/q)2

Z0ξ[JJ]2
NBnbλ

C
F2, (42)

where nb is the number of bunches, στ is the rms bunch length in time, and C is the circumference of the storage
ring. Note that the average power is proportional to the total number of particles in the storage ring.

A. Laser power for optimal gain

Substituting the optimal gain of Eqs. (24) or (30) into Eq. (40), we obtain the output peak power of the laser
amplifier given by

P̂2 =
Ns (Eb/q)2

Z0ξ[JJ]2Nu

(
2kID

v Ns
ue−u

)2

F2, (43)

Since the cooling rate is inversely proportional to Ns, the peak power for an optimized cooling of Ns particle is also
inversely proportional to Ns. Because of the stability condition of u ≤ π2/48, the peak power is highly reduced.

Figure 3 shows the peak power versus γ (beam energy) for proton storage rings at optimal gain. The laser wavelength
is taken to be λ = 1 µm and each undulator has Nu = 10 periods. Most parameters correspond to the Tevatron:
NB = 2.7 × 1011 particles, σℓ = 0.37 m, and σδ = 1.3 × 10−4. With the Tevatron revolution period of T0 = 20.1 µs,
the initial cooling time is 57 s given by Eq. (28). The magnetic field of the undulator varies from 1 to 10 T.

For a fixed laser wavelength and the undulator magnetic field, the undulator parameter is obtained by solving the
cubic equation:

λ =
πmc

2qBuγ2
K(2 + K2) , (44)

from which the undulator period λu can be solved and plotted in Fig. 3. The self consistent solution gives K ∼ γ2 at
low energies and P̂2 ∼ (Eb/q)2

ξ ∼ (Eb/q)2

K2 ∼ 1
γ2 , i.e., it requires a large laser power to compensate the small coherent

radiation flux for hadron beams at low energies. At high beam energies, ξ → 1 and the output power increases as γ2

instead. The position of the minimum laser power can be easily calculated to be

γmin =

√
4
√

2π
3
√

3

√
mc

qBuλ
. (45)

The Tevatron at 1 TeV happens to be near the minimum of the power-vs-gamma curve and is therefore favored by
OSC [11]. The undulator period of λu = 1.93 m (Bu = 6 T) is long enough for superconducting undulators. RHIC
lies on the left side of the minimum and has its output amplifier power scale as γ−2(m/q)4. VLHC lies on the right
side of the minimum and has its output power scale as (mγ/q)2.

Figure 4 is a similar plot for electron rings. Because of the small electron mass, there is no need to consider high
magnetic field undulators and we set the magnetic field at Bu = 1 T. The bunch parameters are NB = 1.0 × 1011,
σℓ = 1 cm, and σδ = 1.3 × 10−4. Besides laser wavelength λ = 1 µm, we also include λ = 5, 20, and 100 µm, where
the corresponding numbers of sampling particle are Ns = 2.0 × 107, 1.0 × 108, 4.1 × 108, and 2.0 × 109 respectively.
The initial cooling time for the optimal gain is given by Eq. (28) τcool = 1.8NsT0, which depends on the revolution
period T0.

When λ = 1 µm, the minimum peak power occurs at γmin = 76.3 or Eb = 39.0 MeV, i.e. nearly all electron storage
rings lie on the right side of the minimum. However, because of the (m/q)2 factor, the output power of the amplifier
is very much reduced. That does not implies that OSC favors electron rings of high energies because the radiation
damping rate increases rapidly with energy. To be effective, the OSC cooling rate, discussed in the last paragraph,
has to be faster than the radiation damping rate of the electron ring.
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FIG. 3: The peak laser amplifier power vs γ for an optimal gain in the optical stochastic cooling for a proton storage ring
(TEVATRON). The parameters for the Tevatron are σℓ = 0.37 m, σδ = 1.3 × 10−4, nb = 36 bunches, each containing
NB = 2.7 × 1011 particles, Eb = 1 TeV, the mean radius of the TEVATRON of 1000 m, and Bu = 10 T. The initial cooling
time is given by Eq (28) with u0 = π2/48 or τcool ≈ 57 s.

Now, we consider a possible example of converting the IUCF Cooler Ring to an electron ring and OSC is applied
at the Ti-Saphire laser wavelength λ = 0.78 µm with Nu = 10 and λu = 5 cm. Setting an initial cooling time of 0.10
s, we find Ns = 1.92 × 105. Since the bunch length is 3.6 cm with the rf system, we find the number of particles
in a bunch is NB = 4.36 × 109. At Eb = 500 MeV, the required laser peak power is P̂ = 39 W. The peak power is
much larger than that of Fig. 4 because the number of the sampling particle is much smaller in this example. The
natural horizontal emittance and the OSC-equilibrium emittance are plotted in Fig. 5 as functions of beam energy.
Other parameters used in the plots are ring circumference C = 85.03 m, bending radius ρ = 2.44 m, momentum
compaction αc = 0.04938, rf harmonic h = 15, and a bucket-to-bunch-height ratio of 40. We also note that the OSC
damping is almost or more than an order of magnitude when the electron energy is below 500 MeV. However, at
higher energies, OSC damping is completely inefficient because the rapidly increasing radiation damping rates. As a
whole, applications of OSC to low energy electron storage rings can be useful for attaining high brightness electron
beams.



11

FIG. 4: The peak laser amplifier power vs γ for optimal gain in the optical stochastic cooling for electron storage rings. The
parameters for the electron storage ring are σℓ = 1 cm, σδ = 1.3 × 10−4, NB = 1.0 × 1011, and Bu = 1.0 T.

B. Laser Power for Low Gain Regime

At an optimal gain, the laser power requirement is usually high (see Fig. 3), and the damping dynamics is not
necessarily the most favorable for beam cooling. It would be useful to consider the OSC in the low gain regime. As
an example, we consider the longitudinal cooling in the low-gain regime. The incoherent heating term is now small
and can be neglected. The damping equation becomes

duδ

dt
= −2GkID

T0
e−uxuδe

−uδ . (46)

Since uδ ≤ π2/48 is small, the damping is almost exponential and becomes more so as the cooling proceeds and will
continue until the cooling force is balanced by the heating forces coming from rf noise, intra-beam scattering, etc.
This is highly in contrast with the cooling at optimum gain-factor discussed in Sec. III.C.2, where the cooling process
becomes more and more inefficient as the beam is cooled. With ux = 0, the cooling time is

τcool ≈
eu

δ

2GkID
T0. (47)
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FIG. 5: The equilibrium electron emittance for a cooling time of 0.1 s is shown as a function of the electron beam energy.

The resulting peak power is

P̂2 =
(

T0

τcool

)2 Ns (Eb/q)2 e2uδ

Z0Nuξ[JJ]2(2kID)2
F2, (48)

The average power of the laser amplifier is

⟨P ⟩2 =
(

T0

τcool

)2 (
nbNBλ

C

)
(Eb/q)2 e2uδ

Z0ξ[JJ]2(2kID)2
F2, (49)

where C is the circumference of the storage ring. Note that the average power depends on the total number of particles
nbNB in the ring and the square of the energy over charge (Eb/q)2.

Figure 6 shows the average power requirement versus cooling time in the low gain regime, where the undulator
parameters are λ = 1.0 µm, Nu = 10, and the undulator magnetic field varying from 1 T to 10 T. The corresponding
beam parameters are σℓ = 0.37 m, σδ = 1.3 × 10−4, nb = 36 bunches each containing NB = 2.7 × 1011 protons at
Eb = 1 TeV for the Tevatron whose mean radius is 1 km, while στ = 2.0 ns, σδ = 1.0 × 10−3, nb = 60 bunches each
containing NB = 1.0× 109 gold ions (A = 197 and Z = 79) at Eb = 100 GeV/nucleons for RHIC whose circumference
is 3833.85 m. We see that for a cooling time of 1200 s which is fast enough to counteract intra beam scattering,
the average output power for Tevatron is only 16 W when superconducting undulators at Bu = 6 T is used. On the
other hand, the average output power for RHIC is more than 1000 times larger. Because γ is one order of magnitude
smaller than that of the Tevatron, the undulator period becomes λu = 2.3 cm, two orders of magnitude smaller. This
implies that superconducting undulators may not be used and only 1 T undulators are possible. The output power
for the RHIC application is therefore increased at least one more order of magnitude.

Note that when the laser wavelength is chosen to be λ = 1 µm for RHIC, the undulator period is λu = 2.3 cm,
which may be difficult to attain a high field undulator magnet. The wiggler number becomes very small, and the
required laser amplification power becomes very large (see Fig. 6). If there is a longer wavelength high bandwidth
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FIG. 6: The laser amplifier power in the low gain regime for Tevatron at 1 TeV and RHIC at 100 GeV/amu. The laser
wavelength is λ = 1µ, and the undulator parameters are Nu = 10 with the magnetic field strength Bu listed in the graph. The
corresponding beam parameters are σℓ = 0.37 m, σδ = 1.3× 10−4, nb = 36 bunches, each containing NB = 2.7× 1011 particles,
at Eb = 1 TeV for the TEVATRON; and στ = 2 ns, σδ = 1.0×10−3, nb = 60 bunches, each containing NB = 1.0×109 particles,
Eb = 100 GeV/nucleon for gold ion, and the circumference of 3833.85 m for RHIC.

laser, e.g. λ = 10µm, the undulator period becomes 23 cm, and the required laser amplification power will be greatly
reduced as shown in Fig. 7. Although it may still require 80 W of laser amplification power to attain a 1 hr cooling
time (for Bu = 6 T), this is dramatically improved in comparison with the 1000 W requirement shown in Fig. 6.

V. CONCLUSION

In this paper, we derived a necessary condition for the transverse phase space damping in the optical stochastic
cooling. We have also explored the damping rates, the amplification factor, cooling dynamics, and the required peak
and average output power of the laser. We derived an optimal laser focusing condition for the charged particle beam
and the laser beam interaction in an undulator. With the available optical amplifiers at the present, it is rather
impractical to use the optical stochastic cooling method to cool proton and heavy ion beams at very high energies.
However, we find that the cooling method may be beneficial to low energy electron beams, and around 1 TeV proton
beam energy.
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FIG. 7: The laser amplifier power in the low gain regime for RHIC at 100 GeV/amu with the laser wavelength of λ = 10µ
and the undulator parameters are Nu = 10. The magnetic field strength Bu is listed in the graph. The corresponding beam
parameters are στ = 2 ns, σδ = 1.0× 10−3, nb = 60 bunches, each containing NB = 1.0× 109 particles, Eb = 100 GeV/nucleon
for gold ion, and the circumference of 3833.85 m.

We also point out the difficulties of OSC with optimal gain condition. At the optimal gain, the required laser power
is usually very large. As the beam is cooled, it is difficult to change the charged particle optics for a larger kID to
compensate the decrease in emittances. The best solution is to cool beams in the low gain regime, where the heating
term may be negligible. For Tevatron, it seems to be feasible to use the Ti-Saphire λ = 0.78 µm for OSC at 1 TeV.
One needs a shorter wavelength broadband laser for VLHC, and a long wavelength broadband laser for RHIC.

In actual implementation of the OSC, one should also consider the efficiency of laser pumping and optical trans-
mission, the linearity of the laser amplification, noise, etc. These problems can be considered if there is a realistic
project to carry out experimental tests.
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