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Preface to the Second Edition

In the 5 years since the appearance of this book, an enormous progress has been
made in the field of free-electron lasers. The world’s first hard X-ray FEL, the
Linac Coherent Light Source (LCLS) at Stanford (USA), was commissioned in
2009, and the second X-ray FEL, the ‘‘Spring-8 Angstrom Compact free-electron
LAser’’ (SACLA) at Harima (Japan), went into operation in 2012. This has been
the motivation to change the title of our book to Free-Electron Lasers in the
Ultraviolet and X-Ray Regime. Chapter 9 has been completely rewritten to
describe the existing X-ray FEL facilities and report important results obtained
with these machines. A second new achievement is the successful implementation
of various seeding schemes at FELs working in the ultraviolet and soft X-ray
spectral regions. Chapter 7 covers now Self-Amplified Spontaneous Emission and
FEL seeding. Another new feature of the book is a novel derivation of the
important third-order differential equation of the high-gain FEL.

The field of free-electron lasers has undergone a rapid expansion in the past few
years and is still growing fast. Within the scope of this university textbook, we can
cover only a small fraction of the exciting new ideas and developments. We
apologize for having to omit many important results and refer to the Free-Electron
Laser conferences (FEL) and the International Particle Accelerator Conferences
(IPAC) as well as to the scientific journals quoted in the book for a more complete
overview.

C. B. is very grateful for the hospitality extended to him at SLAC and the
opportunity to participate in important scientific investigations at LCLS. We thank
Hitoshi Tanaka for valuable information and comments. Particular thanks go to
Zhirong Huang for his advice and numerous stimulating discussions.

Peter Schmüser1

Martin Dohlus
Jörg Rossbach

Christopher Behrens

Hamburg, October 2013

1 Corresponding author Peter.Schmueser@desy.de
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Preface to the First Edition

The high scientific interest in coherent X-ray light sources has stimulated world-
wide efforts in developing X-ray lasers. In this book, a particularly promising
approach is described, the free-electron laser (FEL), which is pursued worldwide
and holds the promise to deliver ultra-bright X-ray pulses of femtosecond duration.
Other types of X-ray lasers are not discussed nor do we try a comparison of the
relative virtues and drawbacks of different concepts.

The book has an introductory character and is written in the style of a university
textbook for the many newcomers to the field of free-electron lasers, graduate
students as well as accelerator physicists, engineers, and technicians; it is not
intended to be a scientific monograph for the experts in the field. Building on
lectures by one of us (J. R.) at the CERN Accelerator School, and motivated by the
positive response to a series of seminars on ‘‘FEL theory for pedestrians’’, given by
P. S. within the framework of the Academic Training Program at DESY, we have
aimed at presenting the theory of the low-gain and the high-gain FEL in a clear and
concise mathematical language. Particular emphasis is put on explaining and
justifying the assumptions and approximations that are needed to obtain the dif-
ferential equations describing the FEL dynamics. Although we have tried our best
to be ‘‘simple’’, the mathematical derivations are certainly not always as simple as
one would like them to be. However, we are not aware of any easier approach to
the FEL theory. Some of the more involved calculations are put into the
appendices.

The starting points are the Maxwell equations and the basic elements of special
relativity. We avoid the Hamiltonian formalism in the main text because many
potential readers may not be familiar with this powerful formalism. A short
introduction into the Hamiltonian treatment of the electron motion in an undulator
magnet and its interaction with the radiation field is given in Appendix A. The FEL
equations are derived in the framework of classical electrodynamics. Quantum
theory is not needed to explain the theoretical basis and the functioning of pres-
ently existing or planned FEL facilities.

The differential equations describing the time evolution of the laser light wave
are derived in a one-dimensional approximation and turn out to be quite powerful. In
this book, they are evaluated using rather straightforward programs for computing
the FEL gain curve, laser saturation, bandwidth, and other quantities of interest.
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The implications and modifications of the full three-dimensional treatment are
discussed.

The available experimental data on high-gain ultraviolet and soft X-ray FELs
are presented but the wide field of FELs in the visible and infrared regime is not
covered. We apologize for having to omit the important results obtained in this
field as well as other interesting developments and refer to the literature quoted in
the book and to the Free-Electron Laser (FEL) conferences and the American and
European Particle Accelerator conferences (PAC, EPAC) for a complete overview
over the rapidly growing FEL activities worldwide.

The International System (SI) of units is used throughout to enable the reader to
obtain practical numbers from the equations in the book. Our mathematical codes
(written by M. D.) are available on request. The majority of the illustrations and
graphical presentations shown in the book have been prepared by us using these
codes, except when otherwise noted.

We have benefited a great deal from fruitful discussions with our colleagues at
DESY and other laboratories and want to thank them for their advice, in particular
Evgueni Saldin, Evgeny Schneidmiller, and Mikhail Yurkov. We are very grateful
to Erich Lohrmann and Sara Casalbuoni for a thorough reading of an early version
of the manuscript and many valuable suggestions, and to Sven Reiche for a critical
reading of the complete manuscript and his suggestions for improvement. Bernd
Steffen’s help with LATEX problems and editing of figures is gratefully
acknowledged as well as Roxana Tarkeshian’s help in checking the references. We
are particularly grateful to all members of the TESLA collaboration and of the
FLASH team for their invaluable contributions to the design, construction and
operation of a superconducting free-electron laser in Hamburg.

Peter Schmüser2

Martin Dohlus
Jörg Rossbach

Hamburg, April 2008

2 Corresponding author Peter.Schmueser@desy.de
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Chapter 1
Introduction

1.1 Overview

The principle of the Free-Electron Laser (FEL) was invented by John Madey in 1971
[1]. The first FEL, operating in the infrared at a wavelength of 12µm, was built at
Stanford University in the 1970s by Madey and coworkers [2, 3]. For many years,
FELs have played a marginal role in comparison with conventional lasers, except
at microwave and infrared wavelengths. Only in recent years it has become clear
that these devices are exceedingly powerful light sources in the X-ray regime [4–6].
The X-ray pulses produced in the Linac Coherent Light Source LCLS in Stanford
(USA), which is described in Chap. 9, are shorter than the pulses from most other
X-ray sources, and the peak brilliance is about eight orders of magnitude higher.
The high pulse energy and the femtosecond duration (1 fs = 10−15 s) of the X-ray
pulses as well as their coherence open entirely new fields of research, for example
structural analysis of individual biomolecules, which are inaccessible at the present
third-generation light sources. Alternative concepts of X-ray lasers (see e.g. [7–10])
are not discussed in this book.

In this introductory chapter a comparison is made between conventional quantum
lasers and free-electron lasers. Chapter 2 deals with undulator radiation which is
intimately related to FEL radiation. The theory of the low-gain FEL is derived in
Chap. 3. The high-gain FEL theory is treated in Chap. 4 in the one-dimensional
approximation. A set of coupled first-order equations is derived as well as a third-
order differential equation which permit deep insight into the physics of the FEL. The
third-order equation is valid in the so-called linear regime of the FEL where the output
field depends linearly on the input field. We often call this the exponential-growth
regime since here the FEL power grows exponentially with the distance traveled in
the undulator. The coupled first-order equations are more general and encompass in
addition the nonlinear regime where the FEL power goes into saturation.

Numerous applications of the high-gain FEL equations follow in Chap. 5, illustrat-
ing the power of the high-gain theory. The corrections to the one-dimensional theory
are discussed in Chap. 6, these comprise electron beam energy spread, space charge

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 1
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forces, finite electron beam radius, betatron oscillations, optical diffraction, and slip-
page effects in short electron bunches. Special emphasis is put on the principle of
Self-Amplified Spontaneous Emission (SASE). The SASE mechanism is illustrated
in Chap. 7 with numerical simulations and experimental data. Another important
topic is seeding by coherent external sources. The extreme ultraviolet (EUV) and
soft X-ray free-electron laser FLASH is described in Chap. 8 in some detail to give
an impression of the complexity of such an accelerator-based light source. In Chap. 9
the properties of the new FELs in the hard X-ray regime and some of the excellent
experimental results are discussed.

The appendices containing supplementary material are collected in Chap. 10.
A short introduction into the Hamiltonian treatment of electron motion in an undula-
tor and the coupling between electron and light wave is given in Sect. 10.1, see also
Refs. [11, 12]. In Sect. 10.2 the third-order differential equation of the high-gain is
derived using the conventional Vlasov-equation approach, and it is proved that the
high-gain FEL theory reduces to the simpler low-gain theory if the undulator magnet
is short and the growth in light intensity per undulator passage is small. The gener-
alization of the coupled first-order equations to non-periodic cases is discussed in
Sect. 10.2.4. The concepts of Gaussian beam optics are presented in Sect. 10.3 since
Gaussian modes are not only important for conventional laser beams but also for
FEL beams. The eigenmode approach for solving the FEL equations is explained in
Sect. 10.4, and it is applied to the one-dimensional and the three-dimensional case.
Section 10.5.1 deals with an important feature of SASE FELs, namely the current
modulation resulting from shot noise in the electron beam. The gamma distribution
describing the statistical properties of SASE FEL radiation is derived in Sect. 10.5.2.
In Sect. 10.6 we summarize our conventions and list frequently used symbols, their
dimension in SI units, their physical meaning, and the defining equation or the chapter
where the quantity is introduced. Important formulas are put into boxes.

High-gain FELs are often considered the fourth generation of accelerator-based
light sources. In contrast to existing synchrotron radiation light sources, which are
mostly storage rings equipped with undulators, the FEL requirements on the electron
beam quality in terms of small beam cross section, high charge density and low energy
spread are so demanding that presently only linear accelerators (linacs) can be used
to provide the drive beam.

Since the invention of the free-electron laser, an enormous amount of work has
been done in this field. Useful reviews of the work up to 1990 can be found in the
Laser Handbook, Volume 6—Free Electron Lasers [13]. The articles by Murphy and
Pellegrini [14] and by Colson [15] present good introductions into the physics of the
low-gain and the high-gain FEL. For additional reading we refer to the other articles
in the handbook and to the books by Brau [16] and by Freund and Antonsen [17],
and to an article by O’Shea and Freund [18]. A useful account of the progress in
FEL physics and technology up to 2004 is presented in two articles by Pellegrini and
Reiche [19, 20]; see also the literature quoted therein. The FEL theory is thoroughly
treated on a high mathematical level in the book The Physics of Free Electron Lasers
by Saldin, Schneidmiller and Yurkov [21]. An excellent reviews of the current status
of X-ray free-electron laser theory is found in an article by Huang and Kim [22].
Very useful are also the lecture notes by Kim, Huang and Lindberg [23].
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1.2 Electron Accelerators as Short-Wavelength
Light Sources

In the bending magnets of a high-energy electron synchrotron or storage ring, the
relativistic electrons are accelerated toward the center of the ring and emit synchrotron
radiation tangentially to the circular orbit [24–27]. Usually different electrons in a
bunch radiate independently, so the radiation is incoherent. The frequency spectrum
is continuous and extends from zero to frequencies beyond the critical frequency ωc

ωc = 3cγ3

2R
. (1.1)

Here R is the radius of curvature in the bending magnet, γ is the Lorentz factor

γ = 1
√

1 − (v/c)2
= W

mec2 , (1.2)

and W =
√

p2c2 + m2
ec4 is the total relativistic energy of the electron.1 The radiated

power in a bending magnet of field B is

Psyn = e4γ2 B2

6πε0c m2
e
. (1.3)

Most of the power is contained inside a narrow cone of opening angle 1/γ which is
centered around the instantaneous tangent to the circular orbit.

In modern synchrotron light sources the radiation used for research is produced in
wiggler or undulator magnets which are periodic arrangements of many short dipole
magnets of alternating polarity. The electrons move on a sinusoidal orbit through such
a magnet (Fig. 1.1), the overall deflection of the beam is zero. Undulator radiation is
far more useful than bending-magnet radiation because it consists of narrow spectral
lines and is concentrated in a narrow angular cone along the undulator axis. The
fundamental wavelength can be roughly estimated from the following consideration.
Call λu the period of the magnet arrangement. In a coordinate system moving with the
speed of the beam, the relativistic length contraction reduces the period to λ∗

u = λu/γ,
and the electrons oscillate at a correspondingly higher frequency ω∗ = 2πc/λ∗

u and
emit radiation just like an oscillating dipole. For an observer in the laboratory who
is looking against the electron beam the radiation appears strongly blue-shifted by
the relativistic Doppler effect. The wavelength in the laboratory system is λℓ ≈
λ∗

u/(2γ) ≈ λu/(2γ2). For example, at an electron energy of 500 MeV the radiation
wavelength is more than a million times shorter than the undulator period.

1 The total relativistic energy of the electron is denoted by W in this book since we reserve the letter
E for electric fields.
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Fig. 1.1 Schematic representation of electron motion in a planar undulator and the emission of
undulator radiation. In reality the alternating magnetic field and the sine-like electron orbit are
orthogonal to each other but for simplicity they have been drawn in the same plane. The amplitude
of the sinusoidal orbit is exaggerated, it is only a few µm.

A more accurate treatment, taking into account the sinusoidal shape of the electron
trajectory and the fact that the longitudinal velocity of the electrons is lower than
their total velocity, leads to the formula

λℓ =
λu

2γ2

(
1 + K 2

2

)
with K = eB0λu

2πmec
. (1.4)

The dimensionless quantity K is called the undulator parameter, and B0 is the peak
magnetic field on the undulator axis. The undulator parameter is typically in the range
of 1 − 3. The proof of formula (1.4) is presented in Chap. 2. This formula, which is
also valid for the FEL, refers to the fundamental wavelength λ1 ≡ λℓ. Note that the
radiation in forward direction contains odd higher harmonics with the wavelengths

λm = λℓ

m
, m = 1, 3, 5, . . . (1.5)

Undulator radiation has the remarkable feature that its wavelength can be varied at
will, simply by changing the electron energy W = γ mec2. In a limited range, the
wavelength can also be varied by changing the undulator parameter.

It is interesting to note that the power radiated by a relativistic electron in an
undulator is the same as that in a bending magnet with a magnetic field B = B0/

√
2,

however, the intensity is concentrated in a narrow spectral range. Different electrons
radiate independently which means that the total energy produced by a bunch of Ne
electrons is just Ne times the radiation energy of one electron. Coherent radiation
with an intensity scaling quadratically with the number of electrons would be emitted
if the electron bunches were shorter than the light wavelength, a condition that is
practically never satisfied in the X-ray regime.
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1.3 Free-Electron Lasers and Quantum Lasers

The next big improvement in the performance of accelerator-based light sources is
given by the free-electron laser. The main components of an FEL are an accelerator
providing a bunched relativistic electron beam and an undulator magnet. In an FEL
a huge number of electrons radiate coherently because there exists a process of self-
organization on the scale of the light wavelength, the so-called microbunching. The
radiation power scales then quadratically with the number of these particles. For a
typical number of 106 electrons in a microbunch the FEL will yield a million times
higher light output than an undulator.

1.3.1 Stimulated and Spontaneous Emission

The word LASER is an acronym for Light Amplification by Stimulated Emission
of Radiation. A conventional laser (Fig. 1.2) consists of three basic components:
the laser medium with at least three energy levels, an energy pump which creates a
population inversion, and an optical resonator. The axis of the optical cavity defines
the direction of the photons to better than 1 mrad typically. In a mono-mode laser
exactly one optical eigenmode of the cavity is excited. The photons in this mode
have all the same frequency ω, the same direction, described by the wave vector
k = (k1, k2, k3), the same polarization and the same phase. These quantum numbers
characterize a well-defined quantum state which we denote by the Dirac ket vector
|a⟩. Photons have spin 1 and obey the Bose-Einstein statistics; they have a strong
tendency to occupy the same quantum state.

Inside the resonator there are many atoms in the excited state W2 which can emit
radiation of frequency ω = (W2 − W1)/! by going into the ground state W1. In the
beginning of the lasing process, the number of photons in the quantum state |a⟩ is
zero. Call pspon the probability that an atom emits its photon by spontaneous emission
into this quantum state. This photon will travel back and forth between the mirrors
and will remain in the cavity. However, any other photon, emitted with the same
probability pspon into a quantum state |b⟩ with a direction different from the resonator
axis, will immediately escape from the optical resonator. Therefore, the number of
photons in state |a⟩ increases with time. If already n photons are present in state |a⟩,
the probability that photon number (n+1) will also go into this state is (n+1) times
larger than the probability pspon for emission into any other state |b⟩:

pn = (n + 1)pspon = n pspon + 1 pspon = pstim + pspon . (1.6)

Here the term n pspon = pstim stands for the stimulated emission, induced by the
already existing photons in the quantum state |a⟩, and the term 1 pspon stands for the
spontaneous emission which has the same probability pspon for any final state allowed
by energy conservation. This equation, which can be derived in quantum field theory,
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W2

W1

W3

Fig. 1.2 Principle of a quantum laser where the electrons are bound to atomic, molecular or solid-
state energy levels (“bound-electron laser”).

is the physical basis of the laser. The lasing process starts from a stochastic process,
namely spontaneous emission by the excited atoms, and the stimulated emission
results in an exponential growth of the light intensity.

One can understand within the framework of quantum mechanics that the prob-
ability for stimulated emission is proportional to the number of photons already
present. The usual method to compute optical transitions in quantum mechanics is
by means of perturbation theory. The electron in the atom is described by a wave
function obeying the Schrödinger equation. The transition from the ground state to
an excited state or vice versa is caused by a perturbing Hamiltonian which is basi-
cally the potential energy of the electron in the field of an external light wave. This
electromagnetic field, however, is treated as a classical quantity, using the laws of
classical electrodynamics. The matrix element for the transition between two states
of the atom is found to be proportional to the electric field E0 of the light wave,
and the transition probability, which can be calculated using Fermi’s Golden Rule, is
proportional to E2

0 . The field energy inside the volume V of the optical resonator is

ε0

2
E2

0 V = n ! ω , (1.7)

where n is the number of photons in the optical cavity. Hence the probability for stim-
ulated emission is indeed proportional to the number n of already existing photons
in the quantum state |a⟩.
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The origin of spontaneous emission

The two radiative processes which are accessible to quantum mechanical perturbation
theory are the absorption of radiation and the stimulated emission of radiation, and
both have the same probability. The term pspon in Eq. (1.6) corresponds to the sponta-
neous emission which cannot be explained in nonrelativistic quantum mechanics nor
in classical electrodynamics. For a theoretical explanation of spontaneous emission
not only the electron but also the radiation field must be “quantized”. This leads to
Quantum Electrodynamics, the quantum field theory of electromagnetic interactions.
In quantum field theory, the ground state, although usually called the “vacuum”, is
by no means the same as the empty set in mathematics. On the contrary, the ground
state is full of activity: all the time short-lived virtual photons and particle-antiparticle
pairs are created and annihilated. These so-called vacuum fluctuations have a the-
oretically well-understood and experimentally verified influence on atomic energy
levels. The spontaneous emission of radiation by an excited atom or by an electron
moving through an undulator may be interpreted as emission that is stimulated by
vacuum fluctuations. This interpretation has been verified in recent experiments, see
the book Exploring the Quantum by S. Haroche and J.-M. Raimond [28].

1.3.2 Is the FEL Really a Laser?

The electrons in a conventional quantum laser are bound to atomic, molecular or
solid-state energy levels, so one may call this device a bound-electron laser, in
contrast to the free-electron laser where the electrons move in vacuum.

In a free-electron laser (Fig. 1.3) the role of the active laser medium and the
energy pump are both taken over by the relativistic electron beam. An FEL operating
at infrared and optical wavelengths can be equipped with an optical resonator, but
this is no longer possible if the wavelength is decreased below 100 nm, because here
the reflectivity of metals and other mirror coatings drops quickly to zero at normal
incidence.2 In the extreme-ultraviolet and X-ray regime a large laser gain has to be
achieved in a single passage of a very long undulator magnet. The principle of Self-
Amplified Spontaneous Emission (SASE) allows to realize high-gain FELs at these
short wavelengths; seeding by an external coherent source is a promising alternative.

We will see in the chapter on the low-gain FEL theory that the coupling between
the electrons and an already existing light wave in the undulator is proportional to the
electric field E0 of the light wave, and the laser gain is proportional to E2

0 and thereby
to the number of photons in the light wave. Hence one is well justified to speak of
light amplification by stimulated emission of radiation when talking about a free-
electron laser. Moreover, the light emerging from an FEL has the same properties
as conventional laser light: it is nearly monochromatic, polarized, extremely bright,
tightly collimated, and possesses a high degree of transverse coherence.

2 Recently considerable progress has been achieved with crystal optics utilizing Bragg reflection in
diamond [29].
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(a)

(b)

Fig. 1.3 Principle of free-electron laser. For visible or infrared light an optical resonator can be
used. A increase in light intensity of a few per cent per passage of a short undulator magnet is
sufficient to achieve laser saturation within many round trips. In the ultraviolet and X-ray region
one can apply the mechanism of Self-Amplified Spontaneous Emission where a large laser gain is
achieved in a single passage through a very long undulator. a Low gain FEL. b SASE FEL.

The equations of the free-electron laser can be derived from classical relativistic
electrodynamics without using the methods of quantum theory. Unlike for optical
transitions in atoms, the computation of the power radiated in an undulator or an
FEL needs no quantum mechanical matrix elements but can be traced back to the
classical Larmor formula for radiation by an accelerated charge. Of course, when the
number of photons is of interest or the change in energy and momentum which an
electron experiences upon the emission of a photon, the fundamental Planck relation
W = ! ω must be used. A genuine quantum theoretical treatment of the FEL [30–32]
is only needed under extreme conditions which are not fulfilled in presently existing
or planned FEL facilities.

1.3.3 Why Does the FEL Need an Undulator?

We have seen that a relativistic electron beam acts as the energy pump in a free-
electron laser. The energy transfer takes place in an undulator magnet, but one may
ask why this magnet is needed. Is it conceivable that energy is transferred from the
charged particle beam to the light wave when both move on the same straight line?
The answer is of course no: in straight-line motion the electric force acting on an
electron is always perpendicular to its velocity because electromagnetic waves in
vacuum are transverse, and from −e E · v = 0 follows that no work can be done
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by the particle. The undulator field forces the electrons on a sinusoidal orbit where
the particles acquire a velocity component along the direction of the field, hence
−e E · v ̸= 0 and energy transfer will occur.

What about the magnetic force exerted by the light wave? In a high-gain FEL
the magnetic field of the light wave may become much larger than the undulator
field, and it acts over a large distance since the relativistic particles have a speed v

very close to c and move synchronously with the wave. Why does the Lorentz force
exerted by the light-wave field not completely spoil the sinusoidal electron orbit in
the undulator? The answer is simple: the Lorentz force exerted by the light wave is
almost perfectly balanced by the electric force exerted by the wave. To see this we
simplify the problem by ignoring the sinusoidal orbit in the undulator. Let the beams
move straight along the z direction, i.e. v = v ez , and choose a horizontally polarized
wave with E = E ex , B = (E/c) ey . The symbols ex , ey, ez denote the Cartesian
unit vectors. The forces are

Fmag = −e v × B = + e v (E/c) ex , Fel = −e E = −e E ex .

Obviously Fmag + Fel → 0 for v → c. As a consequence of the electrons being at
ultra-relativistic energies, any impact of the electromagnetic wave on the trajectory
of the electrons can be safely neglected, which will be done in the remainder of this
book.
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Chapter 2
Undulator Radiation

2.1 Magnetic Field of a Planar Undulator

The motion of an electron in a planar undulator magnet is shown schematically in
Fig. 2.1. The undulator axis is along the direction of the beam (z direction), the
magnetic field points in the y direction (vertical). The period λu of the magnet
arrangement is about 20–30 mm. For simplicity we assume that the horizontal width
of the pole shoes is larger than λu , then one can neglect the x dependence of the field
in the vicinity of the tightly collimated electron beam. The curl of the magnetic field
vanishes inside the vacuum chamber of the electron beam, hence the field can be
written as the gradient of a scalar magnetic potential obeying the Laplace equation

B = −∇Φmag , ∇2Φmag = 0 .

The field on the axis is approximately harmonic. Making the Ansatz

Φmag(y, z) = f (y) sin(kuz) ⇒ d2 f
dy2 − k2

u f = 0 with ku = 2π

λu

we obtain the general solution

f (y) = c1 sinh(ku y)+ c2 cosh(ku y) .

The vertical field is

By(y, z) = −∂Φmag

∂y
= −ku [c1 cosh(ku y)+ c2 sinh(ku y)] sin(kuz) .

By has to be symmetric with respect to the plane y = 0, hence c2 = 0. We set
kuc1 = B0 and obtain By(0, z) = −B0 sin(kuz). So the potential is

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 11
Springer Tracts in Modern Physics 258, DOI: 10.1007/978-3-319-04081-3_2,
© Springer International Publishing Switzerland 2014
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y

x

z

permanent
magnet
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electron beam

Fig. 2.1 Schematic view of a planar undulator magnet with alternating polarity of the magnetic
field and of the sine-like trajectory of the electrons. In the magnet shown here the field is produced
by permanent magnets that are placed between iron pole shoes. The distance between two equal
poles is called the undulator period λu . A typical value is λu = 25 mm.

Φmag(x, y, z) = B0

ku
sinh(ku y) sin(kuz) . (2.1)

For y ̸= 0 the magnetic field possesses a small longitudinal component Bz :

Bx = 0 ,

By = −B0 cosh(ku y) sin(kuz) , (2.2)

Bz = −B0 sinh(ku y) cos(kuz) .

In the following we restrict ourselves to the symmetry plane y = 0 and use the
idealized field

B = −B0 sin(kuz) ey , (2.3)

where ey is the unit vector in y direction.

2.2 Electron Motion in an Undulator

2.2.1 Trajectory in First Order

We call W = Wkin +mec2 = γ mec2 the total relativistic energy of the electron. The
transverse acceleration by the Lorentz force is

γ mev̇ = −e v × B , (2.4)
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resulting in two coupled equations

ẍ = e
γ me

By ż , z̈ = − e
γ me

By ẋ , (2.5)

which are solved iteratively. To obtain the first-order solution we observe that vz =
ż ≈ v = β c = const and vx ≪ vz . Then z̈ ≈ 0 and the solution for x(t) and z(t) is

x(t) ≈ eB0

γ meβck2
u

sin(kuβct) , z(t) ≈ βct , (2.6)

if the initial conditions
x(0) = 0 , ẋ(0) = eB0

γmeku

are realized by a suitable beam steering system in front of the undulator1 (the undu-
lator magnet starts at z = 0). The electron travels on the sine-like trajectory

x(z) = K
βγku

sin(kuz) . (2.7)

In this equation we have introduced the important dimensionless undulator
parameter

K = eB0

mec ku
= eB0λu

2 π mec
= 0.934 · B0 [T] · λu [cm] . (2.8)

The transverse velocity is

vx (z) =
K c
γ

cos(kuz) . (2.9)

2.2.2 Motion in Second Order

Due to the sinusoidal trajectory the longitudinal component of the velocity is not
constant. It is given by

vz =
√
v2 − v2

x =
√

c2(1 − 1/γ2) − v2
x ≈ c

(
1 − 1

2γ2 (1 + γ2v2
x/c2)

)
.

1 In practice the initial conditions can be realized by augmenting the undulator with a quarter period
upstream of the periodic magnet structure and by displacing the electron orbit at z = −λu/4 by
∆x = −K/(βγku) with the help of two dipole magnets. A similar arrangement at the rear end
restores the beam orbit downstream of the undulator. For an illustration see Ref. [1].
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Inserting for vx = ẋ(t) the first-order solution and using the trigonometric identity
cos2 α = (1 + cos 2α)/2, the longitudinal speed becomes

vz(t) =
(

1 − 1
2γ2

(
1 + K 2

2

))
c − cK 2

4γ2 cos(2ωut) (2.10)

with ωu = β̄c ku ≈ c ku . The average longitudinal speed is

v̄z =
(

1 − 1
2γ2

(
1 + K 2

2

))
c ≡ β̄ c . (2.11)

The particle trajectory in second order is described by the equations

x(t) = K
γku

sin(ωut) , z(t) = v̄z t − K 2

8γ2 ku
sin(2ωut) . (2.12)

The motion in a helical undulator is treated in Sects. 4.9 and 10.1.

2.3 Emission of Radiation

The radiation emitted by relativistic electrons in a magnetic field is concentrated in a
narrow cone with an opening angle of about ±1/γ. The cone is centered around the
instantaneous tangent to the particle trajectory. The direction of the tangent varies
along the sinusoidal orbit in the undulator magnet, the maximum angle with respect
to the axis being

θmax ≈
∣∣∣∣
dx
dz

∣∣∣∣
max

= K
βγ

≈ K
γ

. (2.13)

Suppose this directional variation is less than 1/γ. Then the radiation field receives
contributions from various sections of the trajectory that overlap in space and inter-
fere with each other. The important consequence is: the radiation spectrum in forward
direction is not continuous but nearly monochromatic, more precisely, it is composed
of a narrow spectral line at a well-defined frequency and its odd higher harmonics.
This is the characteristic feature of undulator radiation. The condition to be satisfied is

θmax ≤ 1
γ

⇒ K ≤ 1 . (2.14)

Incidentally, this condition can be a bit relaxed, and K values of 2 − 3 are still
acceptable.

On the other hand, if the maximum angle θmax exceeds the radiation cone angle
1/γ by a large factor, which is the case for K ≫ 1, one speaks of a wiggler magnet.



2.3 Emission of Radiation 15

Wiggler radiation consists of many densely spaced spectral lines forming a quasi-
continuous spectrum which resembles the spectrum of ordinary synchrotron radiation
in bending magnets. We will not discuss it any further in this book.

2.3.1 Radiation in a Moving Coordinate System

Consider a coordinate system (x∗, y∗, z∗) moving with the average longitudinal
speed of the electrons:

v̄z ≡ β̄ c , γ̄ = 1
√

1 − β̄2
≈ γ

√
1 + K 2/2

with γ = W
mec2 . (2.15)

The Lorentz transformation from the moving system to the laboratory system reads

t∗ = γ̄ (t − β̄z/c) ≈ γ̄ t (1 − β̄2) = t/γ̄ ,

x∗ = x = K
γku

sin(ωut) ,

z∗ = γ̄ (z − β̄ct) ≈ − K 2

8γku
√

1 + K 2/2
sin(2ωut) .

The electron orbit in the moving system is thus

x∗(t∗) = a sin(ω∗t∗) , z∗(t∗) = −a
K

8
√

1 + K 2/2
sin(2ω∗t∗) (2.16)

with the amplitude a = K/(γku) and the frequency

ω∗ = γ̄ ωu = γ̄ c ku ≈ γ c ku√
1 + K 2/2

.

Note that ωut = ω∗t∗. The motion is depicted in Fig. 2.2. It is mainly a transverse
harmonic oscillation with the frequency ω∗ = γ̄ ωu . Superimposed is a small longi-
tudinal oscillation with twice that frequency. If we ignore the longitudinal oscillation
for the time being, the electron will emit dipole radiation in the moving system with
the frequency ω∗ = γ̄ ωu and the wavelength λ∗

u = λu/γ̄.
The radiation power from an accelerated charge is given by the well-known

Larmor formula

P = e2

6πε0c3 v̇2 , (2.17)

see Ref. [2] or any other textbook on classical electrodynamics. For an oscillating
charge, v̇2 must be averaged over one period. The Larmor formula is applicable for
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Fig. 2.2 The electron trajec-
tory in the moving coordinate
system for an undulator para-
meter of K = 1 (continuous
red curve) or K = 5 (dashed
blue curve). The curve has
the shape of the number eight.
For K ≫ 1 the excursion
in longitudinal direction is
z∗

max/a =
√

2/8 = 0.18. For
K → 0 the longitudinal width
shrinks to zero.

1 0 1
1

0

1

z* / a

x*
 / 

a
an oscillating dipole which is either at rest or moving at non-relativistic speeds. This
condition is satisfied in the moving coordinate system. Ignoring the longitudinal
oscillation, the acceleration has only an x component

v̇∗
x = d2x∗

dt∗2 = − K
γku

ω∗2 sin(ω∗t∗) = − Kγc2ku

1 + K 2/2
sin(ω∗t∗) ,

and the time-averaged square of the acceleration becomes

〈
v̇2

〉
= K 2γ2c4k2

u

(1 + K 2/2)2

1
2
.

The total radiation power in the moving system is thus

P∗ = e2c γ2 K 2k2
u

12πε0(1 + K 2/2)2 . (2.18)

2.3.2 Transformation of Radiation into Laboratory System

The radiation characteristics of an oscillating dipole which is either at rest or moving
at relativistic speed is depicted in Fig. 2.3. With increasing Lorentz factor γ the
radiation becomes more and more concentrated in the forward direction. To compute
the light wavelength in the laboratory system as a function of the emission angle θ
with respect to the beam axis it is appropriate to apply the Lorentz transformation

! ω∗ = γ̄ (Wph − β̄ cpph cos θ) = γ̄ ! ωℓ(1 − β̄ cos θ)
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z*

x* x

z

Fig. 2.3 Radiation characteristics in the laboratory system of an oscillating dipole at rest (left) or
moving horizontally at a speed of v = 0.9 c (right). The dipole oscillates in vertical direction.

which expresses the photon energy ! ω∗ in the moving system in terms of the photon
energy Wph = ! ωℓ and the photon momentum pph = ! ωℓ/c in the laboratory
system. The light frequency in the laboratory system is then

ωℓ =
ω∗

γ̄ (1 − β̄ cos θ)
⇒ λℓ =

2πc
ωℓ

≈ λu (1 − β̄ cos θ) .

Using β̄ = 1 − (1 + K 2/2)/(2γ2) and cos θ ≈ 1 − θ2/2 (the typical angles are
θ ≤ 1/γ ≪ 1) we find that the wavelength of undulator radiation near θ = 0 is in
good approximation

λℓ(θ) =
λu

2γ2

(
1 + K 2

2
+ γ2θ2

)
. (2.19)

The radiation is linearly polarized with the electric vector in the plane of the wavelike
electron trajectory. T. Shintake has written a computer code in which the electric field
pattern of a relativistic electron moving through the undulator is computed [3]. The
field lines are shown in Fig. 2.4. One can clearly see the optical wavefronts and the
dependence of the wavelength on the emission angle.

The total radiation power is relativistically invariant [2]. This can be seen as fol-
lows. Since we have ignored the longitudinal oscillation, the longitudinal coordinate
and the longitudinal momentum of the electron are zero in the moving system

z∗ = 0 , p∗
z = 0 .

Then the Lorentz transformations of time and electron energy read

t = γ̄ t∗ , W = γ̄ W ∗ ,

so the radiation power in the laboratory system becomes

P = −dW
dt

= −dW ∗

dt∗
= P∗ .

The undulator radiation power per electron in the laboratory system is therefore
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Fig. 2.4 Undulator radiation of an electron with v = 0.9 c. The undulator parameter is K = 1.
The wavy curve indicates the electron trajectory in the undulator. (Courtesy of T. Shintake).

P1 = e2c γ2 K 2k2
u

12πε0(1 + K 2/2)2 . (2.20)

Since this formula has been derived neglecting the influence of the longitudinal
oscillation it describes only the power P1 contained in the first harmonic. The total
power of spontaneous undulator radiation, summed over all harmonics and all angles,
is found to be equal to the synchrotron radiation power (1.3) in a bending magnet
whose field strength is B = B0/

√
2 .

Prad = e4γ2 B2
0

12πε0c m2
e
= e2c γ2 K 2k2

u

12πε0
. (2.21)

This is easy to understand: the undulator field varies as By(z) = −B0 sin(kuz), and

hence
〈
B2

y

〉
= B2

0/2. Formula (2.21) is valid for any value of the undulator parameter
K and therefore also applicable for wiggler radiation. If the undulator parameter is
increased much beyond the ideal value of K = 1, the power contained in the first
harmonic decreases as 1/K 2.
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Fig. 2.5 A finite wave train with 10 oscillations and the lineshape function of forward undulator
radiation (i.e. the intensity as a function of frequency) in a magnet with Nu = 10 periods.

2.4 Lineshape and Spectral Energy of Undulator Radiation

An important property of undulator radiation is that it consists of narrow spectral
lines. How wide is such a line? In this section we consider the first harmonic only
and look in forward direction. An electron passing through an undulator with Nu
periods produces a wave train with Nu oscillations (Fig. 2.5) and a time duration of
T = Nuλ1/c. The electric field of the light wave is written as

Eℓ(t) =
{

E0 exp(−i ωℓt) if − T/2 < t < T/2 ,
0 otherwise .

(2.22)

Due to its finite length, this wave train is not monochromatic but subtends a frequency
spectrum which is obtained by Fourier transformation

A(ω) =
∫ +∞

−∞
Eℓ(t)eiωt dt = E0

∫ +T/2

−T/2
e−i(ωℓ−ω)t dt

= 2E0 ·
sin((ωℓ − ω)T/2)

ωℓ − ω
. (2.23)

The spectral intensity is

I (ω) ∝ |A(ω)|2 ∝
(

sin ξ

ξ

)2

with ξ = (ωℓ − ω)T
2

= π Nu
ωℓ − ω

ωℓ
. (2.24)

It has a maximum at ω = ωℓ and a characteristic width of

∆ω ≈ ωℓ

Nu
. (2.25)

The lineshape function for a wave train with 10 oscillations is shown in Fig. 2.5.
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The angular width of the first harmonic around θ = 0 can be estimated as fol-
lows. We know from Eq. (2.19) that the frequency decreases with increasing emission
angle θ:

ωℓ(θ) = ωℓ(0) ·
1 + K 2/2

1 + K 2/2 + γ2θ2 .

The intensity drops to zero when δωℓ = ωℓ(0) − ωℓ(θ) exceeds the bandwidth
following from Eq. (2.24). The root-mean-square (rms) value is found to be [4]

σθ ≈ 1
γ
·
√

1 + K 2/2
2Nu

≈ 1
γ
· 1√

Nu
for K ≈ 1 . (2.26)

Obviously, the first harmonic of undulator radiation is far better collimated than
synchrotron radiation: the typical opening angle 1/γ is divided by

√
Nu ≫ 1. It is

important to realize that this tight collimation of the first harmonic applies only if one
requests that the frequency stays within the bandwidth. If one drops the restriction
to a narrow spectral line and accepts the entire angular-dependent frequency range
as well as the higher harmonics, the cone angle of undulator radiation becomes for
K > 1, using Eq. (2.13),

θcone ≈ K
γ

. (2.27)

2.5 Higher Harmonics

To understand the physical origin of the higher harmonics of undulator radiation
we follow the argumentation in the excellent book The Science and Technology of
Undulators and Wigglers by J. A. Clarke [5]. In the forward direction (θ = 0) only
odd higher harmonics are observed while the off-axis radiation (θ > 0) contains also
even harmonics. How can one explain this observation?

Consider a detector with a small aperture centered at θ = 0 which is placed
in the far-field at large distance from the undulator. The electrons moving on a
sinusoidal orbit with maximum angle of K/γ emit their radiation into a cone of
opening angle 1/γ. If the undulator parameter is small, K ≪ 1, the radiation cone
points always toward the detector and therefore the radiation from the entire trajectory
is detected. One observes a purely sinusoidal electric field which has only one Fourier
component at the fundamental harmonic ω1, see Fig. 2.6 (top). The situation changes
if the undulator parameter is significantly larger than 1, because then the angular
excursion of the electron is much larger than the cone angle 1/γ and the radiation
cone sweeps back and forth across the aperture, so the detector receives its light
only from short sections of the electron trajectory. The radiation field seen by the
detector consists now of narrow pulses of alternating polarity as sketched in the
bottom part of Fig. 2.6. The frequency spectrum contains many higher harmonics.
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Fig. 2.6 Schematic view of the electric light-wave field seen by a small detector in forward
direction and the corresponding frequency spectrum. Top : small undulator parameter K = 0.2.
Bottom : fairly large undulator parameter K = 2.

Viewed in forward direction, the positive and negative pulses are symmetric in shape
and uniformly spaced, and consequently only the odd harmonics occur. When the
detector is placed at a finite angle θ > 0, the field pulses are no longer equally
spaced and the radiation spectrum contains the even harmonics as well (see [5] for
an illustration).

The wavelength of the mth harmonic as a function of the angle θ is

λm(θ) =
1
m

λu

2γ2 (1 + K 2/2 + γ2θ2) , m = 1, 2, 3, 4, . . . . (2.28)

In forward direction only the odd harmonics are observed with the wavelengths

λm = 1
m

λu

2γ2 (1 + K 2/2) , m = 1, 3, 5, . . . , (2.29)

so λ3 = λ1/3, λ5 = λ1/5. We will present an alternative derivation of Eq. (2.29) in
Chap. 3.

The spectral energy density per electron of the radiation emitted in forward
direction (emission angle θ = 0) is for the mth harmonic [5]
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Fig. 2.7 Left : Example of a computed photon energy spectrum of undulator radiation for an
undulator with 10 periods. Plotted is the differential spectral energy density d2Um/d$dω at θ = 0.
The units are arbitrary. Right : The spectral energy Um(ω) of the mth harmonic that is emitted
into the solid angle ∆$m . The electron Lorentz factor is γ = 1000, the undulator has the period
λu = 25 mm and the parameter K = 1.5. Note that the energy ratios Um/U1 depend only on the
harmonic index m and the undulator parameter K , but neither on γ nor on λu .

d2Um

d$dω
= e2γ2 m2 K 2

4πε0c(1 + K 2/2)2 · sin2(πNu(ω − ωm)/ω1)

sin2(π(ω − ωm)/ω1)
· |JJ|2 (2.30)

with JJ = Jn

(
m K 2

4 + 2K 2

)
− Jn+1

(
m K 2

4 + 2K 2

)
, m = 2n + 1 .

Here ωm = m ω1 ≡ m ωℓ is the (angular) frequency of the mth harmonic. The
harmonic index m is related to the index n by m = 2n + 1 and takes on the odd
integer values m = 1, 3, 5, . . . for n = 0, 1, 2, . . .. The Jn are the Bessel functions of
integer order. In the vicinity of ωm , the sine function in the denominator of Eq. (2.30)
can be replaced by its argument. In this form the equation is presented in Refs. [4, 6].
The absolute bandwidth at θ = 0 is the same for all harmonics

∆ω1 = ∆ω3 = ∆ω5 , . . .

but the fractional bandwidth shrinks as 1/m

∆ωm

ωm
= 1

m Nu
(2.31)

because the wave train comprises now m Nu oscillations in an undulator with Nu
periods. The angular width is [4]

σθ,m ≈ 1
γ
·
√

1 + K 2/2
2m Nu

≈ 1
γ
· 1√

m Nu
for K ≈ 1 . (2.32)

The corresponding solid angle
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∆$m = 2πσ2
θ,m ≈ 2π

γ2 · 1
m Nu

decreases as 1/m with increasing harmonic order. Within the solid angle ∆$m the
angular-dependent frequency shift is less than the bandwidth. Of practical interest is
the spectral energy contained in this solid angle:

Um(ω) =
d2Um

d$dω
∆$m m = 1, 3, 5, . . . . (2.33)

This spectral energy is shown in Fig. 2.7 for m = 1, 3, 5, 7 for a short undulator with
ten periods and K = 1.5.

The angular dependence of the spectral energy is derived in Ref. [5]. For emission
angles θ > 0 the radiation contains all even and odd higher harmonics, as mentioned
above.
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Chapter 3
Low-Gain FEL Theory

The schematic setup of a low-gain FEL is shown in Fig. 3.1. The main components
are

• an electron storage ring or a recirculating linac in which relativistic electron
bunches carry out many revolutions,

• a short undulator magnet,
• an optical cavity.

We assume the presence of an initial light wave with wavelength λℓ which may be
provided either by an external source such as a conventional laser, or by the sponta-
neously emitted undulator radiation which is captured in the optical cavity. Following
the terminology in laser physics, one speaks of an FEL amplifier if the lasing process
is initiated by seed radiation, and of an FEL oscillator if the lasing process starts from
spontaneous radiation. The bunches make very many turns through the undulator.
Upon each passage the light intensity grows by only a few per cent, which is the
reason why such a device is called a low-gain FEL. The small gain per undulator
passage, however, does not prevent the FEL from reaching very high output powers
of many Gigawatts if the number of turns is sufficiently large and if the lifetime of
the optical eigenmode, being proportional to the quality factor of the optical cavity,
is long enough.

3.1 Energy Transfer from Electron Beam to Light Wave

3.1.1 Qualitative Treatment

We consider here the case of an FEL amplifier which is seeded by an external laser.
For simplicity, the light wave co-propagating with the relativistic electron beam is
described by a plane electromagnetic wave

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 25
Springer Tracts in Modern Physics 258, DOI: 10.1007/978-3-319-04081-3_3,
© Springer International Publishing Switzerland 2014
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Fig. 3.1 Principle of a low-gain free-electron laser.

Ex(z, t) = E0 cos(kℓz − ωℓt + ψ0) with kℓ = ωℓ/c = 2π/λℓ . (3.1)

(In reality the seed laser will be a pulsed laser to achieve sufficient instantaneous
power. Likewise, the FEL light is concentrated in a short pulse that is traveling back
and forth between the mirrors of the optical resonator). The electric field of the light
wave exerts a force F = −e E on the electron and changes its energy:

dW
dt

= v · F = −evx(t)Ex(t) . (3.2)

Energy conservation tells us that the light wave gains energy if the electron loses
energy, so dW/dt must be negative to get an energy transfer from the electron to the
light wave.1 This happens if the x component of the electron velocity and the electric
vector Ex of the light wave point in the same direction. Suppose this condition
is fulfilled at some position in the undulator, see Fig. 3.2. Now a problem arises.
The light wave, traveling with the speed c along the z axis, will obviously slip
forward with respect to the electron whose average speed in z direction is v̄z =
c
(
1 − (2 + K2)/(4γ2)

)
according to Eq. (2.11). This speed is definitely less than

c because the electrons are massive particles and thus slower than light, but more
importantly, because they travel on a sinusoidal orbit which is longer than the straight
path of the photons.

The question is then: is it possible at all to achieve a sustained energy transfer from
the electron beam to the light wave along the entire undulator axis? The answer is:
sustained energy transfer is indeed possible but the phase of the light wave has to slip
by the right amount, and this proper slippage occurs only for certain well-defined
wavelengths. Figure 3.2 illustrates that the transverse velocity vx and the field Ex
remain parallel if the light wave advances by half an optical wavelength λℓ/2 in a
half period of the electron trajectory. The difference of the electron and light travel
times for a half period of the undulator is

1 In Chap. 4 the inhomogeneous wave equation will be used to compute the energy exchange between
the electron beam and the FEL wave.
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Fig. 3.2 Condition for sustained energy transfer from electron to light wave: the light wave has to
advance by λℓ/2 per half period of the electron trajectory.

∆t = tel − tlight =
[

1
v̄z

− 1
c

]
λu

2
,

and the condition for sustained energy transfer reads

c ∆t = λℓ/2 .

Inserting ∆t allows us to compute the light wavelength. In good approximation it is
given by

λℓ =
λu

2γ2

(
1 + K2

2

)
. (3.3)

We remark that slippages by 3λℓ/2, 5λℓ/2 , . . . are also possible leading to odd
higher harmonics (λℓ/3 , λℓ/5 , . . .) of the FEL radiation. Note however that c ∆t =
2λℓ/2, 4λℓ/2 , . . . yields zero net energy transfer from the electron to the light wave:
the even harmonics (λℓ/2 , λℓ/4 , . . .) will not be amplified.

3.1.2 Quantitative Treatment

The energy transfer per unit time from an electron to the light wave is described by
the equation

dW
dt

= −e vx(t)Ex(t) = −e c K
γ

cos(kuz)E0 cos(kℓz − ωℓt + ψ0) (3.4)

= −e c K E0

2γ
[ cos((kℓ + ku)z − ωℓt + ψ0)+ cos((kℓ − ku)z − ωℓt + ψ0) ] .

What is the meaning of the phase ψ0 appearing in the equation? This phase accounts
for the fact that the light wave will in general be phase-shifted against the sinusoidal
trajectory of an arbitrary electron because the bunch is far longer than the light
wavelength. It is convenient to rewrite Eq. (3.4) in the form
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dW
dt

= −e c K E0

2γ
cos ψ − e c K E0

2γ
cos χ , (3.5)

where we have introduced two new quantities, ψ and χ. It is customary in FEL
physics to call the argument ψ of the first cosine function the ponderomotive phase:

ψ = (kℓ + ku)z − ωℓt + ψ0 . (3.6)

The position z of the electron is a function of time t according to Eq. (2.12), so we
can write the ponderomotive phase as a function of the single variable t:

ψ(t) = (kℓ + ku)z(t) − ωℓt + ψ0 . (3.7)

The first term in Eq. (3.5) will provide a continuous energy transfer from the electron
to the light wave if cos ψ(t) is positive and remains constant along the entire undulator
(i.e. independent of time), the optimum phase being ψ = 0 or ψ = ±n 2π. Now we
insert z(t) from Eq. (2.12) but neglect for the time being the longitudinal oscillation,
hence we put z(t) = v̄z t and get

ψ(t) = (kℓ+ku)v̄z t−ωℓt+ψ0 = const ⇔ dψ

dt
= (kℓ+ku)v̄z−kℓc = 0 . (3.8)

The condition ψ = const can only be fulfilled for a certain wavelength. Insertion
of v̄z permits us to compute the light wavelength, which is in good approximation

λℓ =
λu

2γ2

(
1 + K2

2

)
. (3.9)

This is an extremely important result: the condition for sustained energy transfer
all along the undulator yields the exactly same light wavelength as is observed in
undulator radiation at θ = 0. This fact is the reason why spontaneous undulator
radiation can serve as seed radiation in an FEL.

Now we look at the second cosine function in Eq. (3.5). Here the argument χ(t)
cannot be kept constant since from the requirement

χ(t) = (kℓ − ku)v̄zt − ωℓt + ψ0 = const (3.10)

we would deduce
kℓ(1 − β̄) = −ku β̄ ⇒ kℓ < 0 ,

which means that the light wave would have to propagate in the negative z direction,
contrary to our assumption. Writing ψ as a function of z = v̄z t we can immediately
verify that

χ(z) = ψ(z) − 2kuz .
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Fig. 3.3 The z dependence of the constant term cos ψ (dashed red line) and the rapidly oscillating
term cos χ (blue curve).

  Reference particle:  ψ0 = - π /2  
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Fig. 3.4 Ponderomotive phase ψ0 = −π/2 corresponding to vanishing energy exchange between
electron and light wave.

Choosing the Lorentz factor γ of the electrons such that Eq. (3.9) holds, we obtain
ψ(z) = const, and then the second cosine function in (3.5) behaves as cos(2kuz), i.e.
it carries out two oscillations per undulator period and averages to zero. This sce-
nario is depicted in Fig. 3.3. Neglecting the rapidly oscillating second term, Eq. (3.5)
reduces to

dW
dt

= −ecKE0

2γ
cos ψ . (3.11)

Significance of the ponderomotive phase
To understand the significance of the ponderomotive phase we assume that the light
wavelength obeys the basic equation (3.9), from which follows ψ(z) = const. First
we choose ψ0 = −π/2. In this case both Eq. (3.11) and Fig. 3.4 tell us that there is
no energy exchange between electron and light wave.

Choosing an initial phase of ψ0 = 0 (see the left part of Fig. 3.5), we get ψ(z) = 0
all along the undulator and thus sustained energy transfer from the electron to the
light wave. On the other hand, for ψ0 = −π there will be sustained energy transfer
from the light wave to the electron, corresponding to particle acceleration by a light
field (right part of Fig. 3.5).
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FEL case: ψ0 = 0
energy transfer from electron to light wave

Laser-acceleration: ψ0 = - π
energy transfer from light wave to electron

Fig. 3.5 Left: Ponderomotive phase ψ0 = 0 for optimum energy transfer from electron to light
wave (FEL operation). Right: Phase ψ0 = −π for optimum energy transfer from light wave to
electron (particle acceleration by a light field).

Fig. 3.6 Definition of the internal longitudinal bunch coordinate ζ. The ponderomotive phase is
ψ = 2π ζ/λ − π/2. The origin ζ = 0 corresponds to an initial phase ψ0 = −π/2 in Eqs. (3.4)
and (3.6) and vanishing energy exchange between electron and light wave. The origin moves with
the average electron speed v̄z along the z axis of the undulator. Note that the length scale of the
coordinate ζ refers to the laboratory system and not to the co-moving coordinate system of the
relativistic bunch. Hence there is no relativistic length expansion.

Internal bunch coordinate
The ponderomotive phase ψ has an intuitive interpretation: it can be transformed into
a longitudinal coordinate ζ inside the bunch:

ζ = ψ + π/2
2π

λℓ . (3.12)

This is schematically shown in Fig. 3.6. We define the origin ζ = 0 by the condition
that the energy exchange between electron and light wave is zero; this corresponds
to an initial phase ψ0 = −π/2, see Fig. 3.4. The general electron will be at an initial
position ζ0 ̸= 0 in the bunch and it will thus possess an initial phase ψ0 ̸= −π/2.

3.2 The FEL Pendulum Equations

We treat the low-gain FEL again as a laser amplifier and assume that the lasing
process in the undulator is initiated by an incident monochromatic light wave of
amplitude E0 and wavelength λℓ. The resonance electron energy Wr = γr mec2 is
defined by the equations
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λℓ =
λu

2γ2
r

(
1 + K2

2

)
⇒ γr =

√
λu

2λℓ

(
1 + K2

2

)
. (3.13)

Its meaning is the following: electrons with the energy Wr would emit undulator
radiation whose wavelength is identical to the seed wavelength λℓ .

Let now the electron energy W be slightly different from Wr and define the relative
energy deviation

η = W − Wr

Wr
= γ − γr

γr
, |η| ≪ 1 (3.14)

The Lorentz factor γ and the ponderomotive phase ψ of an electron will both change
due to the interaction with the radiation field. In contrast to this, the electric field
amplitude E0 grows so slowly in a low-gain FEL that it can be considered as roughly
constant during one passage of the undulator. More precisely, we put dE0/dt = 0
inside the undulator but change the field by the appropriate discrete amount ∆E0
after each passage. The time derivative of the ponderomotive phase is no longer zero
for γ ̸= γr :

dψ

dt
= (kℓ + ku)v̄z − ωℓ ≈ kuc − kℓc

2γ2

(
1 + K2

2

)
,

where we have inserted v̄z from (2.11). According to Eq. (3.13) we can write

kuc = kℓc
2γ2

r

(
1 + K2

2

)

and obtain
dψ

dt
= kℓc

2

(
1 + K2

2

) (
1
γ2

r
− 1

γ2

)
.

From this follows in good approximation, using Eq. (3.14) and the fact that γ differs
very little from γr :

dψ

dt
= 2kuc η . (3.15)

The time derivative of the relative energy deviation η is according to Eq. (3.11)

dη

dt
= − eE0K

2mecγ2
r

cos ψ . (3.16)

The two Eqs. (3.15) and (3.16) are called the FEL pendulum equations. They are of
fundamental importance for both low-gain and high-gain FELs.
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Analogy with a mathematical pendulum
In order to stress the similarity with the mathematical pendulum it is convenient to
introduce a shifted phase variable2 φ by

φ = ψ + π/2 ⇒ cos ψ = sin φ . (3.17)

The two coupled first-order differential equations (3.15) and (3.16) read then

dφ

dt
= 2kuc η ,

dη

dt
= − eE0K

2mecγ2
r

sin φ . (3.18)

Combining them we arrive at the second-order pendulum equation of the low-gain
FEL

φ̈ + #2 sin φ = 0 with #2 = eE0Kku

meγ2
r

, (3.19)

which is mathematically equivalent to the second-order differential equation of a
mathematical pendulum. We point out that this equation is not valid in the high-gain
FEL theory because the time derivative of the electric field has been neglected in the
derivation of (3.19).

3.3 Phase Space Representation and FEL Bucket

3.3.1 Phase Space Trajectories

There is a close analogy between the dynamics of a low-gain FEL and the motion of
a mathematical pendulum which is treated in Sect. 10.1. The first-order differential
equations are

FEL
dφ

dt
= 2kuc · η ,

dη

dt
= − eE0K

2mecγ2
r
· sin φ ,

pendulum
dφ

dt
= 1

mℓ2 · L ,
dL
dt

= −m g ℓ · sin φ .

Owing to the same mathematical structure of the two sets of coupled equations we can
describe the FEL by a Hamiltonian, too. In analogy with Eq. (10.5), the Hamiltonian
of the low-gain FEL is given by

H(φ, η) = kuc η2 + eE0K
2mecγ2

r
(1 − cos φ) . (3.20)

2 The shifted phase φ is only needed for our comparison between FEL and pendulum. It will not
be used in the other chapters.
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The Eqs. (3.18) are an immediate consequence of the Hamilton equations

dφ

dt
= ∂H

∂η
= 2kuc η ,

dη

dt
= −∂H

∂φ
= − eE0K

2mecγ2
r

sin φ . (3.21)

The trajectories in the (φ, η) phase space are the curves of a constant Hamiltonian:
H = const. The region of bounded motion (periodic oscillation in case of the pendu-
lum) is separated from the region of unbounded motion (rotation of pendulum, see
Sect. 10.1) by a curve called the separatrix. The equation of the FEL separatrix is in
analogy to Eq. (10.7)

ηsep(φ) = ±
√

eE0K
kumec2γ2

r
cos(φ/2) . (3.22)

The phase space trajectory of an electron in an FEL can be easily constructed by
writing the coupled differential equations (3.21) as difference equations and solving
these in small time steps. An electron at the “reference position” φ = 0 (correspond-
ing to the bunch center ζ = 0) has zero energy exchange with the light wave as
illustrated in Fig. 3.4. If moreover the energy of the reference electron is chosen as
W = Wr = γrmec2, hence η = 0, then the Eqs. (3.21) reveal that the phase space
coordinates of this reference electron will be stationary during the motion through
the undulator. The point (φ, η) = (0, 0) is therefore a fixpoint in the phase space
diagram.

The phase space trajectories of 15 electrons with different initial phases φ0 are
shown in Fig. 3.7 for the two cases γ = γr and γ > γr . When the electrons are on
resonance, γ = γr , the net energy transfer is zero since there are as many electrons
which supply energy to the light wave as there are electrons which remove energy
from the wave. For γ > γr , however, the phase space picture clearly shows that there
is a positive net energy transfer from the electron beam to the light wave. This will
be computed in the next section.

3.3.2 Definition of the FEL Bucket

The particle dynamics in a low-gain FEL has some similarity with the longitudinal
dynamics in a proton storage ring. When the proton beam has been accelerated to
the design energy, the phase of the radio-frequency (RF) in the accelerating cavities
is adjusted such that the bunch receives zero energy gain on average. The energy of
a “reference” particle at the bunch center will remain constant. However, individual
protons inside the bunch will either be accelerated or decelerated depending on
their position relative to the reference particle. The particles carry out synchrotron
oscillations, these are coupled longitudinal oscillations about the reference position
and energy oscillations about the reference energy. The phase space picture looks
exactly alike the FEL phase space diagrams in Fig.3.7.
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Fig. 3.7 Phase space trajectories of 15 electrons with different initial phases φ0. Left picture:
Electrons are on resonance, γ = γr , η = 0. The electrons with negative initial phases −π < φ0 < 0
withdraw energy from the light wave while those with positive initial phases 0 < φ0 < π supply
energy to the light wave. From the symmetry it is obvious that the net energy transfer from the
ensemble of electrons to the light wave is zero for γ = γr . The particle at the center (φ, η) = (0, 0)
does not move at all, so (0, 0) is a fixpoint. The separatrix (3.22) is drawn as a dashed curve. Right
picture: Electrons are above resonance, γ > γr , η > 0. Now there are more particles losing energy
than gaining energy, so the net energy transfer from the electron beam to the light wave is positive
(in this example there are seven electrons inside the separatrix that lose energy and five electrons
that gain energy). Note that for η > 0 the fixpoint is not occupied by a particle, and that moreover
the first and the last particle are outside the separatrix and carry out an unbounded motion.

The proton bunches are contained in the potential minima of the Hamiltonian, the
so-called RF buckets. By analogy we call the area enclosed by the separatrix (3.22)
the FEL bucket. The phase space picture in Fig. 3.7 can be periodically repeated,
making the replacement φ → φ ± n 2π. There are many FEL buckets in a long
electron bunch.

Written in terms of the ponderomotive phase ψ = φ − π/2 the equation of the
separatrix reads

ηsep(ψ) = ±
√

eE0K
kumec2γ2

r
cos

(
ψ − ψb

2

)
(3.23)

where
ψb = −π/2 ± n 2π (3.24)

is the phase of the bucket center. The energy exchange between electron and light
wave vanishes at the bucket center (see also Fig. 3.4).

It is interesting to note that the synchrotron oscillation frequency is quite small. In
the 920 GeV proton storage ring HERA at DESY, for example, the particles carried
out less than 0.001 longitudinal oscillation per revolution. In a similar manner the
phase space motion of the electrons in the FEL is very slow. To see this we rewrite
the first pendulum equation in the form
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dψ

dz
≈ dψ

c dt
= 4π

λu
η .

In a short undulator of 1 m length and with a period of λu = 25 mm, the phase
advance per passage is only ∆ψ = 0.16 π for a typical fractional energy deviation
η = 0.001.

3.4 FEL Gain and Madey Theorem

We have seen in the previous section that the energy transfer between the electron
beam and the light wave (3.1) depends on the relative energy deviation η = (γ −
γr)/γr . Figure 3.7 shows quite clearly that the light wave gains energy when η is
positive but remains invariant for η = 0. Likewise, the light wave loses energy when
η is negative. Now we look for a quantitative description. The FEL gain function
is defined as the relative growth of the light intensity during one passage of the
undulator

G = ∆Iℓ
Iℓ

with Iℓ = c
ε0

2
E2

0 .

Treating the phase space motion of the electrons by a second-order perturbation
approach it can be shown [1] that the gain function3 is given by the expression

G(ω) = −π e2K̂2N3
u λ2

u ne

4ε0mec2γ3
r

· d
dξ

(
sin2 ξ

ξ2

)
with ξ = ξ(ω) = π Nu

ωℓ − ω

ωℓ
.

(3.25)
Here ne is the number of electrons per unit volume, Nu is the number of undulator
periods, and K̂ is the modified undulator parameter defined in Eq. (3.30) below. The
dimensionless variable ξ = πNu (ωℓ − ω)/ωℓ, which was already introduced in
Eq. (2.24), is a measure of the frequency deviation from the initial frequency ωℓ.

Equation (3.25) is the Madey theorem which states that the FEL gain curve is
proportional to the negative derivative of the lineshape curve of undulator radiation
[2]. We omit here the somewhat cumbersome proof of the Madey theorem because
we will demonstrate in Chap. 5 and Sect. 10.2.2 that Eq. (3.25) can be obtained by
taking the low-gain limit of the more general high-gain FEL theory.

In Eq. (3.25) the frequency ω is taken as the independent variable. In practice the
equation is often applied in a different way. The initial frequency ωℓ is fixed by an
external seed laser or by the eigenmode of the optical resonator. The electron energy
W = γmec2, however, may differ from the resonance energy Wr = γrmec2 defined
in Eq. (3.13). In this case one is interested in the FEL gain curve as a function of the
energy offset. To this end we rewrite the quantity ξ as a function of γ and obtain in
good approximation

3 This is the traditional definition of the gain function in FEL theory. In the terminology of electronic
amplifiers as well as of standard laser physics the gain should be defined as gain ≡ G + 1 because
unity gain means that the output signal is equal to the input signal.
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Fig. 3.8 Left: the lineshape curve I(ω) for the first harmonic ω1 ≡ ωℓ of undulator radiation.
Right: a typical gain function G(η) of the low-gain FEL.

ξ = πNu
ωℓ − ω

ωℓ
= −2πNu

γr − γ

γr
.

The negative sign in front of the last expression is explained in Sect. 5.2.1. The FEL
gain as a function of the relative energy deviation η reads then

G(η) = −π e2K̂2N3
u λ2

u ne

4ε0mec2γ3
r

· d
dξ

(
sin2 ξ

ξ2

)
with ξ = ξ(η) = 2πNuη . (3.26)

Electrons with positive η enhance the intensity of the light wave, while those with
negative η reduce it. An illustration is given in Fig. 3.8.

Qualitatively the Madey theorem is easy to understand. Two conditions must be
fulfilled in order to obtain appreciable gain in a free-electron laser driven by seed
radiation:

(1) The electron energy W must be close to the resonance energy Wr to enable
continuous energy transfer from the electron beam to the light wave all along
the undulator. Hence the relative energy deviation η = (W − Wr)/Wr must stay
within the bandwidth of the lineshape curve of undulator radiation.

(2) From Fig. 3.7 it is obvious the gain function G vanishes for η = 0, while G(η)
is positive for η > 0 and negative for η < 0.

The negative derivate of the lineshape function satisfies both conditions.

3.5 Higher Harmonics and Modified Undulator Parameter

In the previous sections we have only considered the average longitudinal speed v̄z
of the particles in the computation of the energy exchange between electron and light
wave. Now the longitudinal oscillation of z(t) is explicitly taken into account, see
Eq. (2.12):
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z(t) = v̄zt − cK2

8γ2ωu
sin(2ωut) .

We insert this into Eq. (3.4), choosing ψ0 = 0 to simplify the notation:

dW
dt

= −ecKE0

2γ

[
cos(kℓ z(t) − ωℓ t + kuv̄z t)+ cos(kℓ z(t) − ωℓ t − kuv̄z t)

]
.

An approximation has already been made here: kuz(t) ≈ kuv̄z t, which is justified
since ku ≪ kℓ and the amplitude of the oscillating term in z(t) is small. At this
place it is convenient to write the cosine functions as the real part of the complex
exponential function of the form

exp
[
ikℓ(β̄ − 1)c t ± ikuv̄z t

]
· exp

[
−i

K2kℓ

8γ2ku
sin(2ωut)

]
.

The second exponential can be expanded into a Fourier-Bessel series [3]

exp(iY sin Φ) =
∞∑

n=−∞
Jn(Y) exp(inΦ) (3.27)

with Y = − K2kℓ

8γ2ku
, Φ = 2ωut = 2v̄zkut .

The two cosine terms in Eq. (3.4) yield now

⎡

⎣
∞∑

n=−∞
Jn(Y) exp(i[2n + 1]kuv̄zt)+

∞∑

n′=−∞
Jn′(Y) exp(i[2n′ − 1]kuv̄zt)

⎤

⎦

× exp(ikℓ[β̄ − 1]c t) .

In the second sum we make the replacement n′ → (n+1). Then the two sums can be
combined into a single sum. Taking the real part, the energy change of the electron
becomes

dW
dt

= −ecKE0

2γ

∑

n

[
Jn(Y)+ Jn+1(Y)

]
cos

[
(kℓ + (2n + 1)ku)v̄zt − kℓc t

]
.

The condition for continuous energy transfer from the electron to the light wave is
for the term with index n

(kℓ + [2n + 1]ku)v̄z − kℓc = 0 ⇒ ku = 1
2n + 1

· kℓ

2γ2

(
1 + K2

2

)
.



38 3 Low-Gain FEL Theory

Since the light wavelength must be positive only the non-negative integers n =
0, 1, 2, . . . are allowed. Therefore the FEL wavelengths of the harmonics m = 2n+1
are given by the expression

λm = 1
m

· λu

2γ2

(
1 + K2

2

)
m = 1, 3, 5, . . . . (3.28)

We see that only the odd higher harmonics are present. Note this equation is equally
valid for undulator radiation in forward direction, see Eq. (2.29).

The energy transfer from electron to light wave is described by the equation

dW
dt

= −ecKE0

2γ

∞∑

n=0

[
Jn(Yn)+ Jn+1(Yn)

]
cos

[
(kℓ + (2n + 1)ku)v̄zt − kℓc t

]

with Yn = − (2n + 1)K2

4 + 2K2 . (3.29)

The oscillatory term in the longitudinal velocity of the electrons leads not only to
the generation of odd higher harmonics but has also an influence on the fundamental
harmonic m = 1. From Eq. (3.29) follows that the coupling between the charged
particle and the electromagnetic wave is changed by the factor [J0(Y0)+ J1(Y0)] if
the longitudinal oscillation is taken into consideration. We can absorb this correction
factor into a modified undulator parameter4

K̂ ≡ K ·
[

J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
. (3.30)

Here we have used that J0 is an even function and J1 is an odd function. For K = 1
the modified undulator parameter is K̂ = 0.91.
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Chapter 4
One-Dimensional Theory of the High-Gain FEL

4.1 General Principles of High-Power FELs

There are basically two ways to build a high-power FEL. In the infrared and visible
range an optical resonator is utilized, and the FEL radiation pulse passes a short
undulator magnet very many times in close spatial and temporal overlap with an
electron bunch. During each passage the light intensity grows by just a few per
cent but after very many round trips, the overall amplification may become very
large. A striking example is the infrared FEL at the Thomas Jefferson Laboratory
in Newport News, Virginia, USA where an average FEL beam power of more than
10 kW has been achieved at wavelengths of 6–1.6µm [1]. It is even possible to reach
laser saturation in an FEL equipped with an optical cavity, but one has to realize
that the initially uniform particle distribution inside the bunch gradually acquires the
microbunch structure discussed below when the light intensity increases more and
more. However, when such a bunch traverses the bending magnets of a storage ring
or a recirculating linac, the microbunches will be washed out, so a recirculated bunch
entering the undulator will not possess a fine structure with the periodicity of the
optical wavelength. This bunch may have an increased energy spread owing to the
preceding interaction with the light wave.

In the extreme ultraviolet (EUV) and X-ray region an optical resonator has not
been realized up to date due to the lack of suitable mirrors.1 Therefore, the light
amplification must be achieved in a single pass through a very long undulator magnet.
Here the low-gain FEL theory is obviously inadequate and one has to admit that
the amplitude of the light wave grows considerably during the motion through the
undulator. The growth is intimately related to the evolution of a microbunch structure
at the scale of the light wavelength. This mechanism and the resulting exponential
growth and saturation regimes are inaccessible to the low-gain FEL theory presented
in Chap. 3.

1 Recently considerable progress has been achieved with crystal optics utilizing Bragg reflection in
diamond [2].

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 39
Springer Tracts in Modern Physics 258, DOI: 10.1007/978-3-319-04081-3_4,
© Springer International Publishing Switzerland 2014
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Fig. 4.1 Numerical simulation of microbunching. The particles are plotted as dots in a (x, ζ) plane,
where x is the horizontal displacement from the undulator axis and ζ is the longitudinal internal
bunch coordinate. a Initial uniform distribution, b beginning of microbunching, c fully developed
microbunches with a periodicity of the light wavelength λℓ. (Courtesy of S. Reiche).

4.2 Microbunching

One essential advantage of FEL radiation as compared to undulator radiation is its
much higher intensity because a large number of electrons radiate coherently. The
intensity of the radiation field grows quadratically with the number of coherently
acting particles: IN = N2 I1. If it were possible to concentrate all electrons of a
bunch into a region far smaller than the light wavelength then these N particles
would radiate like a point-like “macroparticle” with charge Q = −Ne. The problem
is of course that this concentration of some 109 electrons into a tiny volume is totally
unfeasible, even the shortest conceivable particle bunches are much longer than the
wavelength of an X-ray FEL. The way out of this dilemma is given by the process
of microbunching which is based on the following principle: electrons losing energy
to the light wave travel on a sinusoidal trajectory of larger amplitude than electrons
gaining energy from the light wave, compare Eq. (2.12). The result is a modulation of
the longitudinal velocity which eventually leads to a concentration of the electrons
in slices which are shorter than the light wavelength λℓ. These microbunches are
close to the positions where maximum energy transfer to the light wave can happen
according to Fig. 3.2 (we will prove this statement in Sect. 5.6.2).

A numerical simulation of the microbunching process is shown in Fig.4.1. The
particles within a microbunch radiate like a single particle of high charge. The result-
ing strong radiation field enhances the microbunching even further and leads to an
exponential growth of the radiation power. Experimental data at a wavelength of
98 nm are shown in Fig. 4.2. They agree very well with the theoretical prediction.
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Fig. 4.2 The exponential growth of the FEL pulse energy as a function of the length z traveled in
the undulator. The data (open circles) were obtained at the SASE FEL of the TESLA Test Facility
[3], the electron energy was 245 MeV. The progressing microbunching is indicated schematically.
Laser saturation sets in for z ≥ 12 m. Here the microbunches are fully developed and no further
increase in laser power can be expected.

4.3 Basic Elements of the One-Dimensional FEL Theory

In this chapter the high-gain FEL amplifier is studied. The lasing process is initiated
by seed radiation of wavelength λℓ and the electron beam energy is chosen to obey
the resonance condition (3.13). We restrict ourselves to the one-dimensional FEL
theory where a dependency of the bunch charge density and the electromagnetic
fields on the transverse coordinates x, y is neglected. This is justified if the electron
beam possesses a homogeneous charge density and if its radius rb is sufficiently large.
A lower limit for rb will be derived in Sect. 6.2. The electron bunches are treated
as being very long, the effects occurring at the head or tail of a bunch are ignored.
Betatron oscillations and diffraction of the light wave are disregarded as well. The
influence of these effects will be investigated in Chap. 6. The full three-dimensional
treatment of the FEL is quite complicated and cannot be carried through by analytical
methods.

We use complex notation to simplify the mathematics and designate complex
quantities with a tilde. For example, the electric field of the light wave inside the
undulator is written in the form

Ẽx(z, t) = Ẽx(z) exp[i(kℓz − ωℓt)] (4.1)

with a complex amplitude function Ẽx(z). The actual field is obtained by taking the
real part of this equation



42 4 One-Dimensional Theory of the High-Gain FEL

Ex(z, t) = ℜ{Ẽx(z) exp[i(kℓz − ωℓt)]} . (4.2)

The analytic description of a high-gain FEL amounts to a self-consistent treat-
ment of

• the coupled pendulum Eqs. (3.15) and (3.16), describing the phase-space motion
of the particles under the influence of the electric field of the light wave,

• the inhomogeneous wave equation for the electric field of the light wave,
• the evolution of a microbunch structure coupled with longitudinal space charge

forces.

Initially the charge density is distributed almost uniformly along the bunch. During
the passage through the undulator, the interaction with the periodic light wave will
gradually produce a periodic density modulation. In analogy with the treatment of
longitudinal instabilities in circular accelerators [4], we anticipate the microbunching
effect by assuming that the initial uniform charge distribution possesses already a
small modulation which is periodic in the internal bunch coordinate ζ with the period
given by the light wavelength λℓ. From Eq. (3.12) follows then a periodicity in the
ponderomotive phase variable ψ with the period 2π. Hence we express the electric
charge density in the form

ρ̃(ψ, z) = ρ0 + ρ̃1(z)eiψ . (4.3)

The real charge density is of course given by

ρ(ψ, z) = ρ0 + ℜ
(
ρ̃1(z)eiψ

)
.

The complex amplitude ρ̃1 = ρ̃1(z) grows while the bunch moves through the undu-
lator. From jz = vzρ follows that the current density acquires a similar modulation:

j̃z(ψ, z) = j0 + j̃1(z) eiψ = j0 + j̃1(z) exp[i(kℓ + ku)z − iωℓt] . (4.4)

In the high-gain FEL theory we are dealing with many electrons simultaneously
which have different positions in the bunch. It is advantageous to take the incident
light wave as the reference and put ψ0 = 0 in Eq. (3.6), so the definition of the
ponderomotive phase is now

ψ = (kℓ + ku)z − ωℓ t . (4.5)

The initial positions ζn of the electrons inside the bunch are specified by assigning a
start phase ψn to each particle (see Sects. 4.6 and 5.6).

In this chapter we ignore the oscillatory part in the longitudinal velocity and put

z(t) = v̄zt = β̄c t , β̄ = 1 − 1
2γ2

(
1 + K2

2

)
. (4.6)
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Higher harmonics are therefore not considered in our treatment of the high-gain FEL,
but the modified undulator parameter K̂ from Eq. (3.30) is used wherever appropriate,
see Sect. 4.5. Using Eqs. (3.9) and (4.6) one gets in good approximation

kℓ + ku = kℓ

[
1 + 1

2γ2

(
1 + K2

2

)]
≈ kℓ

β̄
.

Hence the current density can be written as

j̃z(ψ, z) = j0 + j̃1(z) exp
[
i k′(z − v̄zt)

]
with k′ = kℓ/β̄ . (4.7)

From this equation it is evident that the current modulation moves along the z direction
with the same speed v̄z = β̄ c as the electron bunch, except for a very slight slippage
which is due to the phase evolution of j̃1(z). This will be studied in Sect. 5.6.2.

The periodic charge density modulation leads to repulsive space charge forces
with the same periodicity. These longitudinal forces counteract the microbunching
effect and tend to smear out any structure in the longitudinal charge distribution.
Obviously, we have to consider two opposing effects in describing the evolution of
the microbunch structure.

The question arises whether it is really justified to assume the existence of an
initial periodic density modulation. We can convince ourselves that this is indeed the
case. The argument is as follows. The electrons in a bunch entering the undulator
are in general randomly distributed along the bunch axis. In Sect. 10.5.1 we show
that the random longitudinal distribution has a non-vanishing Fourier component at
the wavelength λℓ of the seed radiation. This Fourier component will be strongly
amplified in the FEL gain process. Of course one might as well make a Fourier
expansion with another wavelength as the period. It will turn out, however, that the
FEL gain is large only in a narrow interval around the seed wavelength (see Sect. 5.2),
while the gain becomes negligible if λ is very different from λℓ. Hence the Fourier
components at other wavelengths will in general not be amplified but retain their
small initial values.

Considerable care is needed in applying the Maxwell equations in the 1D FEL
theory because these equations are intrinsically three-dimensional. For example, the
first Maxwell equation in its integral form states that the flux of the electric field
through a closed surface is given by the enclosed electric charge:

∮
E · dS = Q/ε0 .

An interesting consequence is that the internal longitudinal Coulomb force in highly
relativistic bunches can be neglected if the bunch length is much larger than its
radius (an intuitive explanation is that all particles have velocities very close to c
and do not “see” each other). Mathematically we demonstrate this as follows. In
the rest frame of the electrons the bunch length appears stretched by the Lorentz
factor γ ≫ 1 and is thus very much larger than the bunch radius which remains
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invariant: L∗
b = γ Lb ≫ r∗

b = rb. Consequently, the flux of the electric field through
a cylindrical surface enclosing the bunch is predominantly in radial direction, the
flux through the end faces of the cylinder is almost negligible. Therefore the electric
field in the rest frame of the bunch is almost purely radial, and it preserves this feature
after Lorentz back-transformation into the laboratory system.

Remark: In contrast to this result, a naive application of the first Maxwell equation in
its differential form would lead to an erroneous prediction. What is the 1D approximation
of divE = ∂Ex/∂x + ∂Ey/∂y + ∂Ez/∂z = ρ/ε0? Since the field is supposed to depend
only on z but not on x and y, one might feel inclined to choose the equation equation
dEz/dz = ρ/ε0. In case of an infinitely long bunch with a constant charge density ρ0, this
equation yields a totally wrong result: it predicts the existence of a longitudinal electric field
Ez(z) = ρ z/ε0 that rises linearly with z and may become very large. On the other hand,
for a bunch with a microstructure at the scale of the optical wavelength, described by a
charge density ρ(z) = ρ0 + ρ1(z), the equation equation dEz/dz = ρ1(z)/ε0 is well suited
to compute the longitudinal space charge field, and this will be done below.

In the 1D FEL theory described in this chapter the bunches are assumed to be
very long. Then the longitudinal electric field can be neglected as long as the charge
distribution remains homogeneous. However, as soon as the periodic charge den-
sity modulation sets in at the very tiny scale of the light wavelength, which in the
co-moving coordinate frame corresponds to a periodic modulation at the scale of
λ∗

u = λu/γ̄ ≪ L∗
b , a periodic longitudinal Coulomb field will become significant.

4.4 Electromagnetic Fields

4.4.1 Radiation Field

The wave equation for the electric field E of the light wave reads

[
∇2 − 1

c2

∂2

∂t2

]
E = µ0

∂j
∂t

+ 1
ε0

∇ρ (4.8)

with the current density j and the electric charge density ρ. In the one-dimensional
approximation the equation for the x component becomes in complex notation

[
∂2

∂z2 − 1
c2

∂2

∂t2

]
Ẽx(z, t) = µ0

∂ j̃x
∂t

, (4.9)
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where j̃x is the x component of the current density resulting from the sinusoidal
motion of the electron bunch in the undulator. The derivative ∂ρ/∂x is not present
in the 1D theory.2

We assume that the lasing process in the undulator is initiated (seeded) by an
incident electromagnetic wave Ex(z, t) with horizontal polarization. In the low-gain
FEL, an approximate solution of the wave equation is

Ex(z, t) = E0 cos(kℓz − ωℓt + ψ0)

with a constant amplitude E0 of the light wave. In reality the amplitude grows by a few
per cent during one passage of a short undulator. For the high-gain FEL, however, we
have to admit that the amplitude of the light grows considerably along the undulator.
Hence we assume a solution of the form

Ẽx(z, t) = Ẽx(z) exp[i(kℓz − ωℓt)] (4.10)

with a complex amplitude Ẽx(z) which will be a function of the path length z in the
undulator. The initial phase ψ0 is put to zero, see the previous section. The phase of
the amplitude Ẽx(z) may vary with z which means that the phase velocity of the FEL
light wave may differ slightly from the phase velocity c of an electromagnetic wave.
This effect will be studied in Chap. 6. Inserting Eq. (4.10) into the wave equation
yields

[
2 i kℓẼ′

x(z)+ Ẽ′′
x (z)

]
exp[i(kℓz − ωℓt)] = µ0

∂ j̃x
∂t

. (4.11)

To proceed further we make the slowly varying amplitude (SVA) approximation in
order to get rid of the second derivative Ẽ′′

x . The amplitude Ẽx(z) is assumed to be
a smooth function of z which varies slowly in the sense that the change within one
undulator period λu is small. Then the change within one light wavelength is even
much smaller. This implies that the first derivative of the field is also small

∣∣∣Ẽ′
x(z)

∣∣∣ λℓ ≪
∣∣∣Ẽx(z)

∣∣∣ ⇒
∣∣∣Ẽ′

x(z)
∣∣∣ ≪ kℓ

∣∣∣Ẽx(z)
∣∣∣ . (4.12)

Of course, the first derivative, characterizing the slope of the function Ẽx(z), must be
retained in order to describe the growth of the FEL power as a function of undulator
length. The change of the slope, however, will be extremely small in one undulator
period λu and practically negligible in one optical wavelength

∣∣∣Ẽ′′
x (z)

∣∣∣ λℓ ≪
∣∣∣Ẽ′

x(z)
∣∣∣ ⇒

∣∣∣Ẽ′′
x (z)

∣∣∣ ≪ kℓ

∣∣∣Ẽ′
x(z)

∣∣∣ . (4.13)

2 The derivative ∂ρ/∂x plays no role in the 3D theory either, see Sect. 10.4 and Ref. [5], if one
considers only the first harmonic. However, this term becomes important for higher harmonics.
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Hence one can safely omit the second derivative of the field in Eq. (4.11). The dif-
ferential equation of the slowly varying amplitude reads in the SVA approximation

dẼx

dz
= − iµ0

2kℓ
· ∂ j̃x

∂t
· exp[−i(kℓz − ωℓt)] . (4.14)

Now a connection is made between the longitudinal and transverse components
of the current density. This relation is given by the motion of the particles in the
undulator. From

j̃x = ρ̃vx , j̃z = ρ̃vz

follows
j̃x = j̃z vx/vz .

The x component of the electron velocity in a planar undulator is taken from Eq. (2.9).
We get

j̃x = j̃z
vx

vz
≈ j̃z

vx

c
= j̃z

K
γ

cos(kuz) . (4.15)

This relation between the currents in x and z direction is put into Eq. (4.14):

dẼx

dz
= − iµ0K

2kℓγ
· ∂ j̃z

∂t
exp[−i(kℓz − ωℓt)] cos(kuz) .

The current density

j̃z(ψ, z) = j0 + j̃1(z) exp(iψ) = j0 + j̃1(z) exp[i(kℓz − ωℓt)+ ikuz]

has to be partially differentiated with respect to time

[
∂ j̃z
∂t

]

z=const

= −iωℓ j̃1 exp[i(kℓz − ωℓt)+ ikuz] .

The derivative of the transverse field becomes

dẼx

dz
= −µ0cK

2γ
j̃1 exp[i(kℓz − ωℓt)+ ikuz] exp[−i(kℓz − ωℓt)] eikuz + e−ikuz

2

= −µ0cK
4γ

j̃1 {1 + exp(i2kuz)} .

The phase factor exp(i2kuz) carries out two oscillations per undulator period λu
and averages to zero (see also Fig. 3.3). So within the SVA approximation we can
express the derivative of the transverse field in terms of the modulation amplitude of
the current density by
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dẼx

dz
= −µ0cK

4γr
· j̃1 . (4.16)

In this equation we have replaced γ by γr because a high-gain FEL is always operated
close to resonance (see Sect. 5.1).

4.4.2 Space Charge Field

The longitudinal space charge field created by the modulated charge density (4.3) is
computed using the Maxwell equation ∇·E = ρ/ε0. According to the discussion in
Sect. 4.3 the homogeneous part ρ0 of the charge density has to be disregarded here.
The periodic part of the charge density generates a periodic longitudinal field whose
derivative is

∂Ẽz(z, t)
∂z

= ρ̃1(z)
ε0

exp[i((kℓ + ku)z − ωℓt)] . (4.17)

Writing
Ẽz(z, t) = Ẽz(z) exp[i((kℓ + ku)z − ωℓt)]

the derivative of the field with respect to z is in the SVA approximation

∂Ẽz(z, t)
∂z

≈ i (kℓ + ku)Ẽz(z) exp[i((kℓ + ku)z − ωℓt)]

since ∣∣∣∣∣
dẼz(z)

dz

∣∣∣∣∣ ≪ (kℓ + ku)
∣∣∣Ẽz(z)

∣∣∣

for a slowly varying amplitude. Comparing with Eq. (4.17) and using ku ≪ kℓ we
obtain for the complex amplitude of the longitudinal electric field

Ẽz(z) ≈ − i
ε0kℓ

ρ̃1(z) ≈ − iµ0c2

ωℓ
· j̃1(z) . (4.18)

Combining Eqs. (4.18) and (4.16) allows us to relate the longitudinal field to the
derivative of the transverse field

Ẽz(z) = i
4γrc
ωℓK

· dẼx

dz
. (4.19)
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4.5 Corrections Due to the Longitudinal Oscillation

In the previous section we have disregarded the longitudinal oscillation of the elec-
trons during their motion through the undulator. We know from Sect. 3.5 that this
oscillation leads to a modification of the energy transfer from the electron to the light
wave, see Eq. (3.29). The modified undulator parameter defined in Eq. (3.30)

K̂ = K ·
[

J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]

enters the energy-transfer Eq. (3.16) which has to read

dη

dt
= − eE0K̂

2mecγ2
r

cos ψ . (4.20)

Moreover, K̂ appears in the longitudinal component of the electron-beam current
density. Therefore in the Eqs. (4.16) and (4.19) the replacement K → K̂ must be
made:

dẼx

dz
= −µ0cK̂

4γr
· j̃1 . (4.21)

Ẽz(z) = i
4γrc

ωℓK̂
· dẼx

dz
. (4.22)

On the other hand, the FEL wavelength Eqs. (3.9) and (3.28) remain unchanged, so
they contain the unmodified undulator parameter K .

4.6 The Coupled First-Order Equations

In Sect. 3.3 we have studied how an ensemble of electrons moves in the (ψ, η) phase
space due to the interaction with the field of the light wave. The time derivative of an
electron’s ponderomotive phase (or, equivalently, of its position ζ inside the bunch)
is given by the first pendulum Eq. (3.15). Replacing the time t by the longitudinal
coordinate z according to z(t) = β̄c t, we get

dψ

dz
= 2kuη (β̄ ≈ 1) . (4.23)

The change in the relative energy deviation η is described by the second pendulum
Eq. (4.20)
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dη

dz
= − eE0K̂

2mec2γ2
r

cos ψ .

In case of the low-gain FEL the electric field amplitude E0 of the light wave is treated
as a constant but now we have to take into account the z-dependence of the field. In
our present complex notation we rewrite the second pendulum equation as

[
dη

dz

]

ℓ

= − eK̂
2mec2γ2

r
ℜ(Ẽxeiψ) .

At this place it is mandatory to take the real part because the relative energy deviation
is always a real quantity. The subscript “ℓ” indicates the coupling to the light wave.
One has to add the energy change due to the interaction between the electron and
the space charge (sc) field. The rate of change of the electron energy due to the
longitudinal force is

dW
dt

= v̄zFz = −e v̄zℜ(Ẽzeiψ) .

Using z = v̄zt we find then

[
dη

dz

]

sc
= − e

mec2γr
ℜ(Ẽzeiψ) .

Combining the two effects yields

dη

dz
= − e

mec2γr
ℜ

{(
K̂Ẽx

2γr
+ Ẽz

)

eiψ

}

. (4.24)

Our goal is now to study the phase space motion of the electrons in a similar
manner as in the low-gain case, but to take explicitly into account the growth of the
field amplitude Ẽx(z) of the light wave and the evolution of the space charge field
Ẽz(z). Both are related to the modulation amplitude j̃1(z) of the electron beam current
density by the Eqs. (4.21) and (4.18):

dẼx

dz
= −µ0cK̂

4γr
· j̃1(z) , Ẽz(z) = − iµ0c2

ωℓ
· j̃1(z) . (4.25)

The obvious task is to compute j̃1 for a given arrangement of electrons in phase
space. To this end we subdivide the electron bunch into longitudinal slices of length
λℓ. Since the bunch is much longer than the light wavelength, there will be very
many of these slices (in fact infinitely many in the periodic 1D theory where one
neglects the beginning and the end of the bunch). Each slice has an area Ab = πr2

b ,
where rb is the radius of the bunch. Written in terms of the ponderomotive phase
these are slices of length 2π. In the slice 0 ≤ ψ < 2π we have N electrons with the
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phases ψn (n = 1 . . .N). Treating the electrons as point-like particles the longitudinal
distribution can be expressed in the form

S(ψ) =
N∑

n=1

δ(ψ − ψn) with ψ, ψn ∈ [0, 2π] . (4.26)

In this chapter and in Chap. 5 we restrict ourselves to the special cases that the initial
state is characterized either by a perfectly uniform longitudinal distribution of the
electrons in the bunch or by a density distribution that is periodic in ψ with the period
2π. To this end we continue the function (4.26) periodically so that it is defined for
all |ψ| < ∞. We call this the periodic model. The more realistic case of a random
longitudinal particle distribution will be investigated in Chap. 7 and Sect. 10.5.1. The
uniformity (or periodicity) implies that the function S(ψ) can be expanded in a real
Fourier series

S(ψ) = a0

2
+

∞∑

k=1

[ak cos(k ψ)+ bk sin(k ψ)] , (4.27)

ak = 1
π

∫ 2π

0
S(ψ) cos(k ψ)dψ , bk = 1

π

∫ 2π

0
S(ψ) sin(k ψ)dψ .

Defining the complex Fourier coefficients ck = ak − ibk one can rewrite S(ψ) in the
form

S(ψ) = c0

2
+ ℜ

{ ∞∑

k=1

ck exp(i k ψ)

}

. (4.28)

The complex Fourier coefficients are given by

ck = 1
π

∫ 2π

0
S(ψ) exp(−i k ψ)dψ . (4.29)

In order to find the relation between the Fourier coefficients and the current density
we look first at the dc current density which is proportional to the zeroth Fourier
coefficient c0/2 ≡ a0/2 = N/(2π). From j0 = −e c ne and ne = N/(Abλℓ) follows
then

j0 = −e c
2π

Abλℓ
· c0

2
.

Remember that ne is the number of electrons per unit volume, N is the number of
electrons in a slice of area Ab and length λℓ, and j0 is the dc current density.

The modulation current j̃1 is proportional to the coefficient of the first harmonic
k = 1
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c1 = 1
π

∫ 2π

0

(
N∑

n=1

δ(ψ − ψn)

)

exp(−i ψ)dψ = 1
π

N∑

n=1

exp(−iψn) .

By analogy with j0 we obtain

j̃1 = −e c
2π

Abλℓ
· c1 = −e c

2π

Abλℓ
· 1
π

N∑

n=1

exp(−iψn) = j0
2
N

N∑

n=1

exp(−iψn) .

(4.30)
Now we have collected all equations that are needed to compute numerically the time
evolution of our system. We remind the reader that our time variable is here the path
length z in the undulator magnet which is related to the normal time t by z = v̄zt.

The complete set of coupled first-order equations in the periodic model is

dψn

dz
= 2kuηn , n = 1........N , (4.31a)

dηn

dz
= − e

mec2γr
ℜ

{(
K̂Ẽx

2γr
− iµ0c2

ωℓ
· j̃1

)

exp(iψn)

}

, (4.31b)

j̃1 = j0
2
N

N∑

n=1

exp(−iψn) , (4.31c)

dẼx

dz
= −µ0cK̂

4γr
· j̃1 . (4.31d)

The Eqs. (4.31a, 4.31b, 4.31c, 4.31d) describe the time evolution of the pondero-
motive phase ψn and the relative energy deviation ηn = (γn − γr)/γr of the nth
electron (n = 1.....N), as well as the time evolution of the modulated current density
j̃1 and the amplitude of the light wave Ẽx . Since N is a large number we are con-
fronted with a true many-body problem for which no analytical solution exists. The
set of 2N+2 coupled differential and algebraic equations can be solved by numerical
integration as will be discussed in Sect. 5.4. We point out that the coupled equations
in the form (4.31a, 4.31b, 4.31c, 4.31d) are restricted to uniform or periodic initial
particle distributions. They are well suited for a simulation of microbunching, gain
and saturation in an FEL amplifier that is driven by monochromatic light, but a SASE
FEL cannot be handled because here the initial particle distribution is random.

Now we sketch briefly how the periodic model can be generalized. The main changes
are:

(a) The initial phase space distribution must be specified for the whole bunch and
not just for one slice of length λℓ.
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(b) The electron beam current is a function of z, like j̃1(z), but depends in addition
on the internal bunch coordinate ζ = z − β̄ c t = z − v̄zt. The current density is
therefore written as

j̃z = j0(ζ)+ ĵ1(z, ζ) exp(i ψ).

(c) To describe variations of the electric field inside the FEL pulse we introduce an
internal longitudinal coordinate

u = z − c t =
(

1 − c
v̄z

)
z + c

v̄z
ζ

and make the Ansatz

Ẽx(z, t) = Ê(z, u) exp[i(kℓz − ωℓt)]

in which the complex amplitude function Ê(z, u) depends on the position z in the
undulator, like Ẽx(z), but also on the internal FEL pulse coordinate u = z − ct.
The detailed treatment is presented in Sect. 10.2.4 where also a non-periodic
form (10.63a, 10.63b, 10.63c, 10.63d) of the coupled equations can be found.

4.7 The Third-Order Equation of the High-Gain FEL

The main physics of the high-gain FEL is contained in the coupled first-order
Eqs. (4.31a, 4.31b, 4.31c, 4.31d) presented in the previous section, but unfortunately
these equations have no analytical solution. If we make the additional assumption
that the periodic density modulation remains small, it is possible to eliminate the
quantities ψn and ηn, characterizing the particle dynamics in the bunch, and to derive
a third-order differential equation containing only the electric field amplitude Ẽx(z)
of the light wave. This equation has the great advantage that it can be solved analyt-
ically.

We present here a novel method to derive the third-order equation from the cou-
pled Eqs. (4.31a, 4.31b, 4.31c, 4.31d) by a perturbation approach. The conventional
method using a particle distribution function and the Vlasov equation is outlined in
Sect. 10.2.1. The z-evolution of the particle phases ψn and the energy deviations ηn
will be parametrized in terms of two dimensionless complex functions ã(z) and b̃(z)
which are assumed to remain small, |ã(z)| ≪ 1, |b̃(z)| ≪ 1. Likewise, the modu-
lated current density j̃1(z) and the field Ẽx(z) are assumed to be small. We restrict
ourselves to first-order perturbation theory: only those terms are retained which are
linear in ã, b̃, j̃1 and Ẽx while second-order terms such as ã2, ãj̃1 or ãẼx are dropped.
Another reason for leaving out the second-order terms is that they would lead to
higher harmonics in the FEL radiation which we have explicitly excluded from our
simplified analysis.
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We consider a mono-energetic incident beam whose energy W may be different
from the resonance energy Wr , hence η = (W −Wr)/Wr may be different from zero.
Energy spread is neglected in the present consideration. Furthermore we assume
periodic initial phases:

ψn(0) ≡ φn = 2π
n
N

, n = 0, 1.....(N − 1).

The number N of particles is usually very large. The following Ansatz is made for
the particle phases and energy deviations as functions of z:

ψn(z) = φn + 2kuη z + ℜ
{

ã(z)eiφn
}
, (4.32)

ηn(z) = η + ℜ
{

b̃(z)eiφn
}
. (4.33)

This Ansatz is substituted in the four coupled Eqs. (4.31a, 4.31b, 4.31c, 4.31d),
resulting in four equations for the functions ã(z), b̃(z) and their derivatives. These
equations contain Ẽx , Ẽ′

x , Ẽ′′
x and Ẽ′′′

x . By eliminating ã(z), b̃(z) and their derivatives
we arrive at the third-order equation. The four steps of the computation are:

First step. The expressions (4.32) and (4.33) are substituted in Eq. (4.31a):

ψ′
n(z) = 2kuηn(z)

⇒ 2kuη + ℜ
{

ã′(z)eiφn
}
= 2kuη + ℜ

{
2kub̃(z)eiφn

}
.

This equality is valid for all phases φn. For n = N we obtain eiφn = 1 and therefore
ℜ

{
ã′(z)

}
= 2kuℜ

{
b̃(z)

}
, while for n = N/4 we find eiφn = i and ℑ

{
ã′(z)

}
=

2kuℑ
{

b̃(z)
}

. Hence the following relation holds between the complex functions

ã′(z) and b̃(z):
ã′(z) = 2kub̃(z) . (4.34)

Second step. Now we take Eq. (4.31b)

dηn

dz
= − e

mec2γr
ℜ

{(
K̂Ẽx

2γr
− iµ0c2

ωℓ
j̃1

)

eiψn

}

and insert again the expressions (4.32) and (4.33):

ℜ
{

b̃′(z)eiφn
}
= − e

mec2γr
ℜ

{(
K̂Ẽx

2γr
− iµ0c2

ωℓ
j̃1

)

eiφn ei 2kuη z exp
(

i ℜ[ã(z)eiφn ]
)}

.
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The Taylor expansion of the last exponential yields

exp
(

i ℜ[ã(z)eiφn ]
)

≈ 1 + i ℜ[ã(z)eiφn ].

In our first-order perturbation treatment we drop the bilinear terms that are propor-
tional to Ẽx ã and j̃1 ã . Hence we make the replacements

Ẽx exp
(

i ℜ[ã(z)eiφn ]
)

→ Ẽx , j̃1 exp
(

i ℜ[ã(z)eiφn ]
)

→ j̃1

and obtain

ℜ
{

b̃′(z)eiφn
}
= − e

mec2γr
ℜ

{(
K̂Ẽx

2γr
− iµ0c2

ωℓ
j̃1

)

eiφn ei 2kuη z

}

.

Also this equation holds for all phase factors eiφn , and therefore we get

b̃′(z) = − e
mec2γr

(
K̂Ẽx

2γr
− iµ0c2

ωℓ
· j̃1(z)

)

ei 2kuη z. (4.35)

Third step. Equation (4.31c) is rewritten:

j̃1(z) = j0
2
N

∑

n

e−i ψn(z) = j0 e−i 2kuη z 2
N

∑

n

e−iφn exp
(
−i ℜ[ã(z)eiφn ]

)
,

j̃1(z) ≈ j0 e−i 2kuη z 2
N

∑

n

e−iφn
(

1 − i ℜ[ã(z)eiφn ]
)
. (4.36)

The real part is expressed in the form

ℜ[ã(z)eiφn ] = 1
2
(ã(z)eiφn + ã∗(z)e−iφn).

The ã∗ term in (4.36) vanishes: its coefficient is proportional to
∑

n e−i2φn , and this
sum of phase factors vanishes identically.3 Hence

j̃1(z) = −i j0 e−i 2kuη z ã(z)
2
N

N−1∑

n=0

1
2

e−iφn e+iφn

︸ ︷︷ ︸
N/2

.

3 The equality
∑

n exp(−i2φn) = ∑
n exp(−i 4πn/N) = 0 follows from the sum formula of a

geometric series SN = ∑N−1
n=0 qn = (1 − qN )/(1 − q). Putting q = exp(−i 4π/N) we get qN = 1

and SN = 0.
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The current density is thus

j̃1(z) = −i j0 e−i 2kuη z ã(z) , (4.37)

and Eq. (4.31d) reads now

Ẽ′
x(z) = −µ0cK̂

4γr
· j̃1(z) = i

µ0cK̂
4γr

j0 e−i 2kuη z ã(z) . (4.38)

Fourth step. Having derived the Eqs. (4.34–4.38) we now eliminate the unknown
functions ã(z), b̃(z) and their derivatives as well as the unknown current density
modulation j̃1(z). Combining (4.34) and (4.35) we get

ã′′ = 2kub̃′ = − 2kue
mec2γr

(
K̂Ẽx

2γr
− iµ0c2

ωℓ
j̃1(z)

)

ei 2kuη z.

Now we insert (4.37) and solve for Ẽx:

Ẽx = 2γr

K̂
e−i 2kuη z

(
µ0c2j0

ωℓ
ã − γrmec2

2kue
ã′′

)
. (4.39)

The derivatives of Eq. (4.38) are

Ẽ′′
x = i

µ0cK̂j0
4γr

e−i 2kuη z (
−i 2kuη ã + ã′) , (4.40)

Ẽ′′′
x = i

µ0cK̂j0
4γr

e−i 2kuη z
(
−(2kuη)

2 ã − i 4kuη ã′ + ã′′
)
. (4.41)

In order to eliminate ã′′ we multiply Eq. (4.39) with the factor

(
i
µ0cK̂j0

4γr

)
·
(

2γr

K̂

γrmec2

2kue

)−1

≡ −i Γ 3

and add it to Eq. (4.41). This yields

Ẽ′′′
x − i Γ 3Ẽx = i

µ0cK̂j0
4γr

e−i 2kuη z
([

µ0c2j0
ωℓ

2kue
γrmec2 − 4k2

uη2
]

ã − i 4kuηã′
)
.

(4.42)
Finally, ã′ is eliminated by multiplying Eq. (4.40) with i 4kuη and adding it to
Eq. (4.42), and ã is eliminated with the help of Eq. (4.38). Using j0 = −nee c one
finally arrives at the famous third-order differential equation of the high-gain FEL
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Ẽ′′′
x + i 4kuηẼ′′

x +
(

k2
p − 4k2

uη2
)

Ẽ′
x − i Γ 3Ẽx = 0. (4.43)

Two new coefficients appear in this equation which depend on the beam properties
and the layout of the undulator, and which have both the dimension of an inverse
length. The first one is called the gain parameter Γ , the second one is often called
the space charge parameter kp

Γ =
[
µ0K̂2e2kune

4γ3
r me

]1/3

, kp =
√

2kuµ0nee2c
γrmeωℓ

=
√

2λℓ

λu
·
ω∗

p

c
. (4.44)

The space charge parameter is related to the plasma frequency ω∗
p in the relativistic

electron bunch

ω∗
p =

√
n∗

e e2

ε0me
=

√
nee2

γrε0me
. (4.45)

(When computing the plasma frequency in the relativistic bunch one has to take into
account that the particle density in the rest frame of the bunch is n∗

e = ne/γr due
to Lorentz expansion of the bunch length). We will see in Chap. 6 that space charge
forces can be neglected if kp is small in comparison with the gain parameter Γ . If in
addition the electron beam is on resonance we get the simplest form of the third-order
equation, valid for η = 0 and kp = 0:

Ẽ′′′
x − i Γ 3Ẽx = 0 . (4.46)

In the general case, it is instructive to rewrite the third-order equation in the form

Ẽ
′′′
x

Γ 3 + 2i
2ku

Γ
η

Ẽ
′′
x

Γ 2 +
(

k2
p

Γ 2 −
(

2ku

Γ
η

)2
)

Ẽ
′
x

Γ
− i Ẽx = 0 .

The coefficient of the relative energy deviation η = (W − Wr)/Wr is 2ku/Γ . This
motivates the introduction of a new quantity which is called the FEL parameter (or
Pierce parameter)

ρFEL = Γ

2ku
= 1

4π
√

3
· λu

Lg0
, (4.47)

where Lg0 is the power gain length defined below in Eq. (4.51). With the dimension-
less FEL parameter the third-order equation reads

Ẽ
′′′
x

Γ 3 + 2i
η

ρFEL

Ẽ
′′
x

Γ 2 +
(

k2
p

Γ 2 −
(

η

ρFEL

)2
)

Ẽ
′
x

Γ
− i Ẽx = 0 . (4.48)



4.7 The Third-Order Equation of the High-Gain FEL 57

In the next section we will convince ourselves that the third-order equation in its sim-
plest form (4.46) is easy to solve. The general form (4.48) of this equation shows quite
clearly that significant changes must be expected if the fractional energy deviation is
non-zero and approaches the FEL parameter. This will be studied in Chap. 5. We will
demonstrate that the FEL parameter is closely related to two important properties of
a high-gain FEL: its bandwidth and its saturation power.

4.8 Analytic Solution of the Third-Order Equation

The linear third-order differential Eq. (4.46) can be solved analytically using the trial
function Ẽx(z) = Aeαz. Then one obtains α3 = i Γ 3 with the three solutions

α1 = (i +
√

3)Γ /2 , α2 = (i −
√

3)Γ /2 , α3 = −iΓ . (4.49)

The first solution has a positive real part and leads to an exponential growth of the
field Ẽx(z), while the other two eigenvalues correspond to exponentially damped
or oscillatory eigenfunctions. For sufficiently large z the power of the light wave
grows as

P(z) ∝ exp(2 ℜ{α1} z) = exp(
√

3Γ z) ≡ exp(z/Lg0) , (4.50)

where we have defined the power gain length by4

Lg0 = 1√
3 Γ

= 1√
3

[
4 γ3

r me

µ0 K̂2 e2 ku ne

]1/3

. (4.51)

The index “0” in formula (4.51) indicates that Lg0 is the idealized gain length of
the one-dimensional theory, assuming a mono-energetic beam and neglecting space
charge forces. The power gain length Lg of a realistic FEL will in general be larger
because beam energy offset and energy spread, space charge, betatron oscillations
and optical diffraction tend to weaken the exponential gain with the unfortunate
consequence that the undulator length must be increased if one wants to preserve the
FEL gain and aims at laser saturation. This will be investigated in Chap. 6.

In the general case η ̸= 0 and kp ̸= 0 the linear third-order differential equation is
again solved by assuming a z dependence of the form exp(αz). The resulting cubic
equation for the exponent α has three solutions α1,α2,α3 which are computed in
Sect. 10.4. The general solution of Eq. (4.48) can be written as a linear combination
of the three eigenfunctions Vj(z) = exp(αjz):

Ẽx(z) = c1V1(z)+ c2V2(z)+ c3V3(z) , Vj(z) = exp(αjz) . (4.52)

4 Some authors define the field gain length which is a factor of two larger than the power gain
length.
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For the first and second derivative we obtain

Ẽ′
x(z) = c1α1V1(z)+ c2α2V2(z)+ c3α3V3(z) ,

Ẽ′′
x (z) = c1α

2
1V1(z)+ c2α

2
2V2(z)+ c3α

2
3V3(z) .

Since Vj(0) = 1 the coefficients cj can be computed by specifying the initial con-
ditions for Ẽx(z), Ẽ′

x(z) and Ẽ′′
x (z) at the beginning of the undulator at z = 0. The

initial values can be expressed in matrix form by

⎛

⎝
Ẽx(0)
Ẽ

′
x(0)

Ẽ
′′
x (0)

⎞

⎠ = A ·

⎛

⎝
c1
c2
c3

⎞

⎠ with A =

⎛

⎝
1 1 1
α1 α2 α3
α2

1 α2
2 α2

3

⎞

⎠ . (4.53)

The coefficient vector is then computed as

⎛

⎝
c1
c2
c3

⎞

⎠ = A−1 ·

⎛

⎝
Ẽx(0)
Ẽ

′
x(0)

Ẽ
′′
x (0)

⎞

⎠ . (4.54)

To be more specific we go back to the simple case η = 0 and kp = 0. Then
the eigenvalues are given by Eq. (4.49) and the matrix A and its inverse assume the
forms

A =

⎛

⎝
1 1 1

(i +
√

3)Γ /2 (i −
√

3)Γ /2 − iΓ
(i +

√
3)2Γ 2/4 (i −

√
3)2Γ 2/4 − Γ 2

⎞

⎠ , (4.55)

A−1 = 1
3
·

⎛

⎝
1 (

√
3 − i)/(2Γ ) (−i

√
3 + 1)/(2Γ 2)

1 (−
√

3 − i)/(2Γ ) (i
√

3 + 1)/(2Γ 2)

1 i /Γ − 1 /Γ 2

⎞

⎠ . (4.56)

Let now the FEL process be started by an incident plane light wave of wavelength
λℓ and amplitude Ein

Ex(z, t) = Ein cos(kℓz − ωℓt) with kℓ = ωℓ/c = 2π/λℓ ,

which to a good approximation happens when the FEL is seeded by an external laser.
The initial density modulation is assumed to be zero: j̃1(0) = 0, so Ẽ

′
x(0) = 0 from

Eq. (4.21). Also the second derivative of the field vanishes at z = 0. Hence the initial
condition is ⎛

⎝
Ẽx(0)
Ẽ

′
x(0)

Ẽ
′′
x (0)

⎞

⎠ =

⎛

⎝
Ein
0
0

⎞

⎠ . (4.57)
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Fig. 4.3 Computed power rise in a high-gain FEL. The lasing process is started by incident seed
radiation, the input light wave is a plane wave with power Pin. The electron beam is mono-energetic
and on resonance, i.e.η = 0. The solid curve shows the normalized FEL power P(z)/Pin as a function
of z/Lg0. The dashed line is the exponential function f (z) = (Pin/9) exp(z/Lg0).

From Eq. (4.54) we find that all three coefficients have the same value, cj = Ein/3.
So the field of the FEL wave is

Ẽx(z) =
Ein

3

[
exp((i +

√
3)Γ z/2)+ exp((i −

√
3)Γ z/2)+ exp(−iΓ z)

]
. (4.58)

The first term in the square bracket exhibits exponential growth, the second term
exponential decay, and the third term oscillates with constant amplitude as a function
of the position z along the undulator axis. After a certain distance the first term
dominates and the FEL field grows as

∣∣∣Ẽx(z)
∣∣∣ ≈ Ein

3
exp(

√
3Γ z/2) ≡ Ein

3
exp

(
z

(2Lg0

)
.

The FEL power as function of z is plotted in Fig. 4.3. Due to the presence of the other
two terms it stays almost constant in the so-called “lethargy regime” (0 ≤ z ! 3 Lg0
in the present example) and grows then asymptotically as

P(z) ∼= Pin

9
exp(z/Lg0) for z ≥ 3 Lg0 , (4.59)

where Pin is the power of the incident seed light wave at z = 0. The starting value
of the exponential function is one ninth of the incident power Pin. This behavior is
quite typical for seeded high-gain FELs.
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Table 4.1 Comparison of FELs with planar resp. helical undulator
Planar undulator Helical undulator

λℓ = λu

2γ2

(
1 + K2

2

)
, K = eB0λu

2πmec
λℓ = λu

2γ2 (1 + K2), K = eB0λu

2πmec

K̂ = K ·
[

J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
K̂ ≡ K

dη

dz
= − e

mec2γr
ℜ

{(
K̂Ẽx

2γr
+ Ẽz

)

eiψ

}
dη

dz
= − e

mec2γr
ℜ

{(
K

2γr
(Ẽx ± i Ẽy)+ Ẽz

)
eiψ

}

= − e
mec2γr

ℜ
{(

KẼx

γr
+ Ẽz

)

eiψ

}

dẼx

dz
= −µ0cK̂

4γ
· j̃1

dẼx

dz
= −µ0cK

4γ
· j̃1

Ẽz(z) = i
4γc

ωℓK̂
· dẼx

dz
Ẽz(z) = i

4γc
ωℓK

· dẼx

dz

Γ =
[
µ0K̂2e2kune

4γ3
r me

]1/3

Γ =
[
µ0K2e2kune

2γ3
r me

]1/3

4.9 High-Gain FEL with Helical Undulator

We present here without proof a short description of the electron motion in a helical
undulator and the emission of circularly polarized radiation. Some of the results are
derived in Sect. 10.1. A helical undulator can be thought of as a long dipole magnet
that is twisted about its axis. The idealized field (valid near the axis) for a right-handed
screw sense is

B = −B0
[
cos(kuz)ex + sin(kuz)ey

]
, (4.60)

where ex and ey are the unit vectors in x and y direction, respectively. Note that this
field is only approximate and does not obey the Maxwell equations. The electron
moves on a helical trajectory of radius

rhel =
K

γku

with a constant longitudinal speed, given by

vz ≈ v0 ≡ c
[

1 − 1
2γ2

(
1 + K2

)]
. (4.61)

The radiation produced in the undulator field (4.60) has positive helicity and its
electric field vector can be written in the form (see Sect. 10.1)
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E(z, t) = E0
[
cos(kℓz − ωℓt)ex − sin(kℓz − ωℓt)ey

]
. (4.62)

The wavelength is

λℓ =
λu

2γ2

(
1 + K2

)
. (4.63)

If the helical magnet is twisted like a left-handed screw the circularly polarized
radiation will have negative helicity.

In Table 4.1 we compare important high-gain FEL equations which are different
for planar and helical undulators. The main changes concern the wavelength and the
undulator parameter: K̂ has to be replaced by K when going from a planar to a helical
undulator. Moreover one has to keep in mind that the electric vector of the radiation
field has two components which couple both to the electron and double the energy
transfer. They are related by Ẽy = ∓i Ẽx . The space charge parameter kp remains
invariant, and the third-order equation retains its form (4.48) if the correct value of
the gain parameter Γ is used.
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Chapter 5
Applications of the High-Gain FEL Equations

In the first part of this chapter we want to exploit the third-order differential equation
for the amplitude of the FEL wave in order to obtain a deeper understanding of the
properties and peculiarities of high-gain free-electron lasers. It will turn out that
a remarkable number of predictions can be deduced from the analytic description
of the high-gain FEL although we have made rather simplifying assumptions in
deriving Eq. (4.48), for example by neglecting any dependencies on the transverse
coordinates x and y. The coupled first-order equations are evaluated in the second
part. They contain even more physics. We will apply them to study the saturation
regime and the evolution of microbunching. In the model calculations discussed in
this chapter we investigate the amplifier mode of the high-gain FEL and consider
either a perfectly uniform initial particle distribution, in which case the lasing process
has to be started by an incident light wave, or we assume a density modulation of the
electron bunch which is periodic in the optical wavelength. Then no “seed light” is
needed. The startup from “noise” via the SASE mechanism will be investigated in
Chap. 7.

5.1 Gain Function of the High-Gain FEL

5.1.1 Third-Order Equation with Energy Detuning

The third-order equation (4.48) has been solved in the previous chapter for the sim-
plest case of a mono-energetic electron beam (ση = σW /Wr = 0) whose energy
conforms with the FEL resonance condition W = Wr = γr mec2. The third-order
equation can also be solved for a beam energy W ̸= Wr. The procedure is as follows.
In the first step the three complex eigenvalues α j are calculated using the meth-
ods described in Sect. 10.4. These eigenvalues are functions of the energy detuning
η = (W − Wr )/Wr , see Eq. (10.93). Once they are known, the general solution of
Eq. (4.48) can be written in the form

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 63
Springer Tracts in Modern Physics 258, DOI: 10.1007/978-3-319-04081-3_5,
© Springer International Publishing Switzerland 2014
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Ẽx (η, z) =
3∑

j=1

c j (η) exp(α j (η)z) . (5.1)

The field Ẽx inside the undulator magnet depends implicitly on the relative energy
deviation η through the eigenvalues α j (η). The coefficients c j are determined by the
initial conditions, using Eqs. (4.53) and (4.54):

⎛

⎝
c1
c2
c3

⎞

⎠ =

⎛

⎝
1 1 1
α1 α2 α3
α2

1 α2
2 α2

3

⎞

⎠
−1

·

⎛

⎝
Ẽx (0)
Ẽ

′
x (0)

Ẽ
′′
x (0)

⎞

⎠ . (5.2)

From this equation it is clear that the coefficients depend on η as well.
Let again the lasing process be started by an incident plane wave of amplitude

Ein. The gain function G(η, z) of an FEL amplifier depends on the relative energy
deviation η and the position z in the undulator

G(η, z) =
∣∣∣∣∣

Ẽx (η, z)
Ein

∣∣∣∣∣

2

− 1 . (5.3)

(Compare the discussion of the FEL gain function in Chap. 3).

5.1.2 Short Undulator: Low-Gain Limit

We have seen in Fig. 4.3 of the previous chapter that the FEL power stays almost
constant in the lethargy regime 0 ≤ z ! 3 Lg0. Therefore we expect the low-gain FEL
theory to be applicable here. This is indeed the case. As an illustration we consider a
short undulator magnet with a length Lu = Lg0. The gain curve computed according
to Eq. (5.3) is compared in Fig. 5.1 with the gain curve obtained in the low-gain theory,
using the Madey theorem Eq. (3.26). An almost perfect agreement is observed, both
in the shape of the gain curve and also in its magnitude. This demonstrates that the
low-gain FEL theory is the limiting case of the more general high-gain theory for
short undulator magnets. The mathematical proof of this statement is presented in
Sect. 10.2.2.
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Fig. 5.1 Comparison of the high-gain and the low-gain FEL theory for a short undulator magnet
with a length Lu = Lg0. The continuous curve shows the gain function G(η, z = Lg0) according to
Eq. (5.3) of the high-gain FEL theory. The circles show the gain function according to the low-gain
FEL theory, using the Madey theorem Eq. (3.26) with the replacement Nuλu → Lg0. Note that the
maximum value of the gain function is only 0.05, so one is indeed in the low-gain regime.

5.1.3 Long Undulator: High-Gain Regime

For undulator magnets that are longer than several gain lengths we obtain significant
differences between the low-gain and the high-gain theory. This is demonstrated in
Fig. 5.2 where the gain function is shown at various longitudinal positions inside a
long undulator (Lu ≫ Lg0). In the next section we will see that the width of the gain
curve is closely related to the FEL parameter, which is the reason why G(η, z) is
plotted as a function of η/ρFEL. For a long undulator, the high-gain FEL features a
much larger amplification than the low-gain FEL. A very interesting observation is
that the maximum amplification happens close to the point η = 0, i.e. on resonance,
where the gain function vanishes in the low-gain theory.

5.2 FEL Bandwidth

The width of the gain curves G(η, z) shown in Fig. 5.2 shrinks with increasing undula-
tor length. Which quantity determines the bandwidth of the high-gain FEL amplifier?
A good measure for the bandwidth turns out to be the dimensionless FEL parameter
defined in the previous chapter

ρFEL = 1

4π
√

3
· λu

Lg0
.
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Fig. 5.2 FEL gain function G(η, z) plotted versus η/ρFEL at various positions in a long undulator:
z = 2 Lg0, 4 Lg0, 8 Lg0, 16 Lg0. Continuous red curves: computation according to the high-gain
theory. Dashed blue curves: gain function according to the low-gain theory, using the Madey theorem
(3.26). Note the very different vertical scales in the figures.

The numerical value of the FEL parameter is typically in the 10−3 range. One
observes that the FEL gain drops significantly when the relative energy deviation
η exceeds the FEL parameter. The full width at half maximum (FWHM) of the gain
curves of Fig. 5.2 is about 2 ρFEL at z = 4 Lg0 and drops to about 1 ρFEL at z = 16 Lg0.
These observations show that the high-gain FEL acts as a narrow-band amplifier of
variable bandwidth.

5.2.1 Detuning Parameter

The third-order equation describes the FEL process for a given combination of light
frequency ωℓ and beam energy W = γ mec2. The eigenvalues α j depend on the
detuning. Detuning means a deviation from the resonance condition. We distinguish
two important cases:

(1) FEL seeding with a single frequency

In a monochromatically seeded FEL, which we have extensively studied in the pre-
vious sections, the incident seed light of frequency ωℓ defines the resonant frequency
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ωr ≡ ωℓ , (5.4)

but the electron energy W = γmec2 may be different from the resonant energy
Wr = γr mec2. In this case the detuning parameter is a function of γ

η = η(γ) = γ − γr

γr
with γr =

√
ωℓ

2c ku

(
1 + K 2

2

)
. (5.5)

(2) Seeding with different frequencies or SASE FEL

Suppose several stimulation frequencies ω1,ω2, . . . are simultaneously present,
either in an incident seed wave or in the Fourier spectrum of the bunch charge
distribution. The latter case applies for the SASE FEL. Now it is appropriate to take
the electron beam energy W as our reference (we disregard energy spread at this
point)

W ≡ Wr = γr mec2 . (5.6)

The corresponding reference frequency is

ωr = 2 γ2
r c ku

1 + K 2/2
, (5.7)

and we can define the detuning parameter as a function of frequency

η = η(ω) = −ω − ωr

2 ωr
. (5.8)

The factor of two in the denominator is due to the proportionality ωr ∝ γ2
r , and the

minus sign comes in because an electron energy higher than the resonance energy in
a seeded FEL is equivalent to a light frequency lower than the resonance frequency
in a SASE FEL. With Eq. (5.8) we have basically translated a frequency deviation of
the FEL wave into an equivalent energy deviation of the electron beam.

The coefficients c j (η1), c j (η2), . . . of the eigenfunction expansion are now cal-
culated individually by applying Eq. (5.2) for each detuning parameter ην = η(ων).
The resulting field is the superposition of the individual contributions

Ex (z, t) = ℜ
{

∑

ν

Ẽ (ν)
x (z) exp(iων[z/c − t])

}

= ℜ
{

exp(iωr [z/c − t])
∑

ν

Ẽ (ν)
x (z) exp(i∆ων[z/c − t])

}

, (5.9)

where ∆ων = ων − ωr is the respective frequency deviation from resonance. The
time variable can be eliminated using the relation (compare Sect. 10.2.4)
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ζ(z, t) = z − β̄ c t

which means that the field can be considered as being a function of the position z in
the undulator and the internal coordinate ζ in the bunch:

Ex (z, t) = ℜ
{

exp(iωr [z/c − t)])
∑

ν

Êν(z, ζ(z, t))

}

(5.10)

with the complex field amplitudes

Êν(z, ζ) = Ẽν
x (z) exp(i∆ων[z/c + (ζ − z)/(β̄ c)]) . (5.11)

The current density can be computed by means of Eq. (4.21). The method sketched
here will be applied in Sect. 5.5 to investigate under which circumstances the super-
position principle is applicable in a high-gain FEL.

5.2.2 Analytical Determination of the FEL Bandwidth

In order to investigate the relevance of the FEL parameter in a quantitative way
we determine the eigenvalues α j for the case that the beam energy W differs from
the resonance energy Wr . In the special case of a mono-energetic beam (ση = 0),
and for negligible space charge (kp = 0), the three complex eigenvalues α j (η)
are computed analytically in Sect. 10.4, see Eqs. (10.93), (10.94). In the exponential
regime the eigenfunction exp(α1z) dominates and the real part of α1 determines
the growth rate of the field Ẽx . The functional dependence ℜ[α1(η)] is discussed in
Sect. 10.4. In the vicinity of η = 0 the real part of α1(η) can be expanded in a Taylor
series, see Eq. (10.95) :

ℜ[α1(η)] ≈ 1
2Lg0

(

1 − η2

9 ρ2
FEL

)

. (5.12)

From this follows that the gain function in the exponential-growth regime can be
approximated by the product of an exponential function and a Gaussian1

G(η, z) ∝ exp(z/Lg0) exp

(

− η2z
9 ρ2

FEL
Lg0

)

.

1 In reality the Gaussian is not centered at η = 0 but shifted to slightly positive values. This shift
is due to the energy dependence of the coefficients c j (η) and can be ignored here because it has
a negligible effect on the bandwidth. The term “−1” in Eq. (5.3) can be dropped in the high-gain
regime where |Ẽx (η, z)|2/E2

in ≫ 1.
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Using Eq. (5.8), the gain function is rewritten as a function of ω

G(ω, z) ∝ exp(z/Lg0) exp
(

− (ω − ωr )
2

2σ2
ω

)
. (5.13)

The rms frequency bandwidth depends on the distance z traveled in the undulator

σω = σω(z) = 3
√

2 ρFEL ωℓ

√
Lg0

z
. (5.14)

Formula (5.13) is approximately valid between z " 8 Lg0 and the beginning of
saturation. The bandwidth (5.14) will be used in Chap. 7 to compute the power of a
SASE FEL.

5.3 FEL Startup by a Periodically Modulated Electron
Beam Current

Now we want to demonstrate that the FEL process can also be initiated by a periodic
charge density modulation in the electron beam, instead of an incident light wave for
seeding. Hence we consider a beam current which is modulated periodically in the
ponderomotive phase variable ψ according to Eq. (4.4)

jz = j0 + j̃1(z) exp(iψ) .

In the previous chapter we have shown that this leads to a non-vanishing derivative of
the transverse electric field, see Eq. (4.21). At the entrance of the undulator at z = 0
one gets

E0 ≡ Ẽx (0) = 0 and E
′
0 ≡ d Ẽx

dz
(0) = −µ0cK̂

4γr
· j̃1(0) .

The second derivative is

E
′′
0 = −µ0cK̂

4γr
· j̃

′
1(0) ,

so the question arises how to compute the derivative of the current density. For that
purpose we use two of the coupled equations (4.31):

j̃1(z) = j0
2
N

N∑

n=1

exp(−iψn(z)) and
dψn

dz
= 2kuηn .

Under the assumption that initially all particles have the same energy
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Fig. 5.3 Power rise in a high-
gain FEL which is started by a
periodic initial electron charge
density modulation with the
period λℓ. The electron beam
is assumed to be mono-
energetic and on resonance,
i.e. W = Wr and η = 0.
Shown as a dotted line is the
exponential function f (z) =
exp(z/Lg0).
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we obtain

j̃
′
1(0) =

[
N∑

n=1

d j̃1
dψn

dψn

dz

]

z=0

= −i j0
2
N

N∑

n=1

exp(−iψn(0))

︸ ︷︷ ︸
j̃1(0)

2 ku η

= −i 2 ku η j̃1(0) .

Therefore

E
′′
0 = i 2kuη

µ0cK̂
4γr

· j̃1(0) ,

and the initial condition of the third-order equation reads

⎛

⎝
Ẽx (0)
Ẽ

′
x (0)

Ẽ
′′
x (0)

⎞

⎠ =

⎛

⎝
0

E
′
0

E
′′
0

⎞

⎠ =

⎛

⎝
0

−1
i 2kuη

⎞

⎠ µ0c K̂
4γr

j̃1(0) . (5.15)

It is straightforward to compute the coefficients c j of the eigenfunction expansion

Ẽz(z) =
∑

j

c j exp(α j z)

with the help of Eq. (5.2). The resulting FEL power as a function of undulator length
is shown in Fig. 5.3. At the entrance of the undulator (z = 0) the radiation power is
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of course zero but it rises rapidly with increasing undulator length and approaches
the exponential function exp(z/Lg0) after about two gain lengths.

A third type of stimulation of the high-gain FEL process is a periodic energy
modulation of the incident electron beam.

5.4 Laser Saturation

The exponential growth cannot continue indefinitely. The beam energy decreases
due to the energy loss by radiation, and the modulated current density j̃1 becomes
eventually comparable in magnitude to the dc current density j0. Moreover, the
particles begin to move into the phase space region where energy is taken out of the
light wave.

The numerical solution of the coupled differential equations (4.31) will now be
applied to study FEL saturation. In this calculation we use typical parameters of
the extreme-ultraviolet free-electron laser FLASH (see Chap. 8): Lorentz factor γ =
1000, number of electrons Ne = 109, bunch length 100 fs, rms bunch radius 0.07 mm.
This leads to the following values of the relevant FEL quantities: peak current 1600 A,
1D gain length Lg0 = 0.5 m, space charge parameter kp = 0.24 m−1, FEL parameter
ρFEL = 0.003. To reach saturation at about 20 gain lengths the field of the seed light
wave is chosen as Ein = 5 MV/m. An important practical consideration is that the
seed laser beam has to be well focused over a large part of the lethargy region,
typically over at least one gain length, to initiate the FEL gain process. When the
exponential amplification sets in, the seed laser beam is no longer needed.

The computed power rise is shown in Fig. 5.4. For 0 ≤ z ≤ 16 Lg0 one obtains
perfect agreement with the eigenfunction approach of the third-order equation. In the
saturation regime the figure displays an oscillatory behavior of the FEL power which
means that energy is pumped back and forth between the electron beam and the light
wave. This will be studied in more detail in Chap. 6. An interesting observation is
that different input powers of the seeding wave lead to the same saturation level. This
is demonstrated in Fig. 5.5.

The radiation power at saturation can be very roughly estimated as follows. We
assume full modulation, i.e.

∣∣∣ j̃1
∣∣∣ ≈ | j0|. The major part of the intensity is generated

in the last section of the exponential regime. The field amplitude at saturation is
approximately given by the slope of the field gain curve, multiplied with the field
gain length, which is twice as large as the power gain length

∣∣∣Ẽx

∣∣∣
sat

≈
∣∣∣∣∣
d Ẽx

dz

∣∣∣∣∣ · 2 Lg0 = µ0c K̂
4γr

| j0| 2 Lg0 .

The saturation power is
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Fig. 5.5 Computed power rise in a high-gain FEL, resulting from the numerical integration of
the equations (4.31), for three different power levels of the incident seeding wave. Red curve:
Pin ≡ P0 = 1 kW, dashed black curve: Pin = 100 P0, dotted blue curve: Pin = 0.01 P0. In the
linear regime, comprising the lethargy and the exponential gain regime, the curves differ by factors
of 100 which means that the FEL output power depends here linearly on the input power. The
saturation level, however, is the same in all three cases, so the saturated FEL is definitely in the
nonlinear regime.

Psat =
cε0

2

∣∣∣Ẽx

∣∣∣
2

sat
Ab ≈ cε0

2

(
µ0c K̂

4γr

)2 I 2
0

Ab
4 L2

g0 ,

where Ab is the beam cross section and I0 = | j0| Ab is the magnitude of the dc beam
current. Introducing the FEL parameter and the power contained in the electron beam
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Pbeam = γr mec2 I0

e
(5.16)

one finds a rule of thumb for estimating the FEL power at saturation

Psat ≈ ρFEL Pbeam . (5.17)

The FEL power at saturation is thus in the order of 0.1 % of the electron beam power.
For typical beam parameters of FLASH one obtains a saturation power of several
GW. A better estimate of the saturation power is presented in the next chapter, see
Eq. (6.27).

5.5 Linear and Nonlinear Regime of a High-Gain FEL

The free-electron laser is an intrinsically nonlinear system. A linearization has been
achieved in Chap. 4 by eliminating the single-particle coordinates. We have derived
the linear third-order differential equation (4.48) for the amplitude of the light wave.
The solutions of a linear differential equation depend linearly on the initial con-
ditions. The same applies for the integro-differential equation (10.51), derived in
Sect. 10.2.1, which is more general than Eq. (4.48) as it can also be used for a beam
with energy spread. The linear regime of a high-gain FEL amplifier is characterized
by the following features:

(1) The response (output electric field) is proportional to the stimulation (the input
field).

(2) The superposition principle applies: the response to a superposition of different
stimulations is equal to the superposition of the responses to the individual
stimulations.

An illustration of the linear relationship between the input field Ein of a monochro-
matic seed wave and the FEL output field Ẽx has already been presented in Fig. 5.5
where this linearity is observed over a wide range of z values. The linear relationship
is completely lost in the saturation region.

Now we give an example for the superposition principle and study the response
of the FEL to a seed radiation containing two different frequencies.

According to Sect. 5.2.1 the electron beam energy W defines now the reference
frequency:

W ≡ Wr = γr mec2, ωr = 2γ2
r c ku

1 + K 2/2
.

We choose symmetrically detuned frequencies for our seed waves

ωa = ωr (1 − ρFEL) ,ωb = ωr (1 + ρFEL)
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Fig. 5.6 Verification of the superposition principle in the linear regime at z = 15 Lg0. Top left
graph: real part, imaginary part and absolute magnitude of the field Êa(z, ζ) of frequency ωa ,
plotted versus ζ/λ0 (λ0 denotes the FEL wavelength corresponding to the resonance energy). Top
right graph: real part, imaginary part and absolute magnitude of the field Êb(z, ζ) of frequency ωb.
Bottom left graph: the sum of the real parts ℜ{Êa(z, ζ)+ Êb(z, ζ)} of the individual responses is
shown as a solid red curve, the real part ℜ{Ês(z, ζ)} of the sum-response (5.19) is shown by the
blue circles. Bottom right graph: same for the imaginary parts.

with equal initial amplitudes, Ea
in = Eb

in = 5 MV/m. The coupled first-order
equations (10.63a, 10.63b, 10.63c, 10.63d) in the non-periodic model are used to com-
pute the individual response functions. We introduce the complex field amplitudes
according to Eq. (5.11)

Êa(z, ζ) = Ẽa
x (z) exp(i∆ωa[z/c + (ζ − z)/(β̄ c)]) , (5.18)

Êb(z, ζ) = Ẽb
x (z) exp(i∆ωb[z/c + (ζ − z)/(β̄ c)]) ,

which are functions of the position z along the undulator and the position ζ inside
the bunch. In the same manner one computes the sum-response function Ê s(z, ζ)
corresponding to the simultaneous excitation with two frequencies and the initial
field Es

in = Ea
in + Eb

in. A bunch with a flat charge profile and a length of 1000 optical
periods has been used in the computation, but for the sake of clarity the effects at
the bunch head and tail are ignored here. The result obtained in the linear regime at
z = 15 Lg0 is depicted in Fig. 5.6. One finds that the equation

Ês(z, ζ) = Êa(z, ζ)+ Êb(z, ζ) (5.19)
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Fig. 5.7 Violation of the superposition principle in the nonlinear regime at z = 20 Lg0. Left graph:
the sum of the real parts ℜ{Êa(z, ζ) + Êb(z, ζ)} of the individual responses is shown as a solid
red curve, the real part of the sum-response ℜ{Ês(z, ζ)} is shown by the blue circles. Right graph:
comparison of the imaginary parts.

is satisfied both for the real part and the imaginary part. Incidentally, the curves
shown in Fig. 5.6 can also be computed using Eq. (5.9), but only in the flat-top region
of the bunch and not at the head or the tail.
A completely different behavior is found in the nonlinear regime at z = 20 Lg0, see
Fig. 5.7. Although the individual excitations lead still to almost sinusoidal responses
in this example, the sum-response is strongly distorted and the superposition principle
is badly violated. Equation (5.9) is obviously not applicable in the nonlinear regime.

The Figs. 5.6 and 5.7 reveal that the amplitude of the field Ea is larger than that
of Eb in spite of the symmetrical detuning. This asymmetry is due to an asymmetric
shape of the curve ℜ{α1(η)}, see Fig. 6.1 in the next chapter.

In summary one can state that the third-order differential equation is well suited for
the description of the linear regime of the high-gain FEL, comprising the lethargy
and the exponential-growth regime. This equation breaks down in the nonlinear
regime where the laser power goes into saturation. The coupled first-order equations
encompass both the linear and the nonlinear regime.

5.6 Simulation of Microbunching

5.6.1 Evolution of Phase Space Structures

In our next example we demonstrate that the periodic form (4.31) of the coupled
first-order equations can be used to study the microbunching effect. Again we use
typical parameters of FLASH. As initial condition for the numerical simulation we
take a beam whose mean electron energy W0 is equal to the resonance energy Wr ,
hence η0 = 0. A total of N = 50000 test particles are distributed uniformly in the
initial ponderomotive phase variable over the interval −3π/2 ≤ ψ ≤ +π/2. The
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Fig. 5.8 Top: Distribution of
particles in the (ψ, η) phase
space at z = 0.2 Lg0. The
separatrix is indicated by the
dashed curves. Shown are
several adjacent FEL buckets.
Bottom: Normalized charge
density ρn(ψ) = |ρ̃(ψ)| /ρ0,
plotted as a function of ψ.
Remember that the pondero-
motive phase ψ is related to
the internal bunch coordinate:
ζ = (ψ + π/2)λℓ/(2π).

distribution is periodically continued to the full range −∞ < ψ < ∞, as assumed in
the periodic model. A randomly distributed Gaussian energy spread is imposed with
ση = 0.1 ρFEL. The FEL process is started by a seed laser beam with Ein = 5 MV/m.

In Fig. 5.8 we show the distribution of the particles in the phase space (ψ, η)
shortly after the beginning of the undulator, together with the projection onto the ψ
axis. The normalized charge density ρn(ψ, z) = |ρ̃(ψ, z)| /ρ0 shows no significant
deviation from unity. Also the energy modulation of the electron bunch is very small
and well below the rms energy spread ση . The FEL buckets are centered at nearly the
same phase values as they are at the beginning of the undulator at z = 0, compare
Eq. (3.24)

ψb(0.2 Lg0) ≈ ψb(0) = −π/2 ± n 2π .

The equation of the separatrix can be adopted from the low-gain case, compare
Eq. (3.23):

ηsep(ψ) = ±

√√√√e
∣∣∣Ẽx (z)

∣∣∣ K̂

kumec2γ2
r

cos
(

ψ − ψb(z)
2

)
. (5.20)

Due to the imposed beam energy spread of ση = 0.1 ρFEL, many particles are initially
outside the FEL bucket, which is the area enclosed by the separatrix.With increasing
distance z traveled in the undulator, the height of the separatrix grows with the square
root of the FEL field, according to Eq. (5.20), and in the exponential growth regime
most particles are eventually captured in the FEL buckets. This can be seen in the
sequence of graphs in Fig. 5.9. Another important observation can be made. The FEL
buckets are not stationary but move with increasing z towards smaller phase values.
The bucket-center phase ψb(z) will be determined in the next section.

Strong changes in the phase space pictures and the charge density distributions
become visible after about 10 gain lengths. At z ≥ 12 Lg0 one observes the evolution
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Fig. 5.9 Evolution of the microbunch structure. Top left: z = 12 Lg0, top right: z = 14 Lg0. Bottom
left: z = 16 Lg0, bottom right: z = 18 Lg0. The upper subplots show the distribution of the particles
in the (ψ, η) phase space. The separatrices are indicated by the dashed curves. The lower subplots
show the normalized particle density as a function of ψ.

of a pronounced microbunch structure. The microstructure with the periodicity of
the light wavelength λℓ is fully developed after 16 power gain lengths.
We make several important observations:

(1) With increasing z the FEL buckets move towards smaller phases and the ampli-
tude of the separatrix grows. The z dependence of the bucket-center phase will
be determined in the next section.
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Fig. 5.10 Distortion of the phase space distribution and evolution of substructure of the
microbunches deep in the saturation regime at 20 and 23 gain lengths.

(2) The energy modulation is almost harmonic up to 12–14 gain lengths but acquires
anharmonic distortions for z ≥ 14 Lg0.

(3) Due to the bucket motion many particles do not stay in their original bucket but
are captured by the next one.

(4) The normalized particle density gradually develops narrow peaks which are
located in the right half of the respective FEL bucket, namely at the phase values
where energy transfer from the electrons to the FEL wave will happen.

Deep in the saturation regime the phase space distributions acquire large distor-
tions as shown in Fig. 5.10. Many particles move over into the left halves of the FEL
buckets with the consequence that energy is withdrawn from the light wave. This
is the reason for the reduction of the FEL power at about 20 gain lengths that is
visible in Fig. 5.4. The microbunches develop a substructure. The energy spread of
the beam increases considerably with increasing undulator length. The distortions of
the particle distribution in phase space and the oscillatory behavior of the FEL gain
curve in the saturation regime are well-known from the literature, see e.g. [1, 2].

5.6.2 Evolution of Phases in the FEL Gain Process

Phases of electric field and current density

To determine the phase evolution of the field Ẽx (z) and of the current density j̃1(z)
in the linear FEL regime, we express the slowly varying complex field amplitude as
a superposition of the three eigenfunctions of the third-order equation
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Fig. 5.11 Left : The phase ϕE (z)of the complex field Ẽx (z) (solid red curve) and the phase ϕ j1(z)of
the modulated current density j̃1(z) (solid blue curve) as a function of z/Lg0. The phases have been
computed using the coupled first-order equations. In the linear regime there is perfect agreement
with the phases derived from the Eqs. (5.21) and (5.22). The dashed lines show the extrapolation
of the linear theory into the nonlinear regime at z > 17 Lg0. Right : The bucket-center phase ψb(z)
(red curve) and the microbunch phase ψm(z) (blue curve) versus z/Lg0.

Ẽx (z) =
Ein

3

3∑

j=1

exp(α j z) ≡
∣∣∣Ẽx (z)

∣∣∣ exp(i ϕE (z)) . (5.21)

In the simplest case, η = 0 and kp = 0, the eigenvalues α j are given by Eq. (4.49).
The phase ϕE (z) is readily computed from (5.21). The phase of the modulated current
density j̃1(z) can be related to the phase of Ẽx (z) by means of Eq. (4.21)

j̃1(z) = − 4γr

µ0c K̂
Ẽ ′

x (z) = − 4γr

µ0c K̂

3∑

j=1

α j exp(α j z) ≡
∣∣∣ j̃1(z)

∣∣∣ exp(i ϕ j1(z)) .

(5.22)
The z dependence of the two phases is depicted in the left part of Fig. 5.11. The

phase of the field grows initially faster than that of the current. The phase difference
∆ϕ = [ϕE (z) − ϕE (0)] − [ϕ j1(z) − ϕ j1(0)] grows from ∆ϕ = 0 at small z to
∆ϕ = π/3 for 4Lg0 ≤ z ≤ 17 Lg0. In the saturation regime the coupled first-order
equations must be used. One finds a cross-over of the phases at about 20 gain lengths.

Bucket center phase and microbunch phase

In Sect. 4.2 we have discussed the origin of microbunching as being due to a mod-
ulation of the longitudinal velocity: particles losing energy to the light wave move
on an undulator trajectory of larger amplitude and have a smaller average speed in z
direction than particles gaining energy from the light wave. This reasoning is unable
to predict the position of the microbunches inside the FEL buckets. Now we address
this question which is of crucial importance for the functioning of the high-gain FEL:
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why are the microbunches located in the right half of the respective FEL bucket where
energy is transferred from the electron beam to the light wave, and why not in the
left half where energy would be withdrawn from the light wave? The explanation
is based on the observation that the FEL buckets move in phase space during the
exponential gain process. The peak of the charge density modulation moves also, but
at a slower rate, and the resulting phase difference turns out to be essential.

The coupled first-order equation (4.31b) can be utilized to determine the phase
evolution of the bucket center. The FEL buckets are generated by the electric field
Ẽx of the light wave, and therefore only the first term in this equation has to be
considered while the second term, containing the current j̃1(z), is neglected. We
consider in the following the central FEL bucket and represent the bucket center by
a test particle “b”. Equation (4.31b) reads for this particle

dηb

dz
= − e

mec2γr
ℜ

{
K̂ Ẽx (z)

2γr
exp[i ψb(z)]

}

∝ cos[ϕE (z)+ ψb(z)] ,

where ϕE (z) is the z dependent phase of the complex field Ẽx (z). The energy of
particle “b” has to remain invariant if this particle is supposed to represent the bucket
center for all z ≥ 0. Hence we request dηb/dz = 0 from which follows

ϕE (z)+ ψb(z) = const = ϕE (0)+ ψb(0) .

Since ϕE (0) = 0 and ψb(0) = −π/2 (central FEL bucket) we obtain a relation
between the bucket-center phase and the phase of the complex field Ẽx (z):

ψb(z) = −π/2 − ϕE (z) . (5.23)

In a similar way, Eq. (4.31b) can be utilized to determine the phase evolution of the
peak of the charge distribution, namely the center position of the “microbunch”. In
this case the Ẽx (z) term has to be ignored and the j̃1(z) term is relevant because
it describes the particle’s interaction with the space charge field generated by the
microbunch. From the condition dηc/dz = 0 follows that the “microbunch phase”
obeys the equation

ψm(z) = −π/2 − ϕ j1(z) . (5.24)

The sign reversal between ψb(z) and ϕE (z) and between ψm(z) and ϕ j1(z) is very
important. We have seen that the phases of the complex field Ẽx (z) and the modulated
current density j̃1(z) grow with increasing z. However, owing to the sign reversal, the
bucket-center phase and the microbunch phase drop with increasing z, as depicted
in the right part of Fig. 5.11. An immediate consequence is: the microbunch phase
becomes larger than the bucket-center phase after a few gain lengths, in other words,
the microbunches are located in the right half of the FEL bucket, as desired for FEL
operation.
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Fig. 5.12 Phase motion of selected particles in three adjacent FEL buckets during the exponential
growth and saturation of the FEL power. The beam is mono-energetic and has an initial fractional
energy deviation of η = 0. The dashed curve shows the variation of the FEL bucket center phase
ψb(z) according to (5.23). The dotted curve shows the motion of the microbunch phase ψm(z) as
given by Eq. (5.24).

Evolution of particle phases in the gain process

The phase evolution of a selected number of particles in three adjacent FEL buckets
is depicted in Fig. 5.12. The ponderomotive phases ψn = ψn(z) have been com-
puted with the coupled equations (4.31) and are plotted as functions of the distance
z traveled in the undulator.

The particles are initially on resonance (W = Wr , η = 0). In the range 0 ≤
z ≤ 10 Lg0 the particle phases ψn(z) remain almost invariant. For z > 13 Lg0 a
dramatic variation of the particle phases is observed. They begin to concentrate in
narrow bands which are fully developed at 18–20 gain lengths. These bands are the
microbunches.

We look specifically at the central bucket which comprises initially the phase
range −3π/2 < ψ < π/2. Bucket-center phase and microbunch phase are identical
at the origin, ψb(0) = ψm(0) = −π/2. We see in Fig. 5.13 that the whole bucket
moves in the negative ψ direction while the particle phases are almost stationary.
About half of the particles remain in their bucket, and the other half is captured by
the next bucket.

The microbunching process is thus associated with a mixing of neighboring buck-
ets. Moreover it becomes evident that the microbunch is formed in the right half of
the bucket. This is the explanation for the strong rise of the FEL power.

We emphasize again that the phase ψb(z) of the bucket center as well as the phase
ψm(z) of the microbunch move with respect to the particles. In the exponential gain
regime, 4 Lg0 ≤ z ≤ 17 Lg0, we find
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Fig. 5.13 Motion of the central FEL bucket for 0 ≤ z ≤ 18Lg0.

∆ψ = ψm(z) − ψb(z) ≈ π/3.

The peaks in the charge distribution are localized in the right half of the respective
bucket, as required for energy transfer from the electron beam to the light wave.
Above 20 gain lengths, however, the maximum of the charge density moves over to
the left half of the bucket, corresponding to energy transfer from the light wave to
the electron beam.

5.6.3 The Onset of Microbunching

It may appear strange at first sight that the particle phases are nearly invariant in the
lethargy regime and in a large part of the exponential gain regime, while the charge
density modulation is moving. This, however, is quite a common phenomenon. An
example is a sound wave in air. The molecules carry out small longitudinal oscillations
about stationary positions, but the density fluctuations propagate with the speed of
sound.

To demonstrate explicitly that a density modulation evolves already quite early in
the undulator we show in Fig. 5.14 the normalized charge density within the central
FEL bucket at various longitudinal positions z. At the very beginning the maximum
of the charge density is found at the bucket center at ζ = 0, but already after two gain
lengths the maximum begins to move towards positive ζ values. In the exponential
gain regime (4 Lg0 ≤ z ≤ 17 Lg0) the maximum is located in the right half of the
FEL bucket at ζ ≈ λℓ/6, corresponding to ∆ψ ≈ π/3, see Figs. 5.9 and 5.14.
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Fig. 5.14 The normalized charge density distribution within the central FEL bucket at z =
0.5 Lg0, 2 Lg0, 4 Lg0, 6 Lg0, 8 Lg0, 10 Lg0. Note the suppressed zero in the vertical scales. Only
a narrow range around ρn = 1 is displayed.

5.6.4 Higher Harmonics in FEL Radiation

Figure 5.14 displays the normalized charge density distribution inside an FEL bucket
for the range 0.5 Lg0 ≤ z ≤ 10 Lg0. A flat distribution ρ0 is superimposed with a
small, almost harmonic modulation. At z ≥ 12 Lg0 the picture changes dramati-
cally. It is evident from Fig. 5.9 that the longitudinal charge distribution has still the
periodicity of the fundamental light wavelength λ1 ≡ λℓ but is no longer a simple
harmonic distribution. Its Fourier decomposition will therefore contain higher har-
monics. These higher harmonics, however, will not be amplified in our simplified
one-dimensional FEL model because we have averaged over the oscillatory part in
the longitudinal velocity, compare Eq. (4.6). It is possible to generalize the coupled
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first-order equations in such a way that the odd higher harmonics are incorporated.
In three-dimensional FEL codes such as GENESIS the longitudinal oscillation is
properly accounted for, and then higher harmonics can be computed as well. There
is ample experimental evidence for the existence of higher harmonics, see Chap. 7.
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Chapter 6
Energy Spread, Space Charge and 3D Effects

The realistic description of FELs operating in the high-gain regime has to be based on
a three-dimensional theory. The dependencies of the electron beam current density
and of the light wave on the transverse coordinates x and y must be taken into
account. Betatron oscillations of the electrons and diffraction of the light wave play
an important role. Moreover, energy spread in the electron beam and the longitudinal
slippage of the FEL pulse with respect to the short electron bunch must be considered
(in the 1D theory as described in Chaps. 4 and 5 the bunch is treated as being infinitely
long, which is far from reality). No analytical methods are known to carry through
the full 3D theory and one has to resort to numerical simulation codes such as
GINGER [1], GENESIS [2] or FAST [3] which have been developed to a high
degree of sophistication. The full three-dimensional treatment of the FEL is beyond
the scope of this introductory book, the interested reader is referred to the monograph
The Physics of Free Electron Lasers by Saldin, Schneidmiller and Yurkov [4] and to
the review article Review of x-ray free-electron laser theory by Huang and Kim [5]
and the literature quoted therein.

In this chapter we consider first the effects that are already present in the 1D
theory: energy detuning, beam energy spread and space charge forces, and we analyze
their impact on the FEL gain length. Then 3D effects are treated in a somewhat
qualitative manner in order to explain the influence of betatron oscillations and
optical diffraction on the FEL performance. A simplified three-dimensional model is
applied to determine numerically the FEL growth rate parameter and the gain length
for a cylindrical electron beam of uniform charge density. In Sect. 6.4, X-ray FEL
parameter studies of other authors are presented which were derived from numerical
simulations. Finally, slippage effects in short electron bunches are discussed.

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 85
Springer Tracts in Modern Physics 258, DOI: 10.1007/978-3-319-04081-3_6,
© Springer International Publishing Switzerland 2014



86 6 Energy Spread, Space Charge and 3D Effects

6.1 Increase of Gain Length by Energy Spread
and Space Charge

In Sect. 4.8 the FEL power gain length has been defined in the 1D approximation
and for a mono-energetic beam that is on resonance. According to Eq. (4.50) the
power gain length is related to the real part of the first eigenvalue of the third-order
equation:

P(z) ∝ exp(2 ℜ{α1} z) ≡ exp(z/Lg0) . (6.1)

We infer that 2 ℜ{α1} is the inverse gain length. This insight allows us to compute
the gain length in more general cases.

6.1.1 Energy Detuning

We consider first energy detuning, W ̸= Wr , η ̸= 0, but we keep ση = 0 and
kp = 0. It is shown in Sect. 10.4 how the eigenvalues α j = α j (η) of the third-order
differential equation can be determined for the case η ̸= 0. The real parts of the
eigenvalues are depicted in Fig. 6.1.

The real part of the first eigenvalue determines again the growth rate but it is
now a function of the relative energy deviation η. According to Eq. (6.1) it appears
reasonable to define the inverse gain length by the maximum value of 2 ℜ{α1(η)}.
So the gain length is given by the expression

Lg =
1

max [2 ℜ{α1(η)}]
. (6.2)

In this special case of a beam without energy spread and space charge we obtain
Lg = Lg0. For the investigation of the general case it is convenient to define a
dimensionless “growth rate function” by

fgr(η) = 2 ℜ{α1(η)} Lg0 . (6.3)

The maximum value of the growth rate function is equal to the ratio Lg0/Lg:

max
[

fgr(η)
]
= max

[
2 ℜ{α1(η)} Lg0

]
= Lg0

Lg
.
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Fig. 6.1 The real part of the first and the second eigenvalue, multiplied with 2Lg0, is plotted as a
function of η/ρFEL , the relative energy deviation divided by the FEL parameter. Note that ℜ(α1)
(continuous red curve) is positive, corresponding to exponential growth of the eigenfunction V1(z) =
exp(α1z). However, the real part vanishes above η ≈ 1.88 ρFEL which means that the exponential
growth stops if the electron energy W exceeds the resonant energy Wr by more than ∆W =
1.88 ρFEL Wr . The real part of α2 (dashed blue curve) is always negative, hence the eigenfunction
V2(z) drops exponentially. Note that ℜ(α3) ≡ 0, so V3(z) oscillates along the undulator axis.

6.1.2 Energy Spread and Space Charge

Now we drop the assumption of a mono-energetic beam and admit energy spread
(ση > 0) and space charge (kp > 0). The mean beam energy is called W0, it may be
different from the resonance energy (W0 ̸= Wr , η0 ̸= 0). The third-order equation
is not suitable for a beam with energy spread but the integro-differential Eq. (10.51)
can be used. The growth rate function fgr(η0) = 2 ℜ{α1(η0)} Lg0 depends on kp
and ση . Numerical results are shown in Fig. 6.2.

The impact of space charge forces on the gain length is often rather small. The
gain length increases by 10 % if the space charge parameter has the value kp = 0.5 Γ

and by 30 % for kp = 1.0 Γ . The space charge forces can thus be neglected if

kp ≪ Γ . (6.4)

At FLASH, one finds kp ≈ 0.2 Γ , and the increase of the gain length is less than 1 %.
The influence of beam energy spread is bigger. For ση = 0, the growth rate

function has a maximum value of 1 which means that the power gain length Lg is
indeed identical to Lg0 (this case has already been discussed in the previous section).
However, for an energy spread of ση = 0.5 ρFEL , the maximum drops to 0.8, implying
that the gain length is 25 % larger than the ideal 1D gain length, Lg = 1.25 Lg0. At
ση = ρFEL the gain length increases by more than a factor of two. Consequently,
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Fig. 6.2 Left : The growth rate function fgr(η0) = 2 ℜ{α1(η0)} Lg0 is plotted versus η0/ρFEL for
different values of the space charge parameter kp . Solid red curve: kp = 0, dotted blue curve:
kp = 0.5 Γ , dashed green curve: kp = 1.0 Γ . The energy spread is put to zero. Right : The growth
rate function fgr(η0) = 2 ℜ{α1(η0)} Lg0 is plotted versus η0/ρFEL for different values of the relative
beam energy spread ση = σW /Wr . Solid red curve: ση = 0, dotted blue curve: ση = 0.5 ρFEL ,
dashed green curve: ση = 1.0 ρFEL . Here the space charge parameter is set to zero.

the energy spread of the electron beam must be sufficiently small because only the
particles inside a narrow energy window contribute constructively to the FEL gain
process. A reasonable upper limit for the tolerable rms energy spread is

σW

Wr
≡ ση < 0.5 ρFEL . (6.5)

The beam energy spread at FLASH is ση ≈ 0.7 · 10−3 ≈ 0.2 ρFEL , which means that
the increase in gain length due to energy spread is less than 10 %. Note, however,
that the achievement of a low energy spread is a serious technical challenge for FELs
operating in the X-ray regime where the FEL parameter becomes quite small, for
instance ρFEL = 5 · 10−4 in LCLS (see Chap. 9).

It is important to realize that any kind of energy variation inside the electron
bunch, and not only the energy spread, will have an impact on the FEL gain.

6.2 Increase of Gain Length by 3D Effects

Up to now we have neglected the transverse dimensions of the electron beam. In
Sect. 10.4 the three eigenvalues α j of the third-order equation are determined for a
cylindrical bunch with radius rb and homogeneous charge density. The amplitude
of the electric field can be expressed by the Bessel function J0 for r < rb and by
the modified Bessel function K0 for r > rb. The boundary conditions at r = rb
lead to a determinant equation which is solved by numerical iteration and yields the
eigenvalues α j .



6.2 Increase of Gain Length by 3D Effects 89

4 2 0 2 4
0

0.2

0.4

0.6

0.8

1

η   / ρ0 FEL

2 
R

e(
α 

 ) 
L

g0
1

r  >> b

2.2 

0.4 

wm

wm

wm

Fig. 6.3 The growth rate function fgr(η0) = 2 ℜ{α1(η0)} Lg0 plotted vs. η0/ρFEL for a cylindrical
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Is it possible to establish a criterion under which circumstances the 1D theory
is sufficient or if a more complicated 3D treatment is needed? It turns out useful
to define a scale parameter for the radial width of the electron beam, namely the
geometric mean of power gain length and optical wavelength:

wm =
√

Lg0 λℓ . (6.6)

The growth rate function fgr(η0) = 2 ℜ{α1(η0)} Lg0 is shown in Fig. 6.3 for a cylin-
drical beam of constant charge density. Three different beam radii are considered:
rb ≫ wm , rb = 2.2wm , and rb = 0.4wm . We present here the computation for a
beam with an energy spread of ση = 0.5 ρFEL . According to Fig. 6.2 the 1D gain
length is then L1D

g ≈ 1.25 Lg0. From the curves in Fig. 6.3 it is obvious that in case
of a “thick” beam the gain length retains its 1D value of about 1.25 Lg0 while for a
very “thin” electron beam (rb <

√
Lg0 λℓ ) a considerable further increase in gain

length has to be expected, for example by a factor of 2.5 for rb = 0.4
√

Lg0 λℓ .
Hence the one-dimensional FEL theory is adequate if the criterion

rb ≫
√

Lg0 λℓ (6.7)

is satisfied (see also Sect. 10.4.4), but a three-dimensional treatment is needed for
beams of small radius. The 1D theory is usually insufficient for a quantitative de-
scription of FELs in the UV and X-ray regime.
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6.3 Overlap Between Electron and Photon Beam

The amplification process in the high-gain FEL depends critically on a good trans-
verse overlap between electron and photon beam. Intuitively, both beams should have
the same cross section to ensure that the energy transfer is optimized all along the
undulator. Considering the fact that the typical diameter of a GeV electron beam is
below 100µm, the undulator must be manufactured and aligned with great precision
such that the deviation of the electrons from the design orbit is not larger than 10µm
over several gain lengths. This puts stringent requirements on the field quality and
mechanical accuracy of the undulator.

6.3.1 Electron Beam Focusing and Emittance

Transverse focusing is mandatory in the long undulator structures of high-gain FELs.
The so-called “natural focusing” in an undulator is analogous to the “weak focusing”
in circular accelerators [6]. A horizontally deflecting dipole magnet of rectangular
shape exerts a weak vertical focusing which is caused by end field effects. A planar
undulator is a sequence of short rectangular dipole magnets and provides thus weak
focusing in vertical direction. This “natural focusing” has two disadvantages: (1) it
acts only in the vertical plane, while the horizontal motion remains unfocused, and
(2) it is too weak for short-wavelength FELs. To avoid the first disadvantage, Scharle-
mann [7] proposed to shape the pole faces to be parabolic. In this way, the natural
focusing can be distributed equally among both transverse directions. This solution
has not been widely pursued because of the mechanical complications and the in-
ability to adjust the beta function to the needs of the FEL. The generally adopted
solution is to apply the principle of “strong focusing” [6], known from synchrotrons,
by augmenting the undulator system with a periodic lattice of quadrupole lenses of
alternating polarity, a so-called FODO lattice where F denotes a focusing quadru-
pole, D a defocusing quadrupole, and O a drift space or a weakly focusing element
such as a bending magnet or an undulator. This FODO lattice can be realized either
by superimposing quadrupole fields inside the undulator itself or, more conveniently,
by placing electromagnetic quadrupoles between the segments of a long undulator
structure. Since these segments are typically 5 m long, the period of the FODO lattice
is in the order of 10 m and can be easily tuned to yield beta functions in the range
from 5 to 30 m.

The rms horizontal width of the electron beam at the position z is computed from
the equation

σx (z) =
√〈

x2(z)
〉
− ⟨x(z)⟩2 =

√
εxβx (z) with x2(z) = [x(z)]2 . (6.8)

Here βx (z) is the horizontal beta function inside the undulator and εx is the horizontal
emittance. A similar equation holds for the rms vertical width
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σy(z) =
√〈

y2(z)
〉
− ⟨y(z)⟩2 =

√
εyβy(z) . (6.9)

The concept of the beta function is explained in any textbook on accelerator physics,
see for example Ref. [6]. The brackets ⟨ ⟩ in Eqs. (6.8) and (6.9) indicate an averaging
over the betatron oscillation amplitudes and phases in the beam. The mean squared
slopes of the particle trajectory are given by [6]

〈
x ′2(z)

〉
= 1 + (β′

x (z)/2)2

βx (z)
εx and

〈
y′2(z)

〉
=

1 + (β′
y(z)/2)2

βy(z)
εy , (6.10)

where x ′ = dx/dz and y′ = dy/dz are the slopes of the particle trajectory in the
horizontal and vertical plane, respectively.

The emittance is, roughly speaking, the product of beam size and beam divergence.
The statistical definition is

εx =
√〈

x2
〉
·
〈
x ′2〉 − ⟨x · x ′⟩2 , εy =

√〈
y2

〉
·
〈
y′2〉 − ⟨y · y′⟩2 (6.11)

with the subsidiary condition that the beam is centered in phase space, i.e.

⟨x⟩ =
〈
x ′〉 = 0 , ⟨y⟩ =

〈
y′〉 = 0 .

In the following rough estimations one can ignore the z dependence of the beta
function. Hence we drop the derivatives β′

x and β′
y in (6.10) and average the beta

function over the longitudinal coordinate z, assuming

βx (z) = βy(z) ≡ βav . (6.12)

Furthermore, we assume a round beam (εx = εy ≡ ε). The emittance shrinks
like 1/γ with increasing electron energy [6]. This is easy to understand: during
acceleration the longitudinal electron momentum grows like γ while the transverse
momentum remains invariant, hence the beam divergence shrinks. At relativistic
electron accelerators is convention to define the normalized emittance by

εn = γ ε . (6.13)

Ideally the normalized emittance εn should remain constant all along the accelerator.
In practice, space charge forces, radiation effects and wake fields often lead to an
emittance growth and a dilution of the particle density in the beam.

Besides determining the beam size and divergence, the emittance has an additional
influence on the lasing process. The horizontal and vertical betatron oscillations
introduce additional transverse velocity components. The average longitudinal speed
of a particle carrying out betatron oscillations in the undulator is lower than the speed
v̄z in Eq. (2.11)
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v̄β
z =

√
v̄2

z −
〈
v2

x
〉
−

〈
v2

y

〉
≈ v̄z −

〈
v2

x
〉

2c
−

〈
v2

y

〉

2c
,

where the superscript “β” indicates the presence of a betatron oscillation. Using
Eq. (6.10) with β′

x = 0 and β′
y = 0 we get

〈
v2

x

〉
≈ c2

〈
x ′2

〉
= c2 ε

βav
,

〈
v2

y

〉
≈ c2 ε

βav
.

The average longitudinal speed in a beam with betatron oscillations is therefore
given by

〈
v̄β

z

〉
≈

(
1 − 1

2γ2

(
1 + K 2

2

))
c − ε

βav
c . (6.14)

Note that three different averaging procedures are applied in this expression: (1) the
“bar” in v̄z denotes the mean longitudinal speed of an electron moving through the
undulator on its sinusoidal trajectory, but without betatron oscillation, (2) the brackets
in

〈
v̄

β
z

〉
indicate the averaging over the various betatron amplitudes in a beam, and

(3) βav is the longitudinal average (6.12) of the beta function.
Concerning the FEL synchronization process, the reduction of the longitudinal

speed is equivalent to a reduction of the mean electron beam energy. The equivalent
reduction of the Lorentz factor is computed as

(δγ)eq = dγ

d v̄z
δv̄z ≈ γ3δv̄z

c
= −γ3 ε

βav
.

Owing to the fact that the particles in the beam have all different betatron oscillation
amplitudes one obtains in fact not only a reduction in the longitudinal speed but in
addition a smear which is equivalent to an energy spread of the incident beam:

(
ση

)
eq =

(
σγ

)
eq

γr
≈ γ2

r ε

βav
.

The energy spread of the incident beam and the equivalent energy spread caused by
betatron oscillations have to be added in quadrature as they stem from statistically
independent sources. Requesting that the total energy spread stays below the tolerable
value, which according to the inequality (6.5) is about ρFEL/2, we derive an upper
limit for the beam emittance:

ε <
βav

2
√

2 γ2
r

ρFEL . (6.15)

The magnitude of the transverse velocity can in principle be reduced by choosing
a sufficiently large beta function. On the other hand, a larger beta function yields a
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Fig. 6.4 The computed 3D power gain length Lg (solid red curve) and the 1D power gain length
Lg0 (dashed blue curve) as a function of the normalized emittance. The calculations are done for an
energy of 1 GeV in FLASH and are based on Eqs. (4.51) and (6.22) with the following parameters:
peak current Ipeak = 2500 A, average beta function βav = 5 m, energy spread ση = 0.5 ρFEL .

lower electron density and a longer gain length, so there is an optimum in between.
An estimate on this optimum beta function will be given below in Eq. (6.26). In the
X-ray regime the optimum beta function is in the 10–30 m range.

A quite general criterion for the maximum tolerable emittance of the electron
beam in a free-electron laser can be derived as follows. In Sect. 10.3 we show that
one can define an emittance for a Gaussian laser beam as the product of rms beam
width and divergence:

εlaser = σx σθ = λ

4π
. (6.16)

It is meaningful to request that the electron beam emittance does not exceed the light
beam emittance because a broader electron beam would in turn generate a broader
FEL beam. This leads to the emittance criterion

ε ≤ λℓ

4π
(6.17)

which is a very demanding requirement on the quality of the electron beam driving
an X-ray FEL and cannot be fully satisfied in practice. In fact, the upper limit (6.17)
is a bit too restrictive, a factor of 2–3 larger emittance is still sufficient for obtaining
high FEL gain.

To illustrate the importance of a small emittance we show in Fig.6.4 the gain
length as a function of emittance for FLASH (see Chap. 8) at an energy of 1 GeV.
The three-dimensional gain length has been computed with the Xie-formula (6.22)
discussed below. One can see that the 3D power gain length Lg is rather close to the
1D gain length Lg0 as long as the emittance criterion (6.17) is fulfilled. For FLASH
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operating at 1 GeV this corresponds to a normalized emittance εn ≤ 1µm. If the
criterion is violated the 3D gain length grows rapidly with increasing beam emittance
while the 1D gain length exhibits only a moderate growth, Lg0 ∝ ε1/3

n . Reducing the
beam emittance is hence of utmost importance.

6.3.2 Optical Diffraction and Gain Guiding

Ideally the photon beam should have the same transverse size as the electron beam.
However, like any electromagnetic wave, the FEL wave in the undulator undergoes
optical diffraction. Since FEL radiation has a lot of similarity with optical laser beams
we use here the Gaussian beam description, see Sect. 10.3. The Rayleigh length zR
is defined as the distance over which the beam cross section grows by a factor of 2
from its minimum value at a beam waist. It is related to the beam waist radius w0 by

zR = πw2
0

λℓ
. (6.18)

A typical number is zR = 1 m for w0 = 100µm and λℓ = 30 nm. Moving away
from the waist the beam radius grows as

w(z) = w0

√

1 +
(

z − z0

zR

)2

. (6.19)

Note that in Gaussian laser beam optics it is convention to define the radial width by
the condition that the intensity of a TEM00 beam drops to 1/e2 = 0.135 of its value
at r = 0 (the electric field drops to 1/e).

The diffractive widening of a seed laser beam is not affected by the presence of the
electron beam. It is therefore important to realize a sufficiently long Rayleigh length
of this beam to obtain efficient seeding in the lethargy regime. Once the exponential
FEL gain process has started, the additionally created field depends on the transverse
dimensions of the electron beam and becomes decoupled from the seed beam.

The FEL beam will also be subject to diffraction, and the resulting widening could
readily spoil the good overlap with the electron beam and reduce the energy transfer
from the electrons to the light wave. Fortunately there exists an effect counteracting
the widening of the FEL beam which is called gain guiding.1 Gain guiding can be
understood as follows. We consider an observation point z0 in the exponential gain
region. Most of the FEL intensity at this point has been produced in the last two or
three gain lengths upstream of z0, and the width of this newly generated radiation is
determined by the electron beam width. The more distant contributions are widened
by diffraction, however they play a minor role because they are much smaller in

1 In the FEL literature, another effect named refractive or optical guiding has been discussed, see
e.g. [8, 9].
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amplitude. The overall result is an exponential growth of the central part of the light
wave, and this part will retain its narrow width. Nevertheless, diffraction losses will
occur. Three-dimensional numerical simulations show that some field energy evades
radially from the light beam [10].

Another beneficial effect of gain guiding is the ability of the FEL beam to follow
slow, “adiabatic” deviations of the electron beam away from its nominal orbit, which
might be caused by spurious magnetic background fields. This guiding is important
in the very long undulator magnets of an X-ray FEL.

To provide efficient gain guiding the FEL amplification has to be large enough so
that the growth of the light intensity near the optical axis overcompensates the losses
by diffraction. As a rule of thumb, the Rayleigh length has to be twice the power
gain length or larger:

zR ≥ 2Lg . (6.20)

This condition is fulfilled in practice. For example, in the soft X-ray FEL FLASH
(see Chaps. 7, 8) the power gain length at λℓ = 13 nm amounts to Lg = 1.25 m and
the Rayleigh length is zR = 3.6 m. In the hard X-ray FEL LCLS (see Chap. 9) the
situation is even more favourable: the measured power gain length at λℓ = 1.5 Å is
3.5 m while the Rayleigh length is far longer and in the 50 m range.

6.4 Parametrization of Gain Length in an X-Ray FEL

We have seen above that the power gain length computed in the full three-dimensional
theory will be larger than the 1D gain length of a mono-energetic beam. Many
effects such as electron beam energy spread and emittance, space charge, finite bunch
length and radiation diffraction play a role. For simplicity a round electron beam is
considered with

βx = βy = βav , εx = εy = ε and σr =
√

ε βav .

Three dimensionless parameters are useful in the characterization of a short-wavelength
FEL. Following [11] we write them in the form

Xγ = Lg04πση

λu
energy spread parameter , (6.21a)

Xd = Lg0λℓ

4πσ2
r

diffraction parameter , (6.21b)

Xε =
Lg04πε

βavλℓ
angular spread parameter . (6.21c)

From our previous considerations we can deduce that all these parameters should
be less than 1. If we insert the FEL parameter (4.47) into the inequality (6.5) we



96 6 Energy Spread, Space Charge and 3D Effects

obtain Xγ < 1/
√

3. The diffraction parameter is Xd = Lg0/zR ≤ 1/2 according to
Eq. (6.20). Finally, using Eqs. (4.47) and (6.15), the angular spread parameter can be
written as

Xε =
λuε√

3 ⟨βav⟩ λℓ ρFEL

<
λu

2
√

2γ2
r

1√
3λℓ

<
1√
6
,

where we have used λu/(2γ2
r ) < λℓ .

M. Xie [11] has expressed the 3D gain length of an X-ray FEL in the form

Lg = Lg0(1 + Λ) , (6.22)

where Lg0 = λu/(4π
√

3ρFEL) is the 1D gain length defined in Eq. (4.51). Based on
three-dimensional numerical studies Xie obtained a parametrization of the correction
term Λ in the form

Λ = a1 Xa2
d + a3 Xa4

ε + a5 Xa6
γ + a7 Xa8

ε Xa9
γ + a10 Xa11

d Xa12
γ

+ a13 Xa14
d Xa15

ε + a16 Xa17
d Xa18

ε Xa19
γ (6.23)

with the following coefficients

a1 = 0.45, a2 = 0.57, a3 = 0.55, a4 = 1.6, a5 = 3.0,

a6 = 2.0, a7 = 0.35, a8 = 2.9, a9 = 2.4, a10 = 51,

a11 = 0.95, a12 = 3.0, a13 = 5.4, a14 = 0.7, a15 = 1.9,

a16 = 1140, a17 = 2.2, a18 = 2.9, a19 = 3.2 .

Formula (6.23) yields Λ = 0.32 for an average beta function of βav = 5 m and the
FLASH parameters quoted in Chap. 5, so the 3D gain length is 32 % longer than the
1D gain length.

Quite a different parametrization has been proposed by Saldin et al. [12]. The
power gain length2 is written as

Lg = 1.19
(

IA

Ipeak

)1/2 (εnλu)
5/6(1 + K 2/2)1/3

λ2/3
ℓ K̂

(1 + δ) (6.24)

with

δ = 262 IA

Ipeak

ε5/4
n σ2

γ

K̂ 2(1 + K 2/2)1/8λ1/8
ℓ λ9/8

u
. (6.25)

Here IA = 4πε0mec3/e = 17.5 kA is the so-called Alfvén current and Ipeak is the
peak current in the electron beam. The formula is only valid if the beta function is

2 Note that in [12] the field gain length is computed which is a factor of two larger than the power
gain length.
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optimized according to

βopt = 15.8
(

IA

Ipeak

)1/2 ε3/2
n λ1/2

u

K̂λℓ

(1 + 8δ)−1/3 . (6.26)

The two parametrizations (6.22) and (6.24) are in reasonable agreement for LCLS
and the European XFEL. From numerical FEL simulations, Kim and Xie [13] derived
the following approximate formula for the saturation power

Psat ≈ 1.6 ρFEL Pbeam

(
Lg0

Lg

)2

. (6.27)

Here Pbeam is the power of the electron beam.

6.5 FEL Radiation from Short Bunches

In an ultraviolet or X-ray FEL facility the electron bunches must be made very
short because otherwise the required high peak current densities cannot be achieved.
But also for scientific reasons a short bunch length is desirable since it permits the
generation of femtosecond X ray pulses which are indispensable in the study of
ultrafast processes.

In the 1D FEL theory of Chap. 4 we have totally disregarded the effects at the
head and the tail of the bunch and basically treated the bunches as being infinitely
long and having a periodic substructure. Here we consider what happens if the bunch
length is finite and amounts to only a few hundred radiation wavelengths.

6.5.1 Velocities

In a high-gain FEL we have to distinguish different velocities which are all lower
than the speed c of an electromagnetic wave in vacuum: the longitudinal speed v̄z of
the electrons, and the phase and the group velocity of the FEL light wave.

The terms phase and group velocity are familiar from other fields of physics. As
an example we take a plane electromagnetic wave

Ex (z, t) = A exp[i (kz − ωt)] .

The phase and group velocities are

vph = ω

k
, vg =

dω

dk
.
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For a light wave in free space the relationship between frequency and wave number
is linear, ω = c k, so phase and group velocity are equal, vph = vg = c. The situation
is different in a dispersive medium like glass where the refractive index depends
on frequency, n = n(ω). Then the wavelength is λ′ = λ/n and the wave number
becomes

k′ = n k = n(ω)ω/c .

The phase velocity
vph = ω

k′ =
c
n

(6.28)

is now different from the group velocity

vg =
dω

dk′ =
(

dk′

dω

)−1

= c
(

n + ω
dn
dω

)−1

. (6.29)

The group velocity is relevant for the propagation of wave packets, for example for
digital data transmission through a glass fiber.

6.5.1.1 FEL Phase Velocity

The electron beam generates the FEL wave and has an influence on its propagation.
We will demonstrate that the phase and group velocities are both less than the speed
of light in vacuum and rather different from each other. The phase velocity of the FEL
light wave is smaller than c because the phase ϕE (z) of the complex field amplitude
depends on z, as shown in Fig. 5.11. In the following we consider FEL seeding and
assume for simplicity η = 0 and kp = 0. The seed wave and the FEL wave are given
by the expressions

Eseed(z, t) = E0 exp[i (kz − ωt)] ,

Ẽx (z, t) =
3∑

j=1

c j exp(α j z) exp[i (kz − ωt)] with c j = E0/3 .

Using Eqs. (4.49) and (4.51) we write the three eigenvalues in the form

α1 = i +
√

3

2
√

3 Lg0
, α2 = i −

√
3

2
√

3 Lg0
, α3 = −2 i

2
√

3 Lg0
. (6.30)

For 0 ≤ z ≪ Lg0 we can make a first-order Taylor expansion of the exponential
functions:
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exp(α j z) ≈ 1 + α j z ,
3∑

j=1

exp(α j z) ≈ 3 + (α1 + α2 + α3)︸ ︷︷ ︸
0

= 3 .

This means that the FEL wave is identical with the seed wave at the beginning of the
undulator at z = 0, and consequently the FEL phase velocity is identical with the
speed of light in vacuum:

v0
ph = c for 0 ≤ z ≪ Lg0 . (6.31)

In the exponential gain regime get a different result. Here the field behaves as

Ẽx (z, t) = (E0/3) exp[α1z] exp[i kz − iωt]
= (E0/3) exp[ℜ(α1)z] exp[i (k + ℑ(α1))z − iωt]
≡ (E0/3) exp[ℜ(α1)z] exp[i k′z − iωt] , (6.32)

where we have introduced a modified wave number k′ by

k′ = k + ℑ(α1) . (6.33)

The phase velocity is according to (6.28)

vph = ω

k′ =
ω

k + ℑ(α1)
≈ c

(
1 − c ℑ(α1)

ω

)
. (6.34)

From Eq. (6.30) we find ℑ(α1) = 1/(2
√

3 Lg0). The phase velocity of the FEL wave
in the exponential-growth regime becomes (writing now ωℓ instead of ω)

vph = c

(

1 − c

2
√

3 Lg0 ωℓ

)

= c

(

1 − λℓ

4π
√

3 Lg0

)

. (6.35)

The correction term is very small. For λℓ = 4 nm and Lg0 = 0.44 m the phase
velocity is 0.12 m/s lower than the speed of light in vacuum. Because of this tiny
deviation from c, the FEL wave needs a long distance of 4π

√
3 Lg0 ≈ 22 Lg0 to slip

by just one wavelength with respect to a light wave in vacuum. This slow slippage
is very important though as it is responsible for the FEL bucket motion shown in
Fig. 5.13. The computed z-dependence of the phase velocity is plotted in Fig. 6.5.
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Fig. 6.5 Left : The difference between FEL phase velocity and speed of light, measured in m/s,
is plotted as a function of the distance z traveled in the undulator. The asymptotic value (6.35) of
the phase velocity is 0.12 m/s lower than c. Right : The difference between FEL group velocity and
speed of light. The asymptotic value (6.37) of the group velocity is 30 m/s lower than c. Parameters
used in the computation: λℓ = 4 nm and Lg0 = 0.44 m.

6.5.1.2 FEL Group Velocity

Of particular interest for a SASE FEL is the velocity of a “spike” in the FEL wave
that extends over many optical wavelengths. The spike is represented by a wave
packet propagating with the group velocity. The group velocity is equal to c for
0 ≤ z ≪ Lg0, but with increasing z it drops quickly to an asymptotic value, as
shown in Fig. 6.5. In the exponential-growth regime the group velocity is according
to (6.29)

vg = dω

dk′ =
(

dk′

dω

)−1

=
(

dk
dω

+ dℑ(α1)

dω

)−1

=
(

1
c
+ dℑ(α1)

dω

)−1

≈ c
(

1 − c
dℑ(α1)

dω

)
. (6.36)

The derivative dℑ(α1)/dω is computed in Sect. 10.4, see Eq. (10.96):

dℑ(α1)

dω
≈ 2ku

3ωr
.

From (6.36) and c ku = ωr (1 + K 2/2)/(2γ2
r ) follows that the group velocity in the

exponential-growth regime is given by the expression

vg = c
(

1 − 1
3γ2

r

[
1 + K 2

2

])
. (6.37)

Remarkably, the group velocity of a spike in the electron beam current density is
identical with the optical group velocity. The proof is as follows. The current density
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is
j̃z(ψ, z) = j0 + j̃1(z) exp(i ψ) with ψ = (kℓ + ku)z − ωℓt .

According to Eq. (4.21) the complex amplitude j̃1 is proportional to the derivative of
Ẽx . In the exponential gain regime, the modulated current density j̃1 has therefore
the same z dependence as Ẽx , namely exp(α1z):

j̃1 exp(i ψ) ∝ exp[ℜ(α1)z] exp[i ℑ(α1)z] exp[i(kℓ + ku)z − i ωℓt] .

The phase of the modulated current density differs from that of the FEL field only by
the term kuz. Now ku = 2π/λu is a constant, independent of frequency. Application
of formula (6.36) yields thus the exactly same group velocity as in the FEL wave. This
equality has a deep physical relevance: a bump in the electron charge distribution is
associated with a corresponding bump in the FEL field due to the FEL gain process,
and hence one would expect that both bumps move with the same speed, which they
indeed do.

The group velocity is considerably lower than the phase velocity. We have seen
above that in an undulator of the length Lu = 22 Lg0 the phase of a harmonic FEL
wave slips by one optical wavelength with respect to a plane electromagnetic wave.
In contrast to this an FEL wave packet slips by a few hundred optical wavelengths.
On the other hand, the group velocity is larger than the average longitudinal speed
of the electrons which is according to Eq. (2.11)

v̄z = c
(

1 − 1
2γ2

r

[
1 + K 2

2

])
.

The difference is

vg − v̄z =
c

6γ2
r

[
1 + K 2

2

]
. (6.38)

From this we conclude that spikes (wave packets) in the FEL wave, or spikes in the
electron charge distribution, will slip forward inside the electron bunch during the
motion through the undulator.

6.5.2 Slippage Effects in Short Bunches

We consider an example which illustrates very nicely the slippage effects in free-
electron lasers that are driven by short electron bunches. The bunch considered has a
narrow leading spike and a long tail. The local current I0 as a function of the internal
bunch coordinate ζ is depicted in Fig. 6.6. The peak current is Ipeak = 1600 A.
We assume that the lasing process is started by seed radiation with an amplitude
of E0 = 5 MV/m. The simulation of the FEL process is done using the coupled
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Fig. 6.6 An electron bunch with a narrow leading spike and a long tail. The local “direct current”
I0 is plotted as a function of the internal bunch coordinate ζ (solid black curve). The bunch head is
on the right side. The modulation current I1 is shown by the dashed blue curve. The longitudinal
position in the undulator magnet is z = 18 Lg0.

first-order Eqs. (10.63a,10.63b,10.63c,10.63d) in their generalized form, including
the dependencies on the internal bunch coordinate ζ. The typical FLASH parameters
quoted in Chap. 5 are used.

At a position of z = 18 Lg0 in the undulator the maximum of the modulation
current has almost reached the peak current, but the width of the curve I1(t) is
narrower than the bunch itself whose profile is described by the curve I0(t). This is
due to the fact that the FEL gain depends on the beam current and is suppressed in
the tail of the bunch.

In Fig. 6.7 the electric field of the light wave (in units of 1010V/m) and the nor-
malized modulation current I1/Ipeak are shown at various positions in the undulator.
Close to the end of the exponential gain regime at z = 18 Lg0 the modulation current
I1 has reached the level of the peak current and the electric field of the light wave has
grown to 8000 MV/m. Here the longitudinal profile of the field resembles closely
the shape of the I1 distribution inside the bunch, but is a bit narrower than the bunch
itself.

Next we look into the saturation regime. At z ≥ 20 Lg0, the modulation current
develops a structure with two or more peaks that is quite different from the bunch
shape. The electric field amplitude of the light wave is also characterized by a com-
plicated structure. Narrow wave packets of the FEL field escape from the bunch and
move away from the bunch head. This is clear evidence for the slippage effect. When
an FEL wave packet has slipped away from the bunch it will move with the speed c
of light in vacuum, and its magnitude will remain invariant because the overlap with
the electron beam is no longer existent and the FEL gain process has come to an end.

It is important to note that the spikes are by no means identical with the
microbunches. Rather they are wave packets extending over many optical wave-
lengths. Inside the bunch they propagate with the FEL group velocity (6.37) and are
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Fig. 6.7 FEL radiation from the bunch shown in Fig. 6.6. The electric field of the FEL wave
is plotted as a function of the internal bunch coordinate ζ (continuous red curves). The unit is
1010 V/m = 10 GV/m. The normalized modulation current I1/Ipeak is shown by the dashed blue
curves. The evolution of modulation current and FEL field is displayed at various longitudinal
positions in the undulator magnet: z = 18 Lg0, 23 Lg0, 30 Lg0 and 40 Lg0.

thus faster than the microbunches which move with a speed that is very close to the
average longitudinal speed v̄z of the electrons.

6.5.2.1 Longitudinal Structure of the FEL Pulses

The above figures show that the simulated FEL pulses contain amazingly short wave
packets. What is the physical origin of these sharp substructures? We want to demon-
strate that this is nothing else but the oscillatory behavior of the FEL power in the
saturation regime that we observed earlier in Chap. 5. In order to see this we go back
to Fig. 5.4 where the computed FEL power on a logarithmic scale has been plotted
against z/Lg0. The same data are used to show in Fig. 6.8a the z dependence of the

absolute magnitude of the electric light wave field
∣∣∣Ẽx (z)

∣∣∣ on a linear scale. Here
the oscillations reflect obviously the back-and-forth energy exchange between elec-
tron bunch and light wave. Converting to the internal bunch coordinate ζ and taking
into consideration that the bunch head enters the saturation regime earlier than the
tail (which implies a sign reversal) one obtains similar sharp time spikes as seen in
Fig. 6.7.

The question arises whether these sharp peaks are to be expected in a realistic
FEL or whether they are just an artifact of our oversimplified one-dimensional FEL
model. The second alternative turns out to be correct. According to computations with
three-dimensional FEL codes, the gain oscillations in the saturation regime are much
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Fig. 6.8 a The magnitude of the electric light wave field on a linear scale, plotted as a function of the
longitudinal position z in the undulator. The parameters are the same as in Fig. 5.4. b Comparison
of the field rise in the 1D and the 3D FEL theory.
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Fig. 6.9 Comparison of the FEL pulse shape in the 1D theory (red curve) and the full 3D theory
(black curve) at two positions in the undulator. We thank Igor Zagorodnov of DESY for carrying
out the 3D calculations using the code GENESIS.

less pronounced than predicted by the 1D theory, see Fig. 6.8b. This is in fact easy to
understand. In the 1D model the density of the electron beam and the amplitude of
the light wave do not depend on the radial coordinate r =

√
x2 + y2 while in reality

both charge density and field amplitude drop with increasing distance from the beam
axis. The reduced coupling strength at r > 0 implies that the saturation regime is
reached later for off-axis electrons than for on-axis electrons. Consequently, we can
expect that the gain oscillations will be smeared out for realistic electron and photon
beams. This smearing will also wash out the spike structure of the FEL pulses as
demonstrated in Fig. 6.9. In addition, optical diffraction plays a larger role in the
saturation regime and reduces the electric field close to the axis.
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6.6 Superradiance

Bonifacio and others [14] predicted the possibility of a reduction of the light pulse
length to values below the electron bunch length if the exponential gain regime
has been passed. The term superradiance is used to describe this pulse shortening
regime in which the radiated FEL power is proportional to the square of the number
of electrons. Superradiance was observed [15] in a single-pass high-gain FEL which
was seeded at 800 nm by a titanium-sapphire laser. Using frequency resolved optical
gating the FEL pulse duration was measured to be 82 fs (rms) while the seed pulse
was 150 fs long, and the electron bunch was even more than 1000 fs long.

The interpretation of superradiance is based on the assumption that the radiation
pulse slips forward inside the bunch, owing to the fact that the optical group velocity
is larger than the longitudinal speed of the electrons, and that this light pulse therefore
withdraws energy from “fresh” electrons that have not yet been microbunched. In
the superradiant regime the FEL power is expected to grow quadratically with the
distance z traveled in the undulator.
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Chapter 7
Self-Amplified Spontaneous Emission and FEL
Seeding

For wavelengths in the extreme ultraviolet and X-ray regime the start-up of the
FEL process by seed radiation is hampered by the lack of lasers with the desired
wavelength. Seeding by a high harmonic of an optical or infrared laser is a possibility
which has been realized in recent years, see Sect. 7.4, where also other seeding
schemes are described. The process of Self-Amplified Spontaneous Emission (SASE)
permits the start-up of lasing at an arbitrary wavelength, without the need of external
radiation. The SASE mechanism was proposed and theoretically explored in the early
1980s [1–4] but it took 20 years before it could be verified experimentally at visible
and ultraviolet wavelengths.

The most intuitive explanation of SASE is that the electrons produce spontaneous
undulator radiation in the first section of a long undulator magnet which serves then
as seed radiation in the main part of the undulator. An alternative explanation follows
from the observation that the FEL can also be started by a periodic charge density
modulation in the electron beam, as discussed in Sect. 5.3. The bunches coming from
the accelerator do not possess such a modulation at the light wavelength. But due to
the fact that they are composed of a large number of randomly distributed electrons
a white noise spectrum is generated which has a spectral component within the FEL
bandwidth (see Sect. 10.5.1). This component will be amplified as shown in Sect. 5.3.

The above two interpretations of SASE are physically equivalent: seeding by
spontaneous undulator radiation or FEL start-up by the proper Fourier component
of the stochastic density modulation in the electron beam. Randomness is obviously
essential in the second model of the SASE process, but it is equally important in
the first model. It must be noted that the emission of undulator radiation by a bunch
much longer than the light wavelength would be impossible if the longitudinal particle
distribution were perfectly uniform, in the extreme case, if the electron beam current
would be a direct current. A perfect dc current moving on a sinusoidal orbit through
the undulator magnet cannot emit any radiation because there are no oscillating
charges. Likewise, a perfect dc current circulating in an electron synchrotron or
storage ring would be unable to emit ordinary synchrotron radiation.

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 107
Springer Tracts in Modern Physics 258, DOI: 10.1007/978-3-319-04081-3_7,
© Springer International Publishing Switzerland 2014
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7.1 Computation of the SASE Process in the 1D Theory

7.1.1 Solution of the Third-Order Equation

In this section the equivalent current density modulation j̃1 arising from the random
time distribution of the electrons in the bunch is used as an input for calculating the
time evolution of the FEL power by means of the method discussed in Sect. 5.3. The
initial conditions are given by Eq. (5.15)

⎛

⎝
Ẽx (0)
Ẽ

′
x (0)

Ẽ
′′
x (0)

⎞

⎠ =

⎛

⎝
0

−1
i 2kuη

⎞

⎠ µ0c K̂
4γr

j̃1(0) .

It is convenient to factor out the driving term µ0c K̂ j̃1(0)/(4γr ) by introducing new
coefficients d j ⎛

⎝
d1
d2
d3

⎞

⎠ =

⎛

⎝
1 1 1
α1 α2 α3
α2

1 α2
2 α2

3

⎞

⎠
−1

·

⎛

⎝
0

−1
i 2kuη

⎞

⎠ . (7.1)

Then the field amplitude becomes

Ẽx (z) =
3∑

j=1

d j exp(α j z) ·
µ0c K̂

4γr
j̃1(0) . (7.2)

According to Eq. (10.116) in Sect. 10.5.1 the equivalent modulated current density
resulting from shot noise is given by the formula

j̃1(0) =
√

e I0∆ω

π

1
Ab

, (7.3)

where I0 is the absolute magnitude of dc electron beam current, Ab is the beam cross
section, and ∆ω is the FEL bandwidth.

First an approximate computation is made with a constant bandwidth. To achieve
saturation one needs about 20 gain lengths, see Fig. 7.1 below. Using Eq. (5.14) we
compute a bandwidth of ∆ω ≈ 2.4 ωℓ ρFEL and substitute this in Eq. (7.3). The central
frequency is taken as ω = ωr, hence η = 0 in Eq. (7.1). The FEL power as a function
of the position z in the undulator is computed with Eq. (7.2)

Pcb(z) =
Ab

µ0c

∣∣∣Ẽx (z)
∣∣∣
2
= µ0c K̂ 2

16γ2
r

∣∣∣∣∣∣

∑

j

d j exp(α j z)

∣∣∣∣∣∣

2
e I0

πAb
2.4 ρFELωℓ︸ ︷︷ ︸

∆ω

. (7.4)
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Fig. 7.1 Computed SASE FEL power as a function of z/Lg0 (continuous red curve). The start-up is
provided by the electron current density modulation with the period λℓ which is due to the random
distribution of the electrons in the bunch. For comparison the power rise of a seeded FEL is also
shown, choosing a seeding field of E0 = 0.5 MV/m (dashed blue curve). Here the gain curve has
been computed by means of the coupled first-order equations so that the FEL saturation is included.

Here we have assumed that electron beam and light beam have the same cross section
Ab. The subscript “cb” stands for constant bandwidth. The FEL power as a function of
z/Lg0 is shown in Fig. 7.1. In this model calculation we have used typical parameters
of the free-electron laser FLASH (see Chap. 8).

It is interesting to compare the power rise curve of a SASE FEL to that of a seeded
FEL. The field amplitude E0 of the seed wave has been adjusted to yield the same
power level in the exponential regime as obtained in the SASE FEL. For FLASH at
an electron energy of 500 MeV we find E0 = 0.5 MV/m. This computation permits
us to determine the minimum seed laser field which is needed to be well above the
SASE level. In the present example, seeding will dominate for an initial field value
E0 exceeding a few MV/m. We come back to this important issue in Sect.7.1.3.

We learn from Fig. 7.1 that saturation is reached after about 20 gain lengths, so
the saturation length is

Lsat ≈ 20Lg0 .

This is in fact a rather typical number. In Ref. [5] the following formula is presented
for the saturation length of a SASE X-ray FEL

Lsat ≈ λu

ρFEL

= 4π
√

3Lg0 = 21.8 Lg0 . (7.5)
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7.1.2 Transmission Function Approach

In the previous section we have implicitly assumed that the eigenvalues α j are given
by their values on resonance (η = 0), and we have taken into account the bandwidth
of the FEL by the multiplicative factor ∆ω. This is only approximately correct. Now
we make a more careful analysis.

We study the SASE mechanism with a mono-energetic electron beam. The
detuning parameter is a function of frequency according to Eq. (5.8). Our first goal is
to compute the eigenvalues α j for a certain light frequency ω which will in general
be different from the resonance frequency ωr. In the spirit of the argumentation in
Sect. 5.2.1 we translate this frequency shift into an equivalent energy shift of the elec-
tron beam. The eigenvalues for a beam with energy detuning are given by Eq. (10.93)
in Sect. 10.4. These eigenvalues depend now implicitly on frequency.

We define a transmission function relating current and field in frequency domain

H(ω, z) =
(

eα1z eα2z eα3z )
·

⎛

⎝
1 1 1
α1 α2 α3
α2

1 α2
2 α2

3

⎞

⎠
−1

·

⎛

⎝
0

−1
i 2kuη

⎞

⎠ . (7.6)

The spectral component of the electric field at the position z is

Ẽx (ω, z) = µ0c K̂
4γr

H(ω, z)J (ω) , J (ω) =
√

e I0

π

1
Ab

, (7.7)

where J (ω) is the spectral current density resulting from shot noise, see Eq. (10.115)
in Sect. 10.5.1. The radiated power is

P(z) = Ab

µ0c

∫ ∞

0

∣∣∣Ẽx (ω, z)
∣∣∣
2

dω = µ0c K̂ 2e I0

16πγ2
r Ab

∫ ∞

0
|H(ω, z)|2 dω . (7.8)

The power computed from this equation is compared in Fig. 7.2 with the power
predicted by the constant-bandwidth formula. Good agreement is observed at large
values of z/Lg0 but the transmission function automatically incorporates the variable
bandwidth and yields thus higher FEL power in the first section of the undulator.

In the exponential-growth regime, the transmission function increases exponen-
tially along the undulator axis, and its frequency dependence can be approximated
by a Gaussian

H(ω, z) ∝ exp
(

z
2 Lg0

)
exp

(
− (ω − ωr )

2

4σ2
ω

)
. (7.9)

This follows from the approximate form (5.13) of the FEL gain function. The
z-dependent rms frequency bandwidth is given by Eq. (5.14)
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Fig. 7.2 Dashed blue curve : Computed SASE FEL power as a function of z/Lg0 using the
transmission-function method, Eq. (7.8). Solid red curve : power Pcb(z) computed with the constant-
bandwidth formula (7.4).

σω = σω(z) = 3
√

2 ρFEL ωℓ

√
Lg0

z
.

7.1.3 Comparison of FEL Start-Up by Seeding or by SASE

In order to compare the two different start-up mechanisms, seeding or SASE, we
determine the coefficients c j in the eigenfunction expansion

Ẽx (z) =
∑

j

c j exp(α j z)

by the matrix Equation (4.54)

⎛

⎝
c1
c2
c3

⎞

⎠ = A−1 ·

⎛

⎝
Ẽx (0)
Ẽ

′
x (0)

Ẽ
′′
x (0)

⎞

⎠ .

We take the simplest form of the matrix A−1, see Eq. (4.56):
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A−1 = 1
3
·

⎛

⎝
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√
3 + 1)/(2Γ 2)

1 (−
√

3 − i)/(2Γ ) (i
√

3 + 1)/(2Γ 2)

1 i /Γ − 1 /Γ 2

⎞

⎠ . (7.10)

In case of seeding by an external laser, corresponding to field stimulation, the initial
condition is ⎛

⎝
Ẽx (0)
Ẽ

′
x (0)

Ẽ
′′
x (0)

⎞

⎠ = E0

⎛

⎝
1
0
0

⎞

⎠ ,

and from (7.10) follows that the c j are all equal,

c j =
E0

3
, j = 1, 2, 3.

In case of SASE we have current stimulation caused by shot noise. Then the initial
condition reads for η = 0

⎛

⎝
Ẽx (0)
Ẽ

′
x (0)

Ẽ
′′
x (0)

⎞

⎠ = −µ0cK̂
4γr

j̃1

⎛

⎝
0
1
0

⎞

⎠ .

Applying (7.10) we find
∣∣c j

∣∣ = 1
3Γ

µ0cK̂
4γr

j̃1 .

The equivalent input field is therefore

Eequiv = µ0cK̂
4γrΓ

j̃1 = µ0cK̂
4γrΓ

√
e I0∆ω√
π Ab

. (7.11)

With the FLASH parameters used in Sect.7.1.1 we obtain an equivalent input field
of 0.54 MV/m, in good agreement with the value of 0.5 MV/m used in Fig. 7.1. Only
in the case that the seeding field E0 exceeds the equivalent field Eequiv by a sufficient
margin one can expect that the properties of the FEL output radiation such as pulse
length, coherence and bandwidth are determined by the seed radiation rather than by
the SASE process, which is always present and competes with seeding. The required
seeding field level has to be maintained over at least one gain length. This is an
important constraint on the beam quality and power of the seed radiation which
becomes quite demanding if one wants to use a very high harmonic of optical or
infrared laser radiation.
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Fig. 7.3 SASE radiation at 530 nm in the low-energy undulator test line LEUTL. Left : The FEL
intensity is shown as a function of the distance traversed in the undulator (courtesy of S. Milton).
Right : The energy of SASE FEL radiation and of coherent optical transition radiation as a function
of distance traversed in the undulator [9]. The dashed curve shows the prediction of the FEL code
GENESIS. Figure adapted with permission from [9]. ©2002 by the American Physical Society.

7.2 Experimental Results on SASE FEL Radiation

7.2.1 Detection of SASE, Exponential Gain and Saturation

The first experimental verification of the SASE mechanism was achieved in 1998
in the infrared wavelength range [6, 7]. SASE FEL operation in the visible and
near-ultraviolet range was accomplished in 2001 at the low-energy undulator test
line LEUTL at Argonne National Laboratory near Chicago, USA [8]. The gain curve
measured at 530 nm is shown in Fig. 7.3, similar data were obtained at 385 nm.
The exponential rise and saturation of the FEL intensity was observed both at the
visible and the ultraviolet wavelength.

The LEUTL team made a very nice experimental verification of the microbunching
associated with the high-gain FEL process by detecting coherent optical transition
radiation1 (COTR) at the FEL wavelength. The data in Fig. 7.3 demonstrate con-
vincingly the evolution of microbunches with the periodicity given by the light
wavelength: the COTR power exhibits a similar exponential rise as the FEL power.

In 2001 a successful SASE experiment was carried out at DESY in Hamburg
at the vacuum-ultraviolet (VUV) wavelength of 109 nm [10]. In the next series of
measurements, wavelengths between between 80 and 180 nm were covered and FEL
saturation was established [11, 12]. The data at 98 nm have already been presented
in Fig. 4.2. After an energy upgrade to 1250 MeV and an increase of the undulator

1 Transition radiation is produced when relativistic particles cross the boundary between two media
of different refractive indices. The radiation emitted in backward direction is in the visible and
infrared range. Optical transition radiation (OTR) is frequently applied at electron accelerators to
obtain images of the beam cross section, see Sect. 8.9. The radiation is usually incoherent because
in most cases the bunch is much longer than the optical wavelength. Coherent optical transition
radiation with a much increased intensity will be generated if the bunch possesses a periodic density
modulation with the period being equal to the optical wavelength.
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Fig. 7.4 Experimental evidence for exponential gain and FEL saturation in the extreme ultraviolet
at λℓ = 13.7 nm [13]. The average light pulse energy is plotted as a function of the active undu-
lator length. Note that this light pulse energy is in fact the sum of the FEL pulse energy and the
contribution from spontaneous undulator radiation entering the light detector. The active undulator
length z is varied in the experiment by switching on kicker magnets at selected positions inside
the long undulator system, thereby destroying the good overlap between electron and photon beam
in the downstream section of the undulator and inhibiting further FEL gain. The intensity of the
spontaneous undulator radiation is hardly affected by the induced small orbit distortions.

Fig. 7.5 Spectra of the third harmonic (left) and fifth harmonic (right) of 13.7 nm FEL radiation
[13]. For an average pulse energy of 40µJ at the first harmonic, a pulse energy of 0.25µJ was
measured at the third harmonic (4.6 nm) and of 10 nJ at the fifth harmonic (2.75 nm).

length from 13.5 to 27 m the FEL was renamed into FLASH. This FEL user facility
will be described in Chap. 8.

The data at a fundamental wavelength of 13.7 nm [13] are presented in Fig. 7.4.
Analysis of the exponential part of the gain curve yields a power gain length of Lg =
1.25± 0.15 m. Quite remarkable is the observation of the third and fifth harmonic at
4.6 and 2.75 nm, respectively, see Fig. 7.5. The fifth harmonic is within the so-called
water window, a spectral region in the extreme ultraviolet where water becomes
transparent. Radiation in this region is crucially important for the investigation of
biological matter. Higher harmonics of the 32 nm line have also been seen [14]. In
this measurement the second harmonic at 15.9 nm was observed, but with a twenty
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Fig. 7.6 Spectra of the second harmonic (left) and third harmonic (right) of 32 nm FEL
radiation [14].

times lower intensity than the third harmonic at 10.5 nm (Fig. 7.6). Remembering the
discussion in Sect. 3.5 the suppression of the even harmonics is no surprise.

SASE radiation at 840 nm and at the second and third higher harmonic have been
reported from the VISA FEL at Brookhaven National Laboratory (BNL), USA [15].
Both SASE and seeded FEL lasing have been accomplished at wavelengths of 266
and 400 nm in the Deep Ultra-Violet (DUV) FEL at the National Synchrotron Light
Source at BNL [16]. SASE radiation at 49 nm was observed in 2006 at the test
accelerator SCSS of the Japanese X-ray FEL project [17]. Recent results on SASE
radiation in the X-ray regime will be presented in Chap. 9.

7.2.2 Transverse Coherence of SASE Radiation

As shown in Sect. 10.3, the fundamental Gaussian mode TEM00 has its highest
intensity on the beam axis while the higher TEMmn modes extend to larger radial
distances and some of them even vanish on the axis. With increasing length in the
undulator, the fundamental TEM00 mode will therefore grow faster than the other
modes, owing to its superior overlap with the electron beam. This process is called
mode competition. When the saturation regime is approached the fundamental mode
will usually dominate and the FEL radiation will possess a high degree of transverse
coherence. This has indeed been verified by double-slit diffraction experiments. The
data shown in Fig. 7.7 prove that almost full transverse coherence has been achieved
at FEL wavelengths of 100 and 7 nm. This feature is of extreme importance for a
large class of experiments.

It is interesting to note [5] that a SASE FEL can reach almost full transverse
coherence even if the emittance criterion ε ≤ λℓ/(4π) is not fulfilled. Numerical
calculations for the Linac Coherent Light Source LCLS, made by S. Reiche with
his code GENESIS, reveal that in the early part of the undulator several transverse
FEL beam modes will be excited if the electron beam cross section is too large,
see the left picture in Fig. 7.8. The fundamental TEM00 mode grows faster than the
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Fig. 7.7 Measured double-slit diffraction patterns. Left : at a fundamental wavelength of λ1 =
100 nm [18, 19]. The slit separation is 0.5 mm. Right : at λ1 = 7 nm (courtesy of Marion Kuhlmann,
DESY).
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Fig. 7.8 Computed evolution of the transverse angular distribution of the FEL light in LCLS
at different longitudinal positions z in the undulator. Left : z = 4 Lg , center z = 10 Lg , right :
z = 19 Lg . (Courtesy of S. Reiche).

other modes and exceeds their intensity already at 10 gain lengths. At the end of
the exponential gain regime (z = 19 Lg ), the TEM00 mode dominates and the FEL
beam has acquired almost full transverse coherence. This is a nice illustration of
“mode cleaning”.

Deep in the saturation regime of the fundamental mode, the higher modes are not
yet saturated and may continue to grow with increasing z, depending on the energy
spread acquired by the electron beam upon passing the undulator. Consequently, the
degree of transverse coherence may drop below 90 %.
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7.3 Statistical Properties of SASE Radiation

We have seen in the previous section that the transverse coherence of SASE FEL
radiation is very good, which is extremely important for structural analysis experi-
ments. The longitudinal coherence, however, is rather poor. The start-up from shot
noise is the reason why SASE radiation exhibits strong shot-to-shot fluctuations in
the wavelength spectrum and in the FEL pulse energies. This will be analyzed now.

7.3.1 Simple Model of a SASE Pulse

Truly monochromatic light is an idealization and does not occur in nature as it
corresponds to an infinitely long harmonic wavetrain. Any observable wavetrain has
a finite duration and therefore subtends a certain range of wavelengths. The radiation
is called quasi-monochromatic if the bandwidth is much smaller than the central
wavelength. This is usually the case for conventional laser radiation. (An exception
are lasers with ultrashort pulses such as femtosecond titanium-sapphire lasers. Here
the central wavelength is 800 nm and the bandwidth may be as large as 100 nm). An
important feature of quasi-monochromatic radiation is that there exist fixed phase
relations among the different wavelength components.

In contrast to this, SASE FEL radiation is in general of a chaotic nature since it
originates from shot noise in the electron beam (see Sect. 10.5.1). The SASE pulses
are composed of several sequential wavetrains with arbitrary phase shifts in between.
An illustration is given in Fig. 7.9. Within a given SASE pulse, the phase relations
are fixed, but the phase shifts fluctuate from pulse to pulse.

What is the consequence for the emitted SASE spectrum? We study this in a model
calculation with three sequential wavetrains of equal wavelength, each comprising
100 periods. The three Fourier transforms have to be added taking into account the
proper phase factors. The spectral intensity of the SASE pulse is proportional to the
absolute square of this sum and consists of two terms: (1) the sum of the spectral
intensities of the three wavetrains, and (2) the interference terms among the trains.
The interference terms drop out when computing the average spectrum of many
FEL pulses. This average spectrum has a smooth lineshape, indicated by the dashed
blue curves in Fig. 7.10, and its bandwidth of about 1 % is determined by the 100
periods in a single wavetrain. In contrast to this, the single-shot spectra of individual
SASE pulses (red curves in Fig. 7.10) exhibit a considerable fine structure caused by
interference: they are characterized by narrow spikes which fluctuate in position and
peak height. The spike width is about 0.3 % because the overall wavetrain comprises
300 periods.

The characteristic shot-to-shot fluctuations have been experimentally verified.
Two measurements at different wavelengths and different electron bunch lengths
are shown in Fig. 7.11. The SASE pulses at a wavelength of 97 nm were produced
by short electron bunches while those at 14.6 nm were produced by long electron
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Fig. 7.9 Very simple model of a SASE pulse: a sequence of several harmonic wavetrains with
arbitrary phase shifts in between. These phase shifts fluctuate from pulse to pulse. For clarity, only
two wavetrains are shown.

Fig. 7.10 Averaged SASE spectrum (dashed blue curves) and single-shot spectra of individual
SASE pulses (red curves). a All phase shifts are zero, b and c randomly chosen phase shifts.
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Fig. 7.11 Left : The measured spectra of individual SASE FEL pulses at an average wavelength
of 97 nm [11, 12]. The single-shot spectra show two to three spikes which fluctuate in size and
position from shot to shot. The average spectrum of 100 FEL pulses is wider than the individual
spikes, as expected from our model calculation. Right : Spectra of individual SASE pulses and the
averaged spectrum at 14.6 nm for long electron bunches [20]. The average number of spikes in the
single-shot spectra is about 12.

bunches. The fine structure of SASE pulses was quite different in the two cases, the
average number of spikes being 2.6 for the short electron bunches and 12 for the long
bunches.
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7.3.2 Coherence Time

An important quantity for the characterization of chaotic light is the coherence time,
i.e. the time over which there exists a definite phase relation in the field. We want to
study the coherence properties of the SASE FEL light emerging from an undulator
with an active length of Lu ≈ 16 Lg0, where according to Fig. 5.9 the microbunching
is very pronounced. The complex electric field amplitude at z = Lu is denoted by
E(t). The first-order correlation function is defined by the expression [21]

C(τ ) =
〈∫

E(t)E∗(t + τ ) dt
〉

〈∫ |E(t)|2 dt
〉 (7.12)

in which the time integration extends over one SASE pulse and the brackets denote
the sample average over all observed SASE pulses. Now we carry out a Fourier
transformation

E(t) = 1
2π

∫
Ẽ(ω) exp(−iωt)dω

and find

C(τ ) =

〈∫ ∣∣∣Ẽ(ω)
∣∣∣
2

exp(i ω τ )dω

〉

〈∫ ∣∣∣Ẽ(ω)
∣∣∣
2

dω

〉 . (7.13)

Proof:
∫

E(t)E∗(t + τ ) dt ∝
∫∫∫

Ẽ(ω)Ẽ∗(ω′) exp(−iωt) exp(iω′(t + τ ))dt dω dω′

∝
∫ ∣∣Ẽ(ω)

∣∣2
exp(i ω τ )dω

since
∫

exp(i(ω′ − ω)t) dt = 2 π δ(ω′ − ω).

The Fourier component of the field is proportional to the product of the trans-
mission function H(ω, z) and the spectral current density J (ω), see Eq. (7.7). This
current density results from shot noise in the electron beam, and since shot noise
has a white spectrum, J (ω) is independent of frequency (compare Eq. (10.115) in
Sect. 10.5.1). Using the Gaussian approximation (7.9) of the transmission function
we obtain

Ẽ(ω) ∝ exp
(

− (ω − ωr )
2

4σ2
ω

)
⇒ E(t) ∝ exp

(
− t2

4σ2
t

)
with σt =

1
2σω

.

From Eq. (7.13) follows then that the correlation function is also a Gaussian



120 7 Self-Amplified Spontaneous Emission and FEL Seeding

C(τ ) = exp
(

−σ2
ωτ2

2

)
. (7.14)

Following [22, 23] we define the coherence time by

τcoh =
∫ ∞

−∞
(C(τ ))2 dτ =

√
π

σω
= 2

√
π σt . (7.15)

Remember that σω depends on the distance z traveled in the undulator, see Eq. (5.14).

7.3.3 Pulse Energy Fluctuations

Consider now a “flat-top” bunch with a time duration of Tbunch. The average number
of wave packets (spikes) in the wavelength spectra is

M = Tbunch

τcoh
(7.16)

if the bunch duration exceeds the coherence time because each wave packet has a
time duration of about τcoh and thus M = Tbunch/τcoh non-overlapping wave packets
can exist in the bunch. For Tbunch ≤ τcoh only one wave packet can exist and hence
M = 1. The wave packets are sometimes called the “longitudinal modes”. The
frequency width of the individual spikes in the spectrum is equal to the Fourier
transform limit determined by the bunch duration

∆ωspike =
2
√

2 ln 2
Tbunch

. (7.17)

This formula holds for a bunch with a flat time profile.
In the exponential growth regime the radiation pulse energy Urad fluctuates

according to the so-called gamma distribution, see Sect. 10.5.2:

pM (u)du = M M uM−1

Γ (M)
exp(−M u)du with u = Urad

⟨Urad⟩
. (7.18)

Here Urad is the energy of an individual radiation pulse, ⟨Urad⟩ the average energy of
many pulses, u = Urad/ ⟨Urad⟩ the normalized pulse energy, and Γ (M) is the gamma
function of argument M . The mean value and the variance of the normalized FEL
pulse energy are

⟨u⟩ =
∫ ∞

0
u pM (u)du = 1, σ2

u =
〈
(u − ⟨u⟩)2

〉
= 1

M
. (7.19)
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Fig. 7.12 Left : Single-shot spectrum of a long FEL pulse. The average number of modes is M = 6.
Right : Single-shot spectrum of a short FEL pulse. Here the average number of modes is M = 2.6.
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Fig. 7.13 Fluctuation of SASE pulse energy for long and short electron bunches [12]. The mode
number is M = 6 for the long pulse and the variance is σu = 41 %. For the short pulse one finds
M = 2.6 and σu = 61 %. The data have been taken in the exponential gain regime. Solid curves
gamma distribution (7.18).

As mentioned above, the number of modes is equivalent to the number of spikes seen
in the wavelength spectra.

As a nice illustration we show in Figs. 7.12 and 7.13 data obtained at a wavelength
of 97 nm [12]. In a long FEL pulse more wave packets are excited than in a short pulse,
and the probability distribution of SASE pulse energy has a correspondingly lower
variance. This is indeed verified by the data. When one selects a single longitudinal
mode (M = 1) by means of a monochromator the probability distribution changes
dramatically into a negative-exponential distribution, see Fig. 7.14. We note that
the pulse energy fluctuations are large in the exponential gain regime and reach
60−70 %. This has also been verified in a measurement at a wavelength of 13.7 nm
(Fig. 7.15). From the experimental value M = 1.9 and an estimated coherence time
of τcoh ≈ 4.2 ± 0.5 fs one obtains an estimate for the radiation pulse length at the
end of the exponential regime of about 8 ± 1 fs [13].
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at a wavelength of 13.7 nm [13]. Solid curve gamma distribution (7.18). The average pulse energy
is 1µJ. Right : Probability distribution of FEL pulse energy in the saturation regime. The average
pulse energy is 40µJ. Here the curve has been computed with the code FAST.

When saturation is reached the gamma distribution is no longer applicable and the
fluctuations drop to less than 20 %. The regimes of exponential gain and saturation
are compared in Fig. 7.15.

A thorough characterization of the 840 nm SASE radiation produced at VISA
can be found in Ref. [24]. A short gain length of less than 18 cm has been obtained
and a gain of 2 × 108 at saturation. For uncompressed bunches the SASE radiation
spectra exhibit 4–5 longitudinal modes, and the shot-to-shot intensity fluctuations
are described by a gamma distribution with M = 4.3, while for compressed bunches
only one mode is seen and the observed fluctuations are well fitted with the nega-
tive exponential distribution (i.e. the gamma distribution with M = 1). In another
experiment at VISA [25] the microbunching was verified by detecting coherent
optical transition radiation at the first and second harmonic of the SASE FEL radiation
(at 845 and 422 nm).

The spikes in the wavelength spectra have their origin the presence of several wave
packets that are separated in time. Consequently, the FEL pulses in time-domain will
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Fig. 7.16 The computed time structure of two different FEL pulses in FLASH at the end of the
27 m long undulator. We thank Igor Zagorodnov for carrying out the GENESIS calculation.

also feature sharp spikes. All FEL simulation codes predict indeed the existence of
sharp spikes in the time-domain. As an example we show in Fig. 7.16 a computation
made with the code GENESIS.

7.4 FEL Seeding with Coherent Radiation

Self-amplified spontaneous emission originates from spontaneous undulator
radiation and is hence a stochastic process. The start-up from shot noise is the reason
why SASE FEL radiation exhibits strong shot-to-shot fluctuations in the wavelength
spectrum, as discussed in Sect. 7.3. The pulse energy fluctuations are strong in the
exponential gain regime but drop considerably when FEL saturation is approached.
A long bunch can be subdivided into sections that are each one coherence length
long. In the SASE process the microbunching takes place independently in different
sections which then radiate incoherently. Therefore the longitudinal coherence of
SASE radiation is poor compared to conventional laser light.

The straightforward solution to overcome these limitations is to initiate the FEL
process by a coherent source. Seeding with external laser-like radiation induces
uniform microbunching all along the electron bunch and leads to the emission of
FEL radiation which is fully coherent both in space and time, and which is free from
large pulse-energy fluctuations, provided the seeding source is sufficiently stable.
The much better FEL beam quality is very important, not only for spectroscopic
experiments, but also for a whole class of time-domain experiments requiring a
well-known and controllable optical phase.

External seeding of an extreme ultraviolet (EUV) or soft X-ray FEL requires an in-
tense laser-like source. At these short wavelengths, conventional lasers with sufficient
power to dominate the competing SASE process are not available today. Various seed-
ing methods have been proposed three of which will be described below: generation
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of high-order harmonics of an optical or infrared laser through nonlinear processes in
a noble gas, high-gain harmonic generation, and echo-enabled harmonic generation.
A fourth method, self-seeding, is well suited for the hard X-ray regime where the
other schemes become inefficient. Self-seeding will be discussed in Sect. 9.2.3.

7.4.1 Seeding by Higher Harmonics of an Infrared Laser

High-order laser harmonics generated in a gas open the way to FEL seeding at
short wavelengths. A successful experiment has been carried out at the SPring-8
Compact SASE Source (SCSS) test accelerator [26]. The test accelerator is depicted
in Fig. 7.17. A pulsed titanium:sapphire (Ti:Sa) laser (wavelength 800 nm, pulse
duration 100 fs FWHM) is focused on a xenon gas cell where it generates odd higher
harmonics. The fifth harmonic with a wavelength of 160 nm, a pulse energy close
to 1µJ and duration of 50 fs (FWHM) is selected for seeding. The 160 nm seed
beam is spatially and temporally overlapped with a 150 MeV electron beam in two
consecutive undulator sections.

Figure 7.18 compares typical spectral intensity distributions of the seeded FEL
emission, of the unseeded emission (seed beam switched off) and of the seed
beam itself. The data were obtained with the first undulator section tuned to
160 nm, while the second undulator section was off resonance. At the fundamental
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Fig. 7.17 Layout of the SSCS test accelerator and seeding experiment. A powerful Ti:Sa laser
with a fundamental wavelength of 800 nm is loosely focused on a xenon gas cell where it generates
higher harmonics. Using the telescope and periscope optics (CaF2 mirrors), the fifth harmonic is
spectrally selected. The 160 nm seed beam is overlapped with the 150 MeV electron beam in two
consecutive undulator sections. The relative alignment of electron and photon beam is monitored
on optical transition radiation (OTR) screens. The FEL radiation is spectrally analyzed using a
diffraction grating and a CCD camera. Reprinted by permission from [26]. © 2008 by Macmillan
Publishers Limited.
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wavelength of 160 nm, the seeded FEL intensity is a factor of 500 larger than the
seed beam intensity and even a factor of 2600 larger than the unseeded radiation.
Odd higher harmonics are also seen. At the third harmonic (λ = 53 nm) the seeded
FEL intensity exceeds the unseeded FEL intensity by a factor of 312 and at the fifth
harmonic (λ = 32 nm) by a factor of 47.

In a later experiment at SCSS [27] the 13th harmonic of a Ti:Sa laser was used
as a seeding source for a 250 MeV electron beam. The radiation intensity at the seed
wavelength of 61.2 nm increased by a factor of 650 compared to the unseeded case.
Seeding with a wavelength of 38 nm has recently been demonstrated at FLASH [28].

7.4.2 High-Gain Harmonic Generation

FEL light can be produced by the higher harmonics of external seed radiation via
the so-called High-Gain Harmonic Generation (HGHG) process [29]. The principle
is explained in Fig. 7.19. The electron beam and a powerful laser beam or laser-like
beam of wavelength λ1 are sent together through a short undulator magnet, called
the modulator, which is tuned to λ1. The energy of the electron beam is periodically
modulated by the interaction with the seed beam. A precondition is a seed beam
of sufficient power to generate an energy modulation well above the energy spread
of the electron beam. A magnetic chicane converts the energy modulation into a
charge density modulation. Plotted as a function of the internal bunch coordinate ζ,
the charge density exhibits a periodic sequence of narrow spikes with a spacing equal
to the seed wavelength λ1, see graph (c) in Fig. 7.19. The Fourier expansion of ρ(ζ)
contains higher harmonics with angular frequencies ωn = n ω1 and wavelengths
λn = λ1/n. The long undulator, called the radiator, is tuned to one of the higher-
harmonic wavelengths, and in the radiator the density-modulated beam produces
FEL radiation at this wavelength.
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The first experimental results on high-gain harmonic-generation in the ultraviolet
were obtained with the deep ultraviolet free-electron laser (DUV FEL) at Brookhaven
National Laboratory [29]. A Ti:Sa laser provided the seed beam with λ1 = 800 nm
for generating third-harmonic radiation at 266 nm. The results (Fig. 7.20) confirmed
the predictions for HGHG FEL operation: stable wavelength spectrum, narrow band-
width, and small pulse-energy fluctuation.

The free-electron laser FERMI at the synchrotron radiation laboratory Elettra in
Trieste, Italy is a user facility based on the HGHG principle. In the initial experiments
at FERMI, reported in [30], the third harmonic of a titanium-sapphire laser has been
used for seeding. The 260 nm seed pulses have a length of 150 fs (FWHM), a peak
power of about 100 MW and a bandwidth of 0.8 nm. The modulator has a period of
100 mm and a length of 3 m. The radiator is composed of six 2.4 m long undulator
sections with a period of 55 mm. A special feature is the possibility to switch between
linear and circular polarization.
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The power gain curve of the FEL radiation produced at the 8th harmonic (32.5 nm)
is shown in Fig. 7.21. The power gain length is 2.5 m for planar polarization and 2.0 m
for circular polarization. As theoretically expected (see Sect. 4.9), a shorter gain
length and a higher output power are obtained in the case of circular polarization,
owing to a better coupling between electromagnetic field and electron beam. The
FERMI FEL achieves saturation with a radiator of 6–8 gain lengths, while for a
SASE FEL about 20 gain lengths are needed.

An attractive feature of seeded FELs is the monochromatic spectrum. The results
obtained at FERMI are shown in Fig. 7.22, where both a single-shot spectrum and
a sequence of 500 consecutive single-shot spectra are displayed. The seeded-FEL
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spectrum consists of a single spectral line with a relative width of 0.05 % while the
SASE bandwidth is about 0.13 %. The FEL pulse energy fluctuations are in the 10 %
range.

The basic idea of the HGHG method is to generate a microbunching with the
periodicity λ1 of the seed radiation but with microbunches that are much shorter
than λ1 so that the Fourier spectrum of the bunch contains higher harmonics. The
efficiency of HGHG drops rapidly with increasing harmonic number, mainly because
of beam energy spread.

7.4.3 Echo-Enabled Harmonic Generation

The HGHG-microbunches have a Gaussian-like charge density profile and do
not posses a substructure. In [31] a novel method was proposed for generating
microbunches with a considerable substructure, thus opening the way to much higher
harmonics. The method was called Echo-Enabled Harmonic Generation (EEHG)
because there is some similarity with the well-known beam echo effect in circular
accelerators and the spin echo in nuclear magnetic resonance spectroscopy.

In EEHG, the electron beam interacts with two laser pulses which may have the
same or different frequencies ω1 and ω2, see Fig. 7.23. After the magnetic chicane of
the first modulation stage, the longitudinal phase space is strongly filamented. This
filamented beam is then energy-modulated by the second laser beam in modulator 2,
and after traversing the second magnetic chicane it has acquired a microstructure
in which the microbunches are composed of a number of very narrow peaks, see
Fig. 7.23. It is obvious that such a bunch has a Fourier spectrum extending to very
high frequencies.

It can be shown [31, 32] that higher harmonics with frequencies ω = n1ω1+ n2ω2
are generated and that much higher harmonic numbers than in the HGHG process
can be achieved.

A proof-of-principle experiment was carried out using laser wavelengths of 795
and 1590 nm [33]. Spectral lines at 370, 405 and 465 nm were observed whose fre-
quencies correspond to linear combinations of ω1 and ω2.

Echo-enabled harmonic generation in the ultraviolet has been observed at the
Shanghai Deep Ultraviolet FEL (SDUV-FEL) facility [34]. A linac provides a
135 MeV electron beam with a bunch charge of 100–300 pC, a normalized emittance
of 4 mm mrad, an energy spread of 0.2 %, and a pulse duration of 2–3 ps (FWHM)
after compression. The two laser seeds come from a 1047 nm laser with 8.7 ps pulse
length and a tunable pulse energy of up to 60 mJ. Energy modulations are applied in
the modulators M1 (10 periods with a period of 65 mm and K = 1.6) and M2 (10
periods with a period of 50 mm and K = 2.0). The measurements were performed
at the third harmonic of the laser seed. The electron beam was first sent through the
radiator undulators to achieve optimized SASE. The laser seed was then introduced
to interact with the electron beam in the second modulator (typical HGHG config-
uration). At this stage, a narrow-bandwidth HGHG signal was observed at 345 nm
(Fig. 7.24). Finally, another synchronized laser seed was gradually guided to interact
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with the electron beam in the first modulator to realize the EEHG seeding, resulting
in the appearance of a narrow signal at a slightly longer wavelength (350 nm). The
shift from 345 to 350 nm is caused by the different dependencies of the HGHG and
EEHG wavelengths on the energy chirp of the electron beam and the dispersions in
the magnetic chicanes, see Ref. [34].
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Chapter 8
The EUV and Soft X-Ray FEL in Hamburg

8.1 Introductory Remarks

The idea to use a long linear accelerator (linac) for providing the drive beam for an
X-ray free-electron laser was conceived at the Stanford Linear Accelerator Center
SLAC. In the Linac Coherent Light Source LCLS (see Chap. 9) a 1 km long section
of the SLAC electron linac, which has been the major facility for elementary particle
physics at Stanford since 1965, delivers the beam needed in the FEL. The SLAC
linac is based on normal-conducting accelerating structures working at 2.856 GHz.
The world’s first linear collider SLC was realized utilizing this linac to accelerate
electrons and positrons to 45.5 GeV and collide them after the traversal of an arc to
study electro-weak physics at the Z0 resonance.

For 25 years large groups of particle and accelerator physicists have been working
on the development of linear electron-positron colliders in the TeV regime. While
at Stanford and in Japan normal-conducting machines were designed, the TESLA
collaboration decided for superconducting cavities. After a decade of intense research
and development the collaboration succeeded in raising the accelerating field from
a few Megavolts per meter to more than 35 MV/m in multi-cell niobium cavities [1].
The success of the TESLA cavity program was the essential motivation to base the
future International Linear Collider ILC on the superconducting TESLA technology.

The TESLA Test Facility TTF was built at DESY with the intention to investigate
the performance of superconducting cavities with an accelerated electron beam and
to study whether the high beam quality needed in a collider could be achieved.
Already at an early stage the decision had been taken to couple the envisaged TESLA
collider with an X-ray FEL [2]. As a first test of this concept, the TTF machine was
augmented with a 13.5 m long undulator magnet [3]. In 2000 the worldwide first
vacuum-ultraviolet (VUV) free-electron laser began its operation at wavelengths
between 80 and 180 nm. In the next step the energy of the linac was increased, a 27 m
long undulator was installed and a hall for user experiments at five photon beam lines
was added. In this configuration, FEL saturation was achieved for the first time in the
extreme-ultraviolet (EUV) and soft X-ray regime at wavelengths between 30 nm and

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 133
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© Springer International Publishing Switzerland 2014
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4 nm. Results have been presented in Chap. 7. Since 2005 the FEL has been operating
as a user facility named FLASH (Free-Electron Laser in Hamburg).

8.2 Layout of the Free-Electron Laser FLASH

The free-electron laser FLASH is shown schematically in Fig. 8.1. The electron
bunches are produced in a laser-driven photo-injector and accelerated to energies
up to 1250 MeV in a superconducting linac. The bunch charge is typically in the
range of 0.1–0.5 nC. At intermediate energies of 150 MeV and 450 MeV the electron
bunches are longitudinally compressed, thereby increasing the peak current from an
initial value of some 30 A to more than 1000 A as required for the FEL operation.
A third-harmonic cavity for an improved bunch compression system was installed
in 2010.

The 27 m long planar undulator magnet consists of six segments. The field is
generated by NdFeB permanent magnets and shaped by iron pole shoes [4]. The
gap height is 12 mm, the period is λu = 27.3 mm, and the peak magnetic field is
B0 = 0.48 T. The field along the axis is almost purely sinusoidal:

By(z) = −B0[sin(kuz)+ b3 sin(3kuz)+ b5 sin(5kuz) . . .]

with the measured upper limits |b3| < 0.001 and |b5| < 0.0005. The deviation of the
electrons from the ideal orbit is less than 10µm. The good overlap between electron
beam and light wave is a prerequisite for achieving a high gain in the lasing process.
In the drift spaces between the segments, quadrupoles for beam focusing are installed
as well as beam diagnostic instruments. Finally, a dipole magnet deflects the electron
beam into a dump, while the FEL radiation propagates to the experimental hall.

The high-gain FEL process demands a bunched electron beam of extremely high
quality which can be produced by a linac but not by a circular accelerator. Specifically,
high peak current, low emittance, small energy spread and short bunch length are
required. The technological challenges associated with these requirements and the
technical solutions found are described in the following.
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Fig. 8.1 Schematic view of the extreme-ultraviolet (EUV) and soft X-ray free-electron laser
FLASH in Hamburg. The electron bunches are generated in a laser-driven photocathode. Seven
acceleration modules are installed each containing eight superconducting cavities. Two magnetic
chicanes BC1 and BC2 are used for longitudinal bunch compression. The section labelled sFLASH
is dedicated for FEL seeding in the EUV and contains a 10 m long variable-gap undulator. The
FEL beamline FLASH1 is equipped with a 27 m long fixed-gap undulator. A second FEL beamline
(FLASH2) is in preparation which can be operated simultaneously with FLASH1 by sharing the
many bunches accelerated in the superconducting linac. A variable-gap undulator permits the choice
of a different wavelength.

8.3 Electron Source

The high bunch charge needed in a high-gain FEL can be accomplished with photo-
cathodes which are illuminated with short ultraviolet laser pulses [5]. The electron
source at FLASH, shown in Fig. 8.2, consists of a laser-driven photocathode which
is mounted inside a 1 1

2 -cell radio-frequency (RF) cavity. The cathode is made from
molybdenum and is coated with a thin Cs2Te layer to achieve a quantum efficiency
for photoelectric emission of typically 5 %. The UV laser pulses are generated in
a mode-locked solid-state laser system (Nd:YLF) built by the Max Born Institut,
Berlin [6]. Another difference to conventional cathodes is the rapid acceleration to
relativistic energies. The photocathode is located at the backplane of the half-cell
where the accelerating field assumes its peak value of up to 60 MV/m. A static mag-
netic solenoid field is superimposed and provides transverse focusing in order to
preserve a small beam cross section. The pulsed UV laser is synchronized to the
1.3 GHz radio-frequency of the linac with an rms precision of better than 60 fs.

It is not possible to generate the high peak current of several kA immediately in
the gun because then huge space charge forces would arise and immediately disrupt
the bunch. Therefore bunches with a modest current of some 30 A are produced by
laser pulses of 10 ps duration, but even in this case the particles must be accelerated
as quickly as ever possible to relativistic energies. In the relativistic regime the repul-
sive electric forces between the equal charges are largely canceled by the attractive
magnetic forces between the parallel currents. Space charge forces are discussed in
the next section.
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Fig. 8.2 Cut through the electron gun of FLASH. The Cs2Te photocathode is mounted at the
backplane of a 1.3 GHz 1 1

2 -cell copper cavity. The cavity is excited in a TM010-like mode, the
electric field assumes its maximum value at the cathode. The RF power of about 5 MW is guided to
the cavity through a wave guide and a coaxial coupler with minimum distortion of field symmetry.
The UV laser beam is reflected onto the cathode by a small mirror outside the electron beam axis.
A solenoid coil provides transverse focusing (see Sect. 8.4.2). A second solenoid, called “bucking
coil”, compensates the magnetic field in the cathode region where the photo-electrons have very
low energy. (Courtesy of E. Vogel).

8.4 Space Charge Effects

Space charge forces in the intense electron bunches of a high-gain FEL have a
profound influence on the beam dynamics and constitute in fact one of the main
performance limitations of an X-ray FEL. We consider first space charge forces in
highly relativistic bunches because these are easy to understand, and address then
the rather intricate effects that happen in the low-energy electron cloud close to the
photocathode.

8.4.1 Electric and Magnetic Forces Inside a Relativistic Bunch

We consider for simplicity a bunch of N relativistic electrons which are uniformly
distributed in a cylinder of radius rb and length Lb (measured in the laboratory
system). In a co-moving coordinate system, the electrons are at rest and we have a
pure Coulomb field inside the bunch. The number of particles and the bunch radius
remain invariant (r∗

b = rb) when transforming from the laboratory system to the
co-moving coordinate system, but the length is Lorentz-expanded to L∗

b = γLb. For
γ ≫ 1 the bunch length L∗

b will be very much larger than the radius, hence one
can compute the radial electric field inside the bunch using the approximation of an
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infinitely long cylindrical charge distribution. The field of an infinitely long charged
cylinder has only a radial component

E∗
r (r) =

−N e
2πε0 L∗

b
· r

r2
b

for r ≤ rb ,

= −N e
2πε0 L∗

b
· 1

r
for r ≥ rb . (8.1)

A magnetic field does not exist because the charges are at rest in the co-moving
system. Now we transform the field (8.1) into the laboratory system. This yields a
radial electric field and an azimuthal magnetic field:

Er (r) = γE∗
r (r) =

−N e
2πε0 Lb

· r

r2
b

, Bφ(r) =
v

c2 Er (r) for r ≤ rb , (8.2)

where v is the speed of the electrons. Outside the bunch (r > rb) the fields drop as
1/r . A test electron inside the bunch experiences a force due to the radial electric
field and the azimuthal magnetic field which is computed using the formula F =
−e (E + v × B). The electric force points radially away from the axis, the magnetic
force points inwards but is a bit weaker, hence the overall force points outwards and
is thus a defocusing force, given by the expression

Fr (r) =
N e2

2πε0 Lb
· r

r2
b

·
(

1 − v2

c2

)
= N e2

2πε0 Lb
· r

r2
b

· 1
γ2 for r ≤ rb . (8.3)

The residual force is a factor of 1/γ2 smaller than the electric force alone and vanishes
in the ultra-relativistic limit γ → ∞. This “repulsive” total force may lead to a radial
blowup of the bunch. The electrons leave the gun at relativistic speed but their Lorentz
factor γ ≈ 10 is far too low to preserve a small normalized emittance over a large
distance. Therefore the first acceleration module, raising the energy to 150 MeV, is
mounted directly behind the electron gun.

Recognizing that repulsive space charge forces remain an unavoidable problem we
may ask the question whether it is possible to counteract these internal forces at least
partially by applying an external focusing field. For the cylindrical electron bunch
with constant charge density, described in the previous section, this is in fact possible.
In such a bunch the total space charge force depends linearly on the displacement
r from the axis, see Eq. (8.3). A magnetic lens whose field grows linearly with r
can indeed exert a focusing force that balances the internal force and preserves the
transverse beam size.

Now it is important to realize that the transverse intensity distribution in a standard
laser beam is described by a Gaussian, see Sect. 10.3. The electron bunch generated
in a photocathode by such an laser beam will also possess a Gaussian transverse
density distribution. The residual repulsive force inside a Gaussian bunch is given
by the expression
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Fig. 8.3 Left : charge distribution Q(r) and radial space charge force F(r) in a cylindrical electron
bunch with constant charge density and radius rb. Right : charge distribution Q(r) and radial space
charge force F(r) in a Gaussian bunch. The units for charge and force are arbitrary.

Fr (r) =
N e2

2πε0 Lbr

[
1 − exp

(
− r2

2σ2

)]
· 1
γ2 . (8.4)

The radial force inside a bunch with either a constant or a Gaussian charge distribution
is depicted in Fig. 8.3. In the Gaussian bunch the force grows almost linearly with r for
0 ≤ r ≤ 0.8 σ but then the slope d F/dr levels off, and for r > 1.8 σ the force even
decreases. It is virtually impossible to compensate such a highly nonlinear force by
means of an external magnetic field, but of course one can correct for part of it. For this
reason the Gaussian charge distribution is quite undesirable in the electron injector
region. Great effort is made to shape a UV laser beam with a flat transverse profile in
order to produce cylindrical electron bunches with an approximately constant charge
density. Also in the longitudinal direction a flat profile is desirable because otherwise
the defocusing effects of the space charge forces would vary along the bunch while
an external focusing force is necessarily the same all along the bunch.

8.4.2 Space Charge Forces in the Electron Gun

The electrons leave the photocathode with velocities much below c and form a
charged cloud that is rapidly accelerated to relativistic speeds. The time-varying space
charge fields in such an electron cloud cannot be computed analytically. Numerical
calculations reveal that the radial force depends on the longitudinal position ζ inside
the bunch; it is strongest in the center and falls off toward the head and tail of the
bunch. The ζ dependence of the radial force distorts the phase space distribution and
generates a fan-like structure, shown schematically in Fig. 8.4. The emittance within
a short longitudinal slice, the so-called slice-emittance,1 is not significantly affected,
but the angular orientations of the phase space ellipses of different slices depend
on their longitudinal position, with the consequence that the overall emittance is
increased.

1 We consider here the normalized emittance, see Sect. 8.9.
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Fig. 8.4 Transverse phase space plots showing schematically the emittance growth due to space
charge and its compensation by means of a focusing lens. a Initial phase space distribution near the
photocathode. b Phase space distribution after beam transport to the lens. Not only the two ellipses,
representing bunch slices at the center of the bunch and at the head or tail, are filled with particles
but also the shaded area between them. This is because the strength of the space charge force varies
continuously between center and head of the bunch. c Transformation of phase space distribution
by a focusing lens. d Shrinkage of the fan-like structure in the drift and acceleration section behind
the lens. We thank Klaus Flöttmann for useful discussions on this subject.

Fortunately, this radial blowup of the bunch can be counteracted by a clever focus-
ing scheme known as emittance compensation [7]. (A more appropriate expression
would be emittance-growth compensation because it is not the emittance as such
that is compensated but rather its growth). With the help of a magnetic solenoid
field the evolution of the fan-like phase-space structure can be reversed. The math-
ematical analysis [8] of the emittance-growth compensation process is beyond the
scope of this book. Elaborate numerical computations using the code ASTRA [9] and
thorough experimental studies [10] have been carried out to optimize the geometry
of the solenoid coil arrangement and to determine the proper coil current.

8.5 Superconducting Linear Accelerator

The electron injector section is followed by seven 12.2 m long acceleration modules
each containing eight superconducting niobium cavities. The cavities are made from
pure niobium and consist of nine cells each. Figure 8.5 shows the layout of the nine-
cell TESLA cavity [11]. The basic principles of superconducting cavities for particle
acceleration are explained in [12]. An important property of superconductors is that
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Fig. 8.5 Longitudinal cut and photo of the nine-cell superconducting cavity which is made from
pure niobium and cooled by superfluid helium of 2 K. The resonance frequency is f0 = 1.3 GHz.
The electric field lines are shown at the instant when an electron bunch has just entered the first
cell. The length ℓc of a cell is chosen such that the field direction has inverted when the relativistic
bunch has moved to the next cell. This is fulfilled for a cell length equal to half the RF wavelength,
ℓc = c/(2 f0). Thereby it is ensured that the particles receive the same energy gain in each cell.

their resistance does not vanish in alternating electromagnetic fields, in contrast to
the direct-current case. In a microwave cavity the oscillating magnetic field of the RF
wave penetrates into the superconductor down to a depth of about 50 nm (London
penetration depth) and induces forced oscillations of the “normal-conducting” elec-
trons, namely those which are not bound in Cooper pairs. The resulting microwave
surface resistance is many orders of magnitude smaller than that of normal copper
cavities but is nevertheless responsible for significant RF power dissipation at the
inner cavity surface. The dissipated power in an RF cavity is given by the formula

Pdiss =
Rsurf

2
H2

RF S , (8.5)

where Rsurf is the microwave surface resistance of the superconductor, HRF is the
magnitude of the RF magnetic field at the cavity surface, and S is the surface area.
According to the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity the
surface resistance depends exponentially on temperature, see [12] and the references
quoted therein

RBCS = A f 2
0

T
exp

(
−1.76 Tc

T

)
. (8.6)
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Here Tc is the critical temperature, and A is a coefficient that depends on the London
penetration depth and other material properties. The surface resistance of a super-
conducting cavity can be written as

Rsurf = RBCS + Rres

with a “residual resistance” of a few n" that is caused by surface impurities. The
exponential temperature dependence is the reason for cooling the high-field TESLA
cavities with superfluid helium at 2 K (Rsurf ≈ 10 n" = 10−8 ") instead of using
pressurized normal liquid helium at 4.4 K (Rsurf ≈ 1000 n").

The BCS surface resistance scales quadratically with the radio-frequency f0,
hence it is advantageous to build superconducting cavities with relatively low reso-
nance frequencies. The value of 1.3 GHz chosen for TESLA is a good compromise
between low surface resistance and manageable size of the cavities. The measured
surface resistance of the high-purity niobium material used for the cavities follows
the predicted exponential temperature dependence over a wide temperature range.
Below 2 K the residual resistance of a few n" begins to dominate.

The quality factor of a cavity can be expressed as the ratio of resonance fre-
quency to the width of the resonance curve. It is inversely proportional to the surface
resistance

Q0 = f0

∆ f
= G

Rsurf
. (8.7)

Here G is a “geometry factor” that depends only on the shape of the cavity but not on
its material. A typical value for a one-cell cavity is G = 300 ". For niobium at 2 K
the surface resistance is a few n" so the quality factor is Q0 > 1010. In principle the
quality factor should stay constant when the field in the cavity is raised from zero to
an upper limit which is reached when the RF magnetic field approaches the critical
magnetic field of the superconductor. For niobium at 2 Kelvin the critical field is
Bc ≈ 200 mT, corresponding to a maximum accelerating field Eacc ≈ 45 MV/m,
averaged over the length of the cavity. In practice, however, the excitation curve Q0 =
Q0(Eacc) usually ends at a lower field due to “dirt effects” such as contamination of
the inner cavity surface or field emission of electrons. By applying the clean room
techniques of the semiconductor industry during the assembly and preparation of the
cavities one can almost achieve the physical limit of the superconducting material.

In the FLASH linac the cavities are operated at an accelerating field of 23 MV/m.
The same value is foreseen for the European X-ray FEL to reach wavelengths below
0.1 nm. Although the quality factor exceeds the excellent value of 1010 the RF power
dissipation in the cavities would be in the order of 100 kilowatts for the whole linac
of the XFEL if the cavities were operated in continuous mode. This is far too large
for the liquid helium plant because a heat deposition of 100 kW at T = 2 K requires a
primary electric power of almost 100 MW at the refrigerator. The necessary reduction
of the cryogenic load is the only (and unfortunate) reason to operate the cavities in
pulsed mode with a duty cycle of about one per cent. Continuous operation becomes
a realistic option if the accelerating field and the electron beam energy are decreased
by a factor of 2.5.
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Fig. 8.6 Principle of longitudinal compression of a relativistic electron bunch. The bottom row
shows an accelerating cavity and the four dipole magnets of the magnetic chicane. The top figures
show the longitudinal bunch charge distribution and the correlation between the longitudinal position
ζ of an electron inside the bunch and its relative energy deviation, at three locations: a In front of
the cavity, b behind the cavity, c behind the magnetic chicane. In the RF cavity the trailing electrons
receive a larger energy gain than the leading ones. In the magnetic chicane the electrons at the tail
of the bunch move on a shorter orbit than those at the head and catch up with them. Figure adapted
from R. Ischebeck [13].

8.6 Bunch Compression

8.6.1 Principle of Longitudinal Compression

We have seen above that the high peak currents of several 1000 A which are needed
in linac-based EUV and X-ray free electron lasers cannot be produced directly in
the electron gun because huge space charge forces would disrupt the beam within a
short distance. Therefore bunches with a modest peak current are created in the RF
photo-injector, accelerated to higher energy and then compressed in length by two
orders of magnitude. The electrons in the linac have speeds very close to c, and the
velocity differences are too small that a trailing electron would have a chance to catch
up with a leading electron if the particles move on a straight line. This possibility is
opened if the particles travel through a chicane made of bending magnets.

Longitudinal bunch compression is achieved in two steps: first an energy slope is
imprinted on the bunch by off-crest acceleration in the first acceleration module, the
particles at the tail of the bunch receiving a larger energy gain than those at the head.
Afterwards the particles are passed through a magnetic chicane where the trailing
electrons of larger energy travel a shorter distance than the leading ones of smaller
energy and are thus enabled to catch up with them. The principle of longitudinal
bunch compression is illustrated in Fig. 8.6. Note that the area of the phase-space
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ellipses shown in Fig. 8.6 is an invariant according to the Liouville Theorem. A length
reduction of the bunch is necessarily coupled with an increased energy spread.

8.6.2 Practical Realization of Bunch Compression

Generation of an energy slope
The energy slope needed for magnetic bunch compression is generated by choosing
an off-crest RF phase in the accelerating cavities preceding the magnetic chicane. The
bunches are accelerated on the falling slope of the RF voltage. Ideally the induced
energy variation along the bunch axis should be linear,2 but this is not what happens
in practice because the incoming bunches are too long. Their length amounts to about
one per cent of the RF wavelength of 231 mm, and the cosine-like time dependence
of the accelerating voltage leads to a pronounced nonlinearity which is clearly visible
in the left part of Fig. 8.7. During this measurement the bunch compressor magnets
were switched off, so the bunches traveled straight through the linac, retaining their
full length of several millimeters. The energy W (ζ) of the electrons was measured
as a function of their longitudinal position ζ inside the bunch using the transversely
deflecting microwave structure TDS (see Sect. 8.8.1) in combination with a bending
magnet.

A linearization of the accelerating voltage can be achieved by superimposing the
1.3 GHz accelerating field with its third harmonic. A superconducting 3.9 GHz cavity
module was developed and built at Fermilab and installed in FLASH in 2010 [14].
With a proper choice of RF amplitude and phase in the third-harmonic cavity mod-
ule, the so-called “RF curvature” can be removed and the relative energy deviation
δW (ζ)/W = (W (ζ) − W )/W becomes an almost linear function of ζ, as shown in
the right part of Fig. 8.7. This is a prerequisite for ideal bunch compression.

Two-stage bunch compression
The longitudinal bunch compression in the FLASH linac is accomplished in two
steps as shown in Fig. 8.1. The first compression takes place in the magnetic chicane
BC1 at an energy of 150 MeV and raises the peak current to several 100 A, the second
compression is done in BC2 at an energy 450 MeV and leads to a peak current in the
kA range.

A single-stage compression might appear simpler but has severe disadvantages.
To understand this we consider two cases: (1) The final peak current of several kA is
already produced in BC1. The internal repulsive force (8.4) in a kA-beam is so big
at 150 MeV that it causes an intolerable beam blowup and emittance growth before
the bunch reaches the next acceleration module. (2) A single-stage compression in
BC2 at 450 MeV appears much more favorable in this respect, the repulsive force
being a factor of nine smaller. However, the disadvantage of the larger beam energy
is that a correspondingly larger energy slope is needed to compress the bunch to

2 This applies if one neglects a small second-order correction to the beam transfer matrix of the
chicane.
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Fig. 8.7 Left : Measured relative energy deviation δW (ζ)/W as a function of the internal bunch
coordinate ζ for a 4 mm long bunch having passed the first acceleration module at an off-crest phase
of 6◦. W is the mean value of the electron energy. The bunch head is to the right. Right : Measured
relative electron energy deviation as a function of ζ after linearization of the accelerating voltage
using the third-harmonic cavity.

its desired short length. The consequence is an excessive beam energy spread after
compression, and this energy spread, as we know from Sect. 6.1, has a detrimental
effect on the FEL gain. In the two-stage compression scheme, a large fraction of the
energy chirp is applied at the lower energy and contributes less to the final relative
energy spread ση of the beam.

In a bunch compression system without a third-harmonic cavity, the two-stage
compression has the additional advantage that the negative impact of the “RF curva-
ture” is significantly smaller than in the single-stage compression.

8.6.3 Simulation of Bunch Compression

Before 2010 the third-harmonic cavity was not available at FLASH. Bunch com-
pression was a rather critical issue and many numerical simulations were carried out
to optimize the process. Owing to the cosine shape of the RF wave, the compressed
bunches do not possess the desired shape of a narrow peak but consist of a very
short leading spike and a long tail. The leading spike contains only 10 − 20 % of
the total bunch charge and reaches the peak current of more than 1000 A needed in
the high-gain FEL process. Most of the charge is spread out in the tail, where the
local current density is too small to expect any significant FEL gain. A simulation
of the bunch compression in an early stage of the EUV FEL in Hamburg is shown
in Fig. 8.8.

With the help of the third-harmonic cavity it is possible to squeeze a major fraction
of the bunch charge into a high-current pulse whose length can be varied between
30 and 400 fs (FWHM). To realize ultrashort bunches with a length of 10 fs or less, a
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Fig. 8.8 Numerical simulation of two-stage bunch compression without third-harmonic cavity. The
bunch charge is 0.5 nC. The figures in the top row show the dependence of electron beam current
on the internal bunch coordinate ζ. In the bottom row the dependence of electron energy on ζ is
displayed. Left : Behind the first acceleration module. The energy varies from 122.3 MeV at the head
of the bunch to 125.3 MeV at the tail. The curvature in the energy chirp is visible. Middle : Behind
the first magnetic bunch compressor BC1. The lower energy electrons have collected themselves in
a narrow peak at the bunch head, the higher energy particles form a long tail. The peak current has
grown from 35 to 350 A. Right : Behind the second bunch compressor BC2. The mean beam energy
is 377 MeV and the peak current has grown to 1250 A. Note that the electrons which were at the front
in the left picture are moved backwards in the second bunch compressor due to “over-compression”
(blue color in the plots).

low charge in the 10–20 pC range is needed, and it is advisable to reduce the length
of UV laser pulse at the electron gun, thereby relaxing the requirements on bunch
compression.

8.6.4 Collective Effects in the Bunch Compressors

While the principle of magnetic bunch compression is easy to understand—it
resembles the compression of chirped laser pulses—there are subtle details which
are special for relativistic electrons. The main problem is that short bunches moving
on the curved trajectory through the magnetic chicane emit coherent synchrotron
radiation (CSR) of high intensity. Radiation emitted at the bunch tail may take a
shortcut through the vacuum chamber of the magnetic chicane and interact with the
electrons at the bunch head, changing their energy. Also space charge forces have
a considerable influence on the shape of the bunches. These interactions and self-
forces are not present in photon beams. The strong modifications of bunch shape and
internal energy distribution, caused by these collective effects, are demonstrated in
Fig. 8.9.
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Fig. 8.9 Influence of coherent synchrotron radiation (CSR) and space charge forces on the bunch
compression process depicted in Fig. 8.8. The colors indicate the initial positions in the bunch. Blue
head of bunch, green middle section, red tail.
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Fig. 8.10 Current profile (left) and energy distribution (right) in the bunch head region for a 0.5 nC
bunch entering the undulator. The mean beam energy is 454 MeV in this simulation.

The bunch shape behind the first bunch compressor is not much affected by the
collective effects, but behind the second bunch compressor we observe severe dis-
tortions in the shape and energy distribution of the bunch.

The magnetic deflection in front of the undulator (see Fig. 8.1) has an additional
influence on the bunch shape. Figure 8.10 shows the computed current profile and
energy distribution in the bunch head region. A strong energy variation is observed
within the leading peak which results in a broadening of the FEL spectral distribution
and a reduction of the FEL gain. The influence of collective effects on the beam
properties has been thoroughly investigated in so-called start-to-end simulations [15].
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8.7 Wake Field Effects

A fast ship moving down a narrow canal produces a wake that is reflected by the
shore and acts back on the ship itself or on other ships in the canal. Similar effects
happen when intense relativistic particle bunches travel in the vacuum chamber or
the cavities of an accelerator. The charged particles generate electromagnetic fields
that are modified by the metallic boundaries. These so-called wake fields may act
back on the bunch itself or on trailing bunches and perturb the motion of the parti-
cles and change their energy distribution. Wake fields are thoroughly treated in the
book Physics of Collective Beam Instabilities in High Energy Accelerators by A.W.
Chao [16].

We consider first the simplest case of an ultra-relativistic bunch traveling on the
axis of a smooth cylindrical beam pipe of circular cross section. The walls are assumed
to have perfect conductivity. Since for γ → ∞ the electric field lines emerging from
the bunch are exactly perpendicular to the direction of motion, these field lines enter
the metallic wall at right angles and fulfill thus the boundary condition at the interface
between vacuum and a perfect conductor. This means that the field pattern inside the
beam pipe is not changed by the presence of the metallic wall. In other words: the
metallic boundary does not “exist” for the particle bunch, and wake field effects are
absent in this case.3

The situation changes if one of the above assumptions is not fulfilled. We consider
two important cases

• a finite conductivity of the beam pipe leads to resistive-wall wake fields,
• a variation of the cross section results in geometric wakes.

Resistive-wall wake fields

Resistive-wall wake fields play a role in the 30 m long beam pipe in the undulator
system which has a radius of 5 mm and is made from aluminum. The computed
longitudinal wake field for a compressed bunch in FLASH is plotted in Fig. 8.11.
The wake field is negative in the bunch head but becomes slightly positive in the tail.
This means that the electrons in the bunch head lose energy while those in the tail
gain energy. The energy spread in the bunch head region, induced by resistive wall
wake fields, is estimated as σwake

η < 0.1 ρFEL . It is thus uncritical for FLASH but may
be a serious concern in an X-ray FEL where the undulator beam pipe is much longer
and the FEL parameter significantly smaller than at FLASH. In this case also the
beam energy loss caused by resistive-wall wake fields plays a role, see Sect. 9.2.4.

3 In a beam pipe of arbitrary cross section, which is kept invariant along the axis, the field pattern
will be more complicated than in a round pipe, but wake field effects are still absent if the resistance
of the wall vanishes and the particles are ultra-relativistic.



148 8 The EUV and Soft X-Ray FEL in Hamburg

0 0.2 0.4 0.6

time [ ps ]

bunch current

wake field

0

Fig. 8.11 Resistive-wall wake field effect in the aluminum beam pipe of the undulator. The bunch
current as a function of time is shown as a dash-dotted blue curve. The longitudinal electric wake
field is shown as a continuous red curve. For a bunch charge of 0.5 nC the maximum bunch current
is about 1200 A. The peak value of the wake field amounts to −30 kV/m. The bunch head is at the
left side.

Fig. 8.12 Top : The computed field pattern in a nine-cell cavity which is excited to the fundamental
TM010 mode by a klystron operating at 1.3 GHz. Bottom : The wake field pattern generated by a
short relativistic electron bunch which is just leaving the seventh cell.

Geometric wakes

Geometric wakes in the nine-cell superconducting cavities, which are excited by
the short electron bunches, are shown in the bottom part of Fig. 8.12. Many of
the induced higher-order eigenmodes of the cavity are coupled out by a specially
designed antenna, and their energy is absorbed in a dump resistor at room tempera-
ture. Very high-frequency modes are not trapped and may leave the cavity and travel
along the beam pipe. Damping of the traveling modes is a challenging task in a
superconducting linear accelerator.
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8.8 Longitudinal Electron Beam Diagnostics

The requirements on electron beam quality are very demanding and in some respects
at the limit of present-day technology. High-resolution diagnostic instruments are
essential for a detailed understanding of the physical principles of emittance preser-
vation, bunch compression, and lasing in the SASE or seeding modes. Moreover,
they are an indispensable prerequisite for providing the input signals of the feedback
systems for beam energy stabilization and bunch compression.

We restrict ourselves here to a description of three techniques permitting single-
shot direct visualization of longitudinal electron bunch profiles with very high reso-
lution: the transversely deflecting microwave structure (TDS), electro-optic (EO)
detection systems, and a single-shot infrared spectrometer with 120 wavelength
channels.

8.8.1 Transversely Deflecting Microwave Structure

In the TDS the temporal profile of the electron bunch is transferred to a spatial
profile on a view screen by a rapidly varying electromagnetic field, analogous to the
sawtooth voltage in conventional oscilloscope tubes but providing a thousandfold
better time resolution [17, 18]. The TDS used at FLASH was built by SLAC. It is a
3.6 m long traveling-wave structure operating at 2.856 GHz in which a combination
of electric and magnetic fields exerts a transverse force for the electron bunches. The
bunches pass the TDS near zero crossing of the RF field (phase zero) and receive
no net deflection but are streaked in the transverse direction. A single bunch out of
a train can be streaked. With a fast kicker magnet, this bunch is deflected towards
an observation screen and imaged by a digital camera. The principle of the TDS is
explained in Fig. 8.13. The time resolution of the TDS installed at FLASH may be
as good as 10 fs (rms), depending on the beam optics chosen.

kickerTDS

view screen

electromagnetic force

bunch

streaked
bunch

Fig. 8.13 Principle of longitudinal charge density measurement using a transversely deflecting
microwave structure. For optimum resolution the RF phase is chosen such that the bunch center
coincides with the zero-crossing of the RF wave. This condition holds along the entire axis of the
traveling-wave structure since electron bunch and RF wave move synchronously with a speed very
close to c.
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Fig. 8.14 Top : Two-dimensional image of a single electron bunch whose time profile is translated
into a spatial coordinate on an observation screen. The bunch head is at the left side. Bottom : Current
as a function of time. The maximum current is Imax = 1.8 kA in this measurement [19].

An image of a streaked electron bunch is shown in Fig. 8.14. The figure shows
also the computed temporal current profile. One observes a sharp peak at the head
with a full width at half maximum of 65 fs and a long tail towards later times. The
sharp peak contains about 20 % of the bunch charge, and only here is the local charge
density large enough to obtain a high gain in the FEL process.

8.8.2 Electro-Optic Detectors

The electro-optic (EO) effect offers the possibility to measure the longitudinal charge
distribution in the electron bunches with a resolution of 50 fs. The principle is as
follows: the electric field of the relativistic bunch induces an optical birefringence in
a crystal such as gallium-phosphide (GaP), which is then probed with femtosecond
titanium-sapphire (Ti:Sa) laser pulses. Several EO experiments have been performed
in the FLASH linac in the straight section between the last acceleration module and
the undulator. The EO crystal is mounted inside the vacuum chamber at a distance
of 4 − 5 mm to the electron beam. The linearly polarized Ti:Sa laser pulse enters the
chamber at a small angle, crosses the EO crystal and is then coupled out through a
quartz window. In the birefringent GaP crystal the laser pulse acquires an elliptical
polarization which is transformed into an intensity modulation using a quarter wave
plate, a half wave plate and a crossed polarization filter. The Ti:Sa laser produces a
periodic pulse train with a repetition rate of 81 MHz. This frequency is adjusted to
exactly 1/16 of the 1300 MHz radio-frequency of the linac and then locked to the RF
in a phase-locked loop circuit.
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Fig. 8.15 Left : Schematic of the electro-optic spectral decoding (EOSD) setup for measuring the
time profile of single electron bunches. At the top the chirped laser pulse of 1–2 ps length is shown,
at the bottom the radial electric field of the electron bunch. Right : Time profile of a compressed
electron bunch as measured with the EOSD method. Figure adapted from Ref. [20].

In the electro-optic sampling method, the narrow laser pulses are moved in small
steps across the wider electron bunches. Thereby the average time profile of many
bunches is obtained. Due to a relative time jitter of 40 fs between the laser pulses
and the electron bunches, this method is not adequate for the analysis of sub-100-fs
bunches. Several single-shot techniques have been applied permitting the analysis
of individual electron bunches, based on spectral, temporal or spatial decoding. The
simplest one is the electro-optic spectral decoding (EOSD) method. For this purpose
the laser pulse is passed through a dispersive material and stretched (chirped) to a
length of several ps, longer than the electron bunch. In the chirped pulse the long
wavelengths are at the head of the pulse and the short ones at the tail. Note that a 15 fs
Ti:Sa laser pulse has a central wavelength of 800 nm and a bandwidth of ±30 nm.
In the GaP crystal the temporal structure of the electron bunch is imprinted onto
the spectral components of the laser pulse. With a diffraction grating and a gated
CCD camera the time information can be recovered. The principle is explained in
Fig. 8.15 together with a typical measurement of a single electron bunch [20, 21].
The resolution limit of the spectral decoding method is about 100 fs (rms).

A factor of two better resolution is attainable with the technically more involved
electro-optic temporal decoding (EOTD) method. Here an amplified femtosecond
Ti:Sa laser pulse is split into two pulses. One of these remains narrow while the other
one is stretched to a length of several ps and passes through the EO crystal. The two
beams are crossed at finite angle in a nonlinear BBO crystal where they generate
second-harmonic (UV) radiation. The time profile of the electron bunch is translated
into a spatial variation of the ultraviolet light intensity emerging from the BBO
crystal. The ultimate resolution of the EOTD technique of 50 fs (rms) was reached
at FLASH in an experiment carried out in cooperation between scientists from the
infrared free-electron laser FELIX (The Netherlands), the University of Hamburg
and DESY [22]. The experimental setup and a reconstructed electron bunch profile
are shown in Fig. 8.16.
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Fig. 8.16 Left : Principle of electro-optic temporal decoding (EOTD). Right : Comparison of two
high-resolution diagnostic methods for single compressed electron bunches. Red curve : transversely
deflecting structure (TDS), blue curve : electro-optic temporal decoding (EOTD). Adapted from
Ref. [20].

The EO experiments are inferior to the TDS in terms of time resolution but have the
considerable advantage of being “non-destructive”: the same bunch which has been
analyzed with the EO system can be used to generate FEL radiation downstream.
In contrast to this a bunch that has been streaked by the TDS suffers a considerable
emittance growth. Moreover, the EO signals can be utilized as arrival time signals of
the FEL pulses in pump-and-probe experiments [23], but the time resolution offered
by the bunch arrival time monitor (Sect. 8.10) is superior.

8.8.3 Coherent Transition Radiation Spectroscopy

Coherent transition radiation (CTR) in the far-infrared regime has a long tradition
as a tool for the longitudinal diagnostics of short electron bunches. An interesting
application was the reconstruction of a non-symmetric electron bunch shape by
autocorrelating the CTR pulse by means of a Martin-Puplett interferometer and
computing the phase of the bunch form factor with the help of the Kramers-Kronig
dispersion relation [24].

In the Martin-Puplett interferometer the optical delay between the two arms is
varied in small steps by moving a mirror. Each bunch makes just one entry in the
autocorrelation plot, and many successive bunches are needed to obtain an average
longitudinal shape. To overcome this limitation, a novel multichannel infrared and
THz spectrometer with fast readout was jointly developed at DESY and the University
of Hamburg [25, 26]. The aim was to permit CTR spectroscopy on single electron
bunches.

Multichannel infrared spectrometer
In the FLASH linac, transition radiation is produced on a metalized screen inside
the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond win-
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detector array

incident
 CTR beam

Fig. 8.17 Left : Principle of the multi-channel infrared spectrometer equipped with four consecutive
blazed reflection gratings, G1–G4, each covering about a factor of two in wavelength. Right : Layout
of one spectrometer stage, comprising the grating, a ring mirror and an array of 30 pyroelectric
detectors. The light dispersion and focusing have been computed with a ray tracing code. For
clarity only 5 of the 30 wavelength channels are shown.

dow with high transmission from 200 GHz up to optical frequencies, and transported
to a laboratory through a CTR beamline [27] comprising six focusing mirrors that
are mounted in an evacuated tube. The infrared spectrometer is mounted in a vac-
uum chamber directly attached to the CTR beam line, and it is equipped with four
consecutive dispersion gratings and a total of 120 parallel readout channels. The
spectrometer can be operated either in the long-wavelength mode (45–430µm) or in
the short-wavelength mode (5–44µm). The layout is shown in Fig. 8.17. Pyroelectric
detectors with a short time constant, fast amplifiers and ADCs with parallel read-
out permit the broadband spectroscopy of coherent radiation from single electron
bunches.

The operational principle of the spectrometer is described for the far-infrared
mode. The incident radiation is passed through a polarization filter to select the
polarization component perpendicular to the grooves of the gratings, and is then
directed towards grating G0 which acts as a low-pass filter: high-frequency radiation
(wavelength λ < 44µm) is dispersed and guided to an absorber, while for low
frequencies (λ > 45µm) the grating G0 acts as a plane mirror and directs the
radiation to the first grating stage G1 of the spectrometer. At grating G1, radiation
in the range from 45.3 to 77.4µm is dispersed and focused onto a multi-channel
detector array, while radiation with λ > 77.6µm is specularly reflected and sent to
G2. The subsequent gratings work similarly and disperse the wavelength intervals
77.0–131.5µm (G2), 140.0–239.1µm (G3), and 256.7–434.5 µm (G4). For each
grating, the first-order diffracted radiation is focused by a ring mirror of parabolic
shape onto an array of 30 pyroelectric detectors which are arranged on a circular
arc. This is shown schematically in Fig. 8.17. Technical details and the measured
performance are reported in Ref. [26].
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Method of bunch shape reconstruction
The internal longitudinal coordinate ζ in the bunch can be translated into a time
coordinate via the relation ζ = −βct ≈ −ct . This allows us to write the charge
distribution of a bunch with N electrons in the form

ρ(t) = −N e ρn(t) with
∫ ∞

−∞
ρn(t)dt = 1 . (8.8)

Here ρn(t) is the normalized longitudinal charge distribution.
The spectral intensity radiated by such a bunch is related to the intensity radiated

by a single electron through the formula

IN (ω) = I1(ω)
(

N + N (N − 1) |F̃(ω)|2
)
, (8.9)

where F̃(ω) is the longitudinal form factor of the bunch, the Fourier transform of
the normalized longitudinal charge distribution:

F̃(ω) =
∫ ∞

−∞
ρn(t)ei ω t dt =

∫ ∞

−∞
ρn(t)(cos ω t + i sin ω t) . (8.10)

In writing down this equation we have made use of the fact that transition radiation
from highly relativistic electrons is confined to small angles which implies that the
influence of the transverse beam size is strongly suppressed but not entirely negligible
at small wavelengths. The longitudinal form factor has to be corrected for the finite
transverse beam size, see [26, 28].

At sufficiently low frequencies, namely when the wavelength of the radiation is
long compared to the bunch length, the form factor is a real number and approaches
unity in the limit ω → 0. Then all electrons radiate coherently which means that
there is constructive interference among their radiation fields. Spectral measurements
in this range yield practically no information on the internal charge distribution in
the bunch. To gain such information, measurements at wavelengths shorter than the
bunch length have to be carried out. In that case the interference pattern is partially
constructive, partially destructive and the form factor becomes a complex number

F̃(ω) = F(ω) ei φ(ω) , (8.11)

whose magnitude F(ω) = |F̃(ω)| is generally less than 1. If both F(ω) andφ(ω)were
measurable, a unique reconstruction of the charge distribution ρ(t) could be achieved
by the inverse Fourier transformation. Unfortunately only the spectral intensity IN (ω)
is measurable in spectroscopic experiments at accelerators. Hence the modulus F(ω)
of the longitudinal form factor can be determined, while the phase φ(ω) remains
unknown.

A similar problem arises for the optical reflection properties of solids. In this case
it is possible to compute the phase of the complex reflectivity amplitude from the
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measured reflectivity by means of the Kramers-Kronig relation which connects the
real and imaginary parts of a complex analytic function. It can be shown that the
reflectivity amplitude is an analytic function of the complex frequency ω̃ = ω + i κ.
A rigorous mathematical treatment is presented in the book Optical Properties of
Solids by F. Wooten [29]. The method has been adopted for the phase reconstruction
of the complex bunch form factor, see the article by Lai and Sievers [30] and the
references quoted therein. The phase φ(ω0) can be computed from the real function
F(ω) by means of the following integral

φ(ω0) =
2ω0

π

∫ ∞

0

ln F(ω) − ln F(ω0)

ω2
0 − ω2

dω . (8.12)

It must be noted though that this phase reconstruction suffers from some mathe-
matical problems4 and has to be considered an empirical method. For example, let
the bunch shape be given by the sum of two Gaussians of different width and central
position. The reconstruction turns out perfect if the narrow peak comes first, but the
sequence of the reconstructed peaks is interchanged when the wide peak comes first.
This interchange is easy to understand. The charge density ρ(t) is a real function, so
from Eq. (8.10) follows immediately that the real part of the form factor is an even
function of ω while the imaginary part is an odd function. The absolute magnitude
of the form factor is also an even function of ω, the phase is an odd function:

F(−ω) = +F(+ω) , φ(−ω) = −φ(+ω) . (8.13)

An interchange of the two Gaussians corresponds to a time inversion and is equivalent
to a sign reversal of ω. This leaves the absolute magnitude of the form factor invariant
and has thus no effect on the phase (8.12).

A more serious problem arises for a bunch shape consisting of three Gaussians with
increasing width. Here an interchange of the first two peaks leads to a reconstructed
shape in which not only the time order of the first two peaks is inverted but in addition
their shape is modified. Similar difficulties were reported in [30].

Such ambiguities cannot be avoided. In fact, in Ref. [31] it has been proved that a
unique shape reconstruction is not possible. A simple counterexample demonstrates
this in a convincing way. The following two functions are considered

f1(t) = f2(t) = 0 for t < 0 ,

f1(t) = e−βt , f2(t) = e−βt
(

1 + 4β2(1 − cos(αt)
α2 − 4β sin(αt)

α

)
for t ≥ 0

with real parameters α,β > 0. The first function has an infinitely steep rise at t = 0,
followed by an exponential decay. The second function has the same steep rise but

4 The bunch form factor may have zeroes in the upper half of the complex ω̃ plane which lead to
singularities of ln[F(ω̃)] and contribute additional terms to the right-hand side of Eq. (8.12). These
contributions are not experimentally accessible. For a further discussion see [30].
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Fig. 8.18 Left : The functions f1(t) and f2(t) for β = 1 and α = 4 resp. α = 8. Right : The
modulus of the form factors, |F̃1(ω)| = |F̃2(ω)|. We thank B. Schmidt for numerous discussions
on the phase reconstruction problem.

the decay is superimposed with an oscillatory pattern, see Fig. 8.18. The complex
form factors F̃1(ω) and F̃2(ω) differ, but surprisingly their absolute magnitudes are
identical

|F̃1(ω)| = |F̃2(ω)| = (ω2 + β2)−1/2 .

The Kramers-Kronig method reproduces the function f1(t) very accurately, but any
attempt to reconstruct the oscillatory function f2(t) fails, no matter what the value
of α is. One obtains always the non-oscillatory function f1(t). From this and other
examples one can conclude that the Kramers-Kronig method tends to generate a
time profile possessing the minimum amount of structure that is compatible with the
measured CTR spectrum.

Notwithstanding these fundamental limitations, the phase reconstruction method
yields valuable supplementary information, in particular if the overall features of
the longitudinal bunch shape are known from a TDS measurement.5 Then the spec-
troscopic data at high frequency can be utilized for an improvement of the time
resolution. It is indeed the combination of these two complementary methods which
improves the reliability and faithfulness of the bunch shape determination.

Reconstructed electron bunch shapes
In order to demonstrate the capabilities of the CTR spectrometer, spectral measure-
ments on short bunches are presented in the left part of Fig. 8.19. Shown is the
magnitude of the form factor, derived from the combined infrared spectra of two
measurement series on single bunches: (a) 100 bunches with the spectrometer in
the short-wavelength mode and (b) 100 bunches with the spectrometer in the long-
wavelength mode. A broad wavelength spectrum is observed, ranging from 9µm up
to 450µm. In the right part of Fig 8.19, the bunch time profile derived from these data

5 It should be noted that also the TDS data suffer from ambiguities, the reconstructed shape depends
on the streak direction. A possible explanation is that the particles possess a non-vanishing average
slope ⟨y′(ζ)⟩ in streak direction which varies along the bunch axis. The resulting shape errors cancel
when taking the average of the TDS measurements with positive and negative streak direction.
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Fig. 8.19 Left : Form factor |F(λ)|, derived from the combined infrared spectra from two measure-
ment series on single bunches: a 100 bunches with the spectrometer in the short-wavelength mode
(blue points) and b 100 bunches with the spectrometer in the long-wavelength mode (red points).
Right : Comparison of the bunch time profile derived from the CTR data with a time-domain mea-
surement using the TDS. (Courtesy of B. Schmidt).
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Fig. 8.20 Reconstructed time profiles of 5 selected bunches, combining the single-shot spectra
obtained in the short-wavelength mode with the averaged spectrum measured in the long-wavelength
mode. (Courtesy of E. Hass and S. Wesch).

is compared with a TDS measurement. There is good overall agreement between the
two complementary measurements.

The CTR spectrometer permits a quasi-single-shot determination of the longitudi-
nal bunch shape. For this purpose, the averaged long-wavelength spectrum, depicted
in Fig. 8.19, is combined with the single-shot spectra in the short-wavelength mode.
The computed time profiles are displayed in Fig. 8.20. They show a sharp leading
spike followed by a long tail. The shot-to-shot reproducibility is quite remarkable.
The CTR system is thus well suited for online monitoring of the bunch shape during
FEL user runs.
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Fig. 8.21 The normalized horizontal and vertical emittance as a function of the main solenoid
current in the electron gun (courtesy of M. Krasilnikov). The bunch charge varies between 0.01 and
2 nC. The data were obtained at the DESY-Zeuthen photo-injector test facility for an uncompressed
electron beam with an energy of 25 MeV (for details see Ref. [10]).

8.9 Transverse Beam Diagnostics

Emittance measurements
A standard method for determining the emittance is based on measuring the two-
dimensional transverse intensity profile of the beam at various positions in the linac.
For this purpose view screens are inserted that intercept the beam. At FLASH these
are either thin polished silicon discs with an aluminum coating on the front face
which generate optical transition radiation, or alternatively thin Ce:YAG crystals
which produce scintillation light. Two-dimensional images are recorded with digital
cameras. From the known beam-optical transfer matrices between the observations
screens, and by varying the quadrupole strengths, the particle distribution in phase
space can be tomographically reconstructed and the beta function and the beam emit-
tance can be determined. As an example, Fig. 8.21 shows the normalized transverse
emittance as a function of the current in the main solenoid magnet of the electron
gun. This figure demonstrates how critically the beam focusing in the electron injec-
tor depends on the focal properties of the solenoid coil. Even more critical is the
bunch charge. For bunch charges below 0.1 nC the minimum value of the normalized
emittance is εn ≤ 0.5µm, but it grows to more than 1µm when the bunch charge
is raised beyond 1 nC. The emittance criterion (6.17) is well satisfied for an uncom-
pressed beam. However the nonlinear phenomena in the bunch compressors lead to
an appreciable emittance growth if the bunch charge is high.

Slice emittance
What is really of interest for a high-gain FEL is not the average emittance of the entire
bunch but the emittance of the high-current region in the bunch head. Standard emit-
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Fig. 8.22 a Two-dimensional image (t, x) of a single electron bunch. The bunch head is at the left
side. b The normalized horizontal emittance as a function of the temporal position in the bunch.
c Horizontal phase space distribution in the bunch head region. The long wings extending appre-
ciably beyond the central elliptic region are the main source for the large emittance in the bunch
head region (shaded area in graph (b)). d The central elliptic phase space distribution in the bunch
head region. The peak current is about 1.4 kA, the normalized emittance is εn = 4µm. See Refs.
[19, 32] for details.

tance measurements are incapable of extracting this information. The transversely
deflecting microwave structure TDS permits the determination of the emittance in
selected time slices of the bunches. For this purpose the quadrupole strengths in the
beam optics section between the TDS and the observation screen are varied.

A thorough phase space analysis was carried out for bunches with a time profile
as shown in Fig. 8.14. Some results are presented in Fig. 8.22. An unusually large
normalized emittance of εn ≈ 10µm was derived in the bunch head, a number which
is far too large to be compatible with the high FEL gain measured with these machine
parameters. The reason is that in this special case “over-compression” was applied
(compare Fig. 8.8) leading to a strong deformation of the phase space distribution.
The complexity of the data is illustrated in Fig. 8.22c where the reconstructed hori-
zontal phase space distribution is shown for a slice in the bunch head region. Large
deviations from the ideal elliptic shape are observed. The long wings extending far
beyond the central elliptic region towards large values of x and x ′ give the main
contribution to the large normalized emittance, however these wings have too low
a charge density to yield an appreciable FEL gain. If we restrict ourselves to the
central elliptic region with high charge density we obtain a normalized emittance of
a few µm at an acceptable peak current of about 1.4 kA. This central region is indeed
responsible for the observed large FEL gain.
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8.10 Laser-Optical Synchronization System

General description
High-gain free-electron lasers are capable of generating light pulses with a time
duration of less than 10 fs. In order to fully exploit the vast scientific opportunities
that are opened by these ultrashort light pulses, it is highly desirable to synchronize
all time-critical components in the accelerator and in the experiments with the same
precision. The conventional timing method in a linear accelerator is based on the
distribution of radio-frequency signals through coaxial cables with a very low thermal
expansion coefficient. In RF cables of several 100 m length, the time delay resulting
from a temperature rise of only 0.1 ◦C is in the order of 100 fs, far bigger than
tolerable. It is impractical to control the temperature in the accelerator tunnel with
such a precision that one comes even close to the envisaged timing accuracy of 10 fs.
A promising alternative is the distribution of timing signals by optical fibers. These
are of course also subject to thermal expansion or contraction, their length changes,
however, can be compensated, as explained below.

Following a concept proposed at MIT [33], a laser-optical synchronization system
has been developed featuring a stability of better than 10 fs. The timing reference
is provided by a mode-locked erbium-doped laser operating at the telecommunica-
tion wavelength of 1550 nm. The laser produces a periodic train of infrared pulses
with a duration of 100 to 200 fs. The timing information is encoded in the highly
accurate pulse repetition frequency of 216.66 MHz, one sixth of the 1300 MHz radio-
frequency of the accelerating cavities. To ensure the long-term stability of the repeti-
tion rate, the laser is phase-locked to the RF master oscillator. The remaining timing
jitter is only a few femtoseconds.

The laser pulses are distributed to remotely located end-stations via optical fibers
with a length of up to 500 m. The fibers are dispersion-compensated to preserve the
shortness of the laser pulses. At the end of the fiber-link, part of the laser power is
reflected and sent back through the same fiber. The returning pulse train is super-
imposed with the incoming laser pulse train in a balanced optical cross-correlator
to determine any change in the temporal overlap between the two pulse trains. The
cross-correlator generates the input signal for a feedback loop. Variations of the pulse
transit time through the optical fiber, caused by thermal expansion resp. contraction
or by vibrations of the fiber, are compensated by adjusting the fiber length with the
help of a piezo-electric fiber stretcher in combination with an optical delay stage.
Transit time changes can be compensated with femtosecond precision.

The periodic laser pulse train is utilized for various applications.

(1) Generation of 1300 MHz RF signals
When the periodic train of narrow IR pulses is detected with a photodiode, the diode
output signal contains harmonics at all integer multiples of the repetition frequency
of 216.66 MHz. A straightforward way of extracting a 1300 MHz RF signal is to
select the sixth harmonic with a bandpass filter. In principle, an RF signal with a
stability of better than 10 fs can be generated this way, but attention must be paid to
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choose photodiodes that are insensitive to drifts in temperature and laser power. The
resulting systematic time shifts can be avoided employing a Sagnac or Mach-Zehnder
interferometer [34].

(2) Synchronization with other lasers
Different types of conventional lasers are in use at the FEL: the UV laser of the
photo-injector, the lasers for electro-optic detectors, the laser needed for the seed-
ing operation, and last but not least, lasers in pump-and-probe experiments. These
mode-locked lasers can be synchronized to the optical pulse train with femtosecond
precision by similar cross-correlation methods as used for the length stabilization of
the fiber links. A long-term stability of better than 10 fs has been demonstrated [35].

(3) Bunch arrival-time monitor
The arrival-times of single electron bunches at selected locations in the linac are
measured with a special device called bunch arrival time monitor (BAM). The signal
of a beam pick-up antenna with GHz bandwidth is sampled by the periodic laser
pulse train using a broadband electro-optical modulator (EOM). Bunch arrival time
deviations are converted into amplitude modulations of the sampling lasers pulses,
which are then recorded in a photo-detector. The principle of the monitor is sketched
in Fig. 8.23.

Experimental data are shown in Fig. 8.24. In a train of 30 bunches, a systematic
variation of the arrival time is visible. The most likely cause is an energy variation in
the bunch train which translates into a time variation when the particles travel through
the magnetic chicanes of the bunch compressors. There is an excellent correlation
between the arrival times at two different BAM positions. From the scattering around
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Fig. 8.24 Left : Arrival time variation in a train of 30 bunches. Right : Correlation between the
arrival times at two BAM stations (courtesy of F. Löhl).

the correlation line, the rms time resolution of the bunch arrival-time monitor is
estimated to be 6 fs [37].
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Chapter 9
X-Ray Free-Electron Lasers: Technical
Realization and Experimental Results

The physical and technological challenges of FELs become quite demanding with
decreasing wavelength, but in recent years X-ray FELs with wavelengths in the
Ångstrøm regime (1 Å= 0.1 nm = 10−10 m) have become a reality with the success-
ful commissioning and operation of the “Linac Coherent Light Source” LCLS [1],
the world’s first FEL providing atomic resolution. In this chapter, we discuss the
most important aspects and challenges of X-ray FELs and present some of the excel-
lent experimental results achieved at LCLS and the second facility of this kind,
the “Spring-8 Angstrom Compact free-electron LAser” SACLA [2]. Low-gain FEL
oscillators in the X-ray regime have been proposed [3] but not yet demonstrated,
they are not considered here. Comprehensive information and technical details on
X-ray FELs are found in the design reports of LCLS [4] and the European XFEL [5].
Further valuable information is presented in a review article by Huang and Kim [6].

9.1 Photon Beam Brightness

One of the most exciting aspects of an X-ray FEL is its extremely high peak brightness
(also called brilliance) which is more than eight orders of magnitude higher than in
any other X-ray source. The spectral brightness describes the intensity of a radiation
source taking into account its spectral purity and opening angle (see [7])

B = Φ

4π2ΣxΣθxΣyΣθy
, (9.1)

where Φ is the spectral photon flux defined as the number of photons per second and
within a given relative spectral bandwidth ∆ωℓ/ωℓ. The brightness determines how
much monochromatic radiation power can be focused onto a tiny spot on the target.

For radiation sources with only partial transverse coherence such as wigglers and
undulators at storage rings, the quantities Σx , . . . are calculated from the transverse
rms sizes and angular divergences of the photon and the electron beam [7]:

P. Schmüser et al., Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 165
Springer Tracts in Modern Physics 258, DOI: 10.1007/978-3-319-04081-3_9,
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Σx =
√

σ2
x, ph + σ2

x, e , Σθx =
√

σ2
θx, ph + σ2

θx, e (9.2)

and Σy,Σθy likewise. For a photon beam with full transverse coherence, the trans-
verse size and angular divergence are no longer independent quantities. According
to Eq. (10.76) in Sect. 10.3 we get

σx · σθx = λ

4π
(9.3)

for a photon beam in the fundamental Gaussian (TEM00) mode. The expression in
Eq. (9.3) is usually called the diffraction limit.

Since all FELs operate in pulsed mode, one has to distinguish between peak
brightness, the brightness during the short duration of the photon pulse, and aver-
age brightness. For many scientific applications the peak brightness is the figure of
merit. The measured peak brightness values of the existing X-ray FELs LCLS and
SACLA are depicted in Fig. 9.1. The peak brightness of the EUV and soft X-ray
FELs FLASH [8] and FERMI@Elettra [9] is somewhat lower, owing to the larger
wavelength, but again many orders of magnitude higher than that of third-generation
synchrotron light sources, which are usually storage rings equipped with undulators.
Short-wavelength high-gain FELs are often referred to as the fourth-generation of
accelerator-based light sources.

In an X-ray FEL equipped with a very long undulator, the fundamental Gaussian
mode will eventually dominate, compare Fig. 7.8. If this happens the electron beam
properties drop out and one can write

ΣxΣθx = ΣyΣθy = λℓ

4π
.

Hence the brightness of the FEL is simply inversely proportional to the square of the
photon wavelength

BFEL = 4Φ

λ2
ℓ

, (9.4)

provided the photon flux is independent of wavelength. Indirectly, the electron beam
parameters play of course an essential role because stringent upper limits on the
transverse size and divergence must be obeyed in order to achieve a high FEL gain
and the formation of a TEM00 Gaussian light beam.

The spectral photon flux Φ of an FEL is the total number of photons per unit time,
Ṅ = PFEL/(!ωℓ), divided by the relative FEL bandwidth

Φ = PFEL

!ωℓ

(
∆ωℓ

ωℓ

)−1

with ∆ωℓ =
√

2π σωℓ . (9.5)

Here we have approximated the almost Gaussian-shaped bandwidth curve by a rec-
tangular bandwidth curve of equal height and area. Inserting this expression, the
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Fig. 9.1 Peak brightness (number of photons per second, mm2, mrad2, and 0.1 % bandwidth),
plotted as a function of photon energy, of the X-ray free-electron lasers LCLS (SLAC, Stanford,
USA), SACLA (RIKEN, Harima, Japan), the European XFEL (under construction in Hamburg, Ger-
many), the SwissFEL (under construction at PSI, Villigen, Switzerland) and the PAL-XFEL (under
construction at PAL, Pohang, Korea). For comparison, the peak brightness of the soft X-ray FELs
FLASH (DESY, Hamburg, Germany) and FERMI@Elettra (ELETTRA, Trieste, Italy) is shown,
as well as the brightness achieved at the third-generation synchrotron light sources Advanced Pho-
ton Source APS (Argonne National Lab., USA), Berliner Synchrotron BESSY (Berlin, Germany),
European Synchrotron Radiation Facility ESRF (Grenoble, France), PETRA III (DESY, Hamburg,
Germany), Swiss Light Source SLS (PSI, Villigen, Switzerland), and Super Photonring SPring-8
(RIKEN, Harima, Japan). We thank E. Allaria (ELETTRA), H.-D. Nuhn (SLAC), S. Reiche (PSI),
H. Tanaka (RIKEN) and J.-H. Han (PAL) for providing information. The current status of FEL
facilities worldwide is described in Ref. [10].

spectral photon beam brightness finally reads

BFEL =
√

2
π3/2 !c

PFEL

λℓ

ωℓ

σωℓ

. (9.6)

One can see in Fig. 9.1 that the peak brightness at LCLS and SACLA exceeds that
of other accelerator-based X-ray sources by some eight orders of magnitude. Two
physical reasons are responsible for the extremely high instantaneous power:



168 9 X-Ray Free-Electron Lasers: Technical Realization

(1) the coherent superposition of the radiation fields from the large number of elec-
trons that are present in each microbunch (this number is responsible for the
large total power),

(2) the coherent superposition of the radiation fields from all microbunches within
a coherence length (this effect is responsible for the small divergence and the
narrow spectrum).

While the peak brightness is the essential figure of merit for a large class of important
scientific applications, it should be noted there are experiments which just need a high
X-ray flux. In such cases, an FEL is probably not the adequate source but a storage
ring or a recirculating linac might be more appropriate. An overview is found in
Ref. [11].

9.2 The X-Ray Free-Electron Lasers LCLS and SACLA

9.2.1 Layout of LCLS and SACLA

The world’s first X-ray FEL, the Linac Coherent Light Source LCLS at Stanford
(USA) was commissioned in 2009 and exhibited outstanding performance right from
the beginning. The schematic layout of LCLS is depicted in Fig. 9.2. The electron
bunches are generated in a copper photocathode by UV laser pulses from a frequency-
tripled Ti:Sa laser system. The electron beam is boosted to 135 MeV and injected
into the main linac. The acceleration to high energy takes place in normal-conducting
traveling-wave structures L0–L3 that are made from copper and operate at 2.856 GHz.

A fourth-harmonic structure with a resonance frequency of 11.424 GHz is used
for a linearization of the longitudinal phase space distribution (cf. Sect. 8.6.2). The
electron bunches are longitudinally compressed in two magnetic bunch compressor
chicanes (BC1 and BC2) and then accelerated to their final energy. A collimator
and a magnetic deflection protect the permanent undulator magnets from radiation
damage. The planar undulator magnet system is composed of 33 segments with a
length of 3.4 m each. The NdFeB permanent magnets have a fixed gap of 6.8 mm and
generate a field of 1.25 T. The undulator period is λu = 30 mm. The magnet pole
shoes are not exactly parallel but canted by an angle of 5 mrad. This allows to vary the
undulator parameter K within a chosen segment by a horizontal displacement of this
segment. The weak focusing produced by the undulator field is taken into account.
The total length of the undulator system is 132 m, including the quadrupole magnets
and diagnostic instruments between segments. The maximum active undulator length
is Lu = 112 m.

The world’s second X-ray FEL is the “Spring-8 Angstrom Compact free-electron
LAser” SACLA at Harima (Japan) which went into operation in 2012. The most
remarkable feature of SACLA (see Fig. 9.3) is that sub-Ångstrøm wavelengths are
reached with a comparatively modest beam energy of 8 GeV. The key component
is an undulator system inside the beam vacuum chamber permitting to realize a
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Fig. 9.2 Schematic layout of LCLS showing the electron gun, the normal-conducting accelerating
structures (L0–L3), the two magnetic bunch compressor chicanes (BC1 and BC2), the collimator,
and the undulators. Adapted with permission from Ref. [1]. © 2010 Macmillan Publishers Ltd.

Fig. 9.3 Schematic layout of SACLA. EG: 500 keV electron gun; SHB: 238 MHz subharmonic
buncher; BS: 476 MHz booster; S-TWA: S-band traveling-wave acceleration structures; C-TWA:
C-band acceleration structures; BC1, BC2, BC3: bunch compressors; UND: undulators. Reprinted
with permission from [2]. © 2012 Macmillan Publishers Ltd.

small gap between the magnet poles (minimum gap is 3.5 mm) and a short period of
λu = 18 mm. The FEL wavelength can be tuned by changing the undulator parameter
K through adjustment of the gap. A 5.7 GHz traveling-wave linac with a gradient
of more than 35 MV/m boosts the beam energy up to 8.5 GeV. The electron source
is a thermionic electron gun with a single-crystal CeB6 cathode that generates a
low-emittance beam. The electrons are accelerated by a pulsed dc voltage of 500 kV.
Bunch compression is accomplished by a 238 MHz subharmonic buncher and three
magnetic chicanes.

Table 9.1 summarizes the typical electron beam and FEL parameters of LCLS and
SACLA. In LCLS the electron energy W can be varied between 15.8 and 2.5 GeV,
corresponding to the wavelength range 1.1 Å ≤ λℓ ≤ 44 Å. The FEL pulse energies
Uph are typically a few milli-Joule, the photon pulse duration Tph is about 100 fs.
The generation of ultrashort FEL pulses with Tph < 10 fs is described in Sect. 9.2.2.

The excellent performance of LCLS is obvious from Fig. 9.4 where the measured
power gain at 1.5 Å is plotted as a function of the active undulator length. An expo-
nential FEL power rise is observed over four orders of magnitude. The saturation
power of some 15 GW is reached after an active undulator length of 60 m which
means that the total undulator length of 112 m is more than adequate for an X-ray
FEL. The power gain length Lg derived from these data amounts to 3.5 m, in good
agreement with the expectations according to Eq. (6.22) and a GENESIS simulation.
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Table 9.1 Typical parameters of LCLS [1, 4] and SACLA (courtesy of H. Tanaka)

Parameter Symbol LCLS SACLA

Electron energy W 2.5–15.8 GeV 5.8–8.5 GeV
Peak current I0 0.5–3.5 kA >3 kA
Bunch charge Q 0.02–0.25 nC 0.2–0.3 nC
Bunch duration Te <10–500 fs 20 fs
Normalized slice emittance εn,s ∼0.4µm ∼0.4µm
FEL wavelength λℓ 44–1.1 Å 2.3–0.63 Å
Power gain length Lg ∼3 m 2.3 m
Saturation power Psat 3–40 GW 6–60 GW
FEL parameter ρFEL ∼5·10−4 ∼6.8·10−4

FEL pulse energy Uph 1–3 mJ ∼0.3 mJ
Photon pulse duration Tph <10–500 fs 2–10 fs
Undulator period λu 30 mm 18 mm
Undulator field B0 1.25 T 1.3 T
Undulator parameter K 3.5 ≤2.2
Undulator length Lu 112 m 90 m

Fig. 9.4 Left picture : The measured power gain curve (red dots with error bars) of LCLS in SASE
operation at the design wavelength of 1.5 Å. The solid blue curve is a simulation using the code
GENESIS. Right picture : Image of the X-ray distribution on a scintillation screen. Figure reprinted
with permission from Ref. [1]. © 2010 Macmillan Publishers Ltd.

This remarkable result is due the excellent electron beam quality. Particularly impor-
tant is the small normalized slice emittance εn,s of 0.4µm. The gain curve obtained
at SACLA is similarly impressive, see Fig. 9.5.
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active

Fig. 9.5 Gain curve in SACLA at a wavelength of 1.24 Å. The FEL pulse energy (left ordinate) is
plotted versus the number of active undulator modules together with the pulse energy fluctuation
(right ordinate). The length of a module is 5 m. The gain length in the exponential gain region is
estimated at Lg = 2.3 m. After reaching saturation, the pulse energy fluctuation drops below 20 %.
(Courtesy of H. Tanaka).

9.2.2 Generation of Femtosecond FEL Pulses

An important task of X-ray FELs is the structural analysis of complex biomolecules
and viruses by the Laue diffraction method. Many types of biomolecules cannot be
arranged in a crystalline lattice, and then the diffraction pattern has to be obtained
by X-ray diffraction on single molecules or on nano-meter scale crystals. Since
biomolecules are typically composed of some hundred thousand hydrogen, carbon
and other atoms, the X-ray pulse must contain a huge number of photons that have to
be focused on a tiny target. These photons will ionize the atoms, and within a time of
20 to 50 fs the molecule undergoes a so-called Coulomb explosion. For this reason,
intense X-ray pulses with a time duration below 10 fs are needed in order to obtain
a complete and undisturbed diffraction pattern of the molecule before it explodes.
Presently, the only known device which is capable of generating such intense and
ultrashort pulses is the free-electron laser. Femtosecond FEL pulses are also useful
for the study of ultrafast chemical reactions and magnetic dynamics.

The usual bunch charge of 250 pC in LCLS does not allow the longitudinal bunch
compression to femtosecond-length because huge local charge densities would arise.
The collective effects in the bunch compression system (space charge forces and
coherent synchrotron radiation) would entirely spoil the beam quality, with the con-
sequence of an intolerable emittance blowup and the generation of a far too large
energy spread. The natural way towards ultrashort pulses is a reduction of the bunch
charge by an order of magnitude. Bunch charges in the 20 pC range open the way
to femtosecond FEL pulses. Additional benefits of the low-charge operation are the
reduced normalized emittance and smaller wakefields. We have seen in Sect. 8.4
that space charge forces and coherent synchrotron radiation have rather detrimental
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Fig. 9.6 Measurement (blue dots and line) of the normalized slice emittance of uncompressed
electron bunches with the low charge of 20 pC at LCLS. The simulation (solid green line) is explained
in [12]. The measured bunch current (red dots and line) is presented on an arbitrary scale. Figure
adapted with permission from Ref. [12]. © 2009 by The American Physical Society.

Fig. 9.7 Simulation of the time profile of FEL pulses for low-charge operation in LCLS at λℓ =
0.15 nm (left graph) and 1.5 nm (right graph). The simulations were performed using GENESIS.
Figure adapted with permission from Ref. [12]). © 2009 by The American Physical Society.

effects on the beam emittance. These perturbing effects are largely avoided if the
bunch charge is made very low.

An operation mode with low bunch charge has been successfully established
[1, 12]. For this purpose, the electron beam injector was optimized for the bunch
charge of 20 pC, resulting in a very small normalized slice emittance εn, s = 0.2µm
before bunch compression, see Fig. 9.6. These low-charge bunches were then strongly
compressed and sent through the undulators where they achieved lasing. Electron
beam measurements [13] confirmed the femtosecond bunch durations predicted by
tracking simulations.

The computed temporal profiles of the FEL pulses at 0.15 and 1.5 nm are shown in
Fig. 9.7. The two pulses have almost the same overall duration of about 2 fs, but the
temporal structure is quite different. The 0.15 nm FEL pulse has clearly more wave
packets (longitudinal modes) than the 1.5 nm pulse, which is a consequence of the
shorter coherence time of a few hundred attoseconds (cf. Eq. 7.15). Experimentally,
an FEL pulse duration of about 2 fs was determined by cross-correlation [14].
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Fig. 9.8 Schematic of the self-seeding setup at LCLS. To switch from seeding operation to SASE
operation the diamond crystal is retracted and the magnetic chicane is switched off.

9.2.3 Monochromatic X-Rays from Self-Seeding

We have seen that self-amplified spontaneous emission is a very powerful mechanism
for generating laser light in a wavelength regime where conventional lasers are
unavailable or have a poor performance. SASE FELs are capable of producing X-ray
pulses with a power of some 10 GW and a time duration in the 10 fs range. The
transverse coherence is excellent but the longitudinal coherence (identical with the
temporal coherence) is poor. As discussed in Chap. 7, SASE radiation has a fairly
wide spectrum with strong wavelength and intensity fluctuations from pulse to pulse.
For spectroscopic experiments, an X-ray source with better monochromaticity would
be highly desirable. Significant progress in this direction can be expected if the lasing
process is not initiated by the statistically fluctuating undulator radiation but rather
by the nearly monochromatic light wave of a seed laser, see Sect. 7.4. For X-rays,
suitable seed lasers are presently not available. As a practical alternative, the idea of
self-seeding was proposed at DESY [15–17] which works as follows. SASE radiation
is produced in a first undulator section and then passed through a monochromator.
A magnetic bypass guides the electron beam around the monochromator. The path-
length traveled by the electrons is adjusted such that the emerging electron bunch and
the monochromatized radiation pulse have a good temporal overlap in the second
undulator section in order to achieve a high FEL gain. The microbunching acquired
in the first undulator section during the SASE process is washed out in the magnetic
bypass, and hence it does not disturb the seeding process in the second undulator
section.

A successful self-seeding experiment has been carried out at LCLS [18]. The
experimental setup is shown schematically in Fig. 9.8. The first undulator section
comprises 15 modules of 3.4 m length, 13 of which are used to generate SASE
radiation with an average power of 1 GW. The radiation is passed through a special
diamond crystal in the so-called forward Bragg diffraction geometry [18], where
a transmitted X-ray pulse with a relatively long monochromatic tail is generated.
The first maximum of this wake has a small delay of only 19 fs with respect to the
incident SASE pulse. A magnetic chicane with a parallel beam displacement of just
2.5 mm is sufficient to delay the electron bunch by these 19 fs, to guide it around the
diamond crystal and to bring it into overlap with the radiation tail, thereby selecting
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(a) (b)

Fig. 9.9 Comparison of the measured X-ray spectra for the self-seeded FEL mode of operation
(blue) and the SASE mode (red). a Single-shot measurement of a self-seeding pulse of large ampli-
tude in comparison with a single-shot SASE pulse. b Comparison of the averaged X-ray spectra
for the self-seeding and SASE modes. The central photon energy is 8.3 keV. Note the different
horizontal and vertical scales in (a) and (b). (Courtesy of A. Lutman and Z. Huang).

a monochromatic wave for seeding. FEL seeding happens in the second undulator
section consisting of 13 modules with a total length of 52 m.

Measurements in the self-seeding mode and the SASE mode are compared in
Fig. 9.9. In single-shot operation the seeded pulse consists of a single narrow spike
whereas the SASE pulse is composed of many narrow spikes scattered over a rather
wide range of photon energies. Averaged over many shots the seeded radiation has a
bandwidth of 0.4 eV (FWHM) while the SASE radiation has a bandwidth of 20 eV,
so a bandwidth reduction by a factor of about 50 is achieved by self-seeding.

The single-shot measurement shown in this figure is a favourable case, the seeded-
FEL pulse has a much higher peak intensity than the SASE spikes. The average seed
signal is lower, as can be seen from Fig. 9.9b. In fact, the pulse energy stability
of the seeded FEL is still poor. Large fluctuations occur that can be traced back to
corresponding energy fluctuations in the SASE pulses used for seeding. The length
of the first undulator section must be chosen such that the SASE FEL process stays
below saturation,1 and consequently the seed power fluctuates close to 100 % because
a single longitudinal mode is selected (compare Sect. 7.3.3 and Fig. 7.14). The second
half of the undulator is presently shorter than the saturation length, so the seeded
FEL process remains in the linear regime. The energy jitter of the seed pulse is
thus translated 1:1 to the output pulse. There is room for improvement though, for
example by adding undulator modules to the second undulator section in order to
achieve saturation in the seeded FEL process. We have seen in Fig. 5.5 that the
saturation power of a seeded FEL does not depend on the power of the seed beam.

1 Making the first undulator section longer than the SASE saturation length has a serious disadvan-
tage: the electron bunches acquire a large energy spread in the saturated SASE process which in
turn impedes the seeded FEL gain in the second undulator section.
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The great potential offered by self-seeding is obvious from these results. Consid-
erable progress can be expected in the near future.

9.2.4 Electron Beam Energy Loss in the Undulator Magnets

When an electron bunch with Ne electrons passes through the long undulator of an
X-ray FEL, not only the desired FEL radiation is emitted but in addition a large
amount of spontaneous undulator radiation. The two types of radiation have quite a
different dependence on the electron energy. According to Eq. (2.21), the spontaneous
radiation power emitted by an electron

Prad = e4γ2 B2
0

12πε0c m2
e

grows quadratically with the electron energy W = γmec2. In contrast to this, the
FEL saturation power (6.27)

Psat ≈ 1.6 ρFEL Pbeam

(
Lg0

Lg

)2

increases only rather weakly with energy. The electron beam power Pbeam scales
linearly with energy but the FEL parameter drops by about a factor of 7 if one com-
pares FLASH (W = 1 GeV) and LCLS (W = 13.6 GeV). Hence one can expect that
beyond some energy threshold the electron beam loses more energy by spontaneous
undulator radiation than by the FEL gain process. A rough estimate is obtained as
follows. The energy carried away by spontaneous radiation in an undulator magnet
of length Lu is

Uspon = Ne PradTtran ,

where Ttran = Lu/(β̄c) ≈ Lu/c is the transit time of the electron bunch through
the undulator, which amounts to 373 ns for the 112 m long undulator of LCLS.2 The
energy transferred to the FEL light pulse is

UFEL ≈ PsatTph .

In this case, however, Tph is the time duration of the FEL photon pulse which is very
short and in the 10–100 fs regime. For typical LCLS parameters one finds

Uspon

Wbunch
= 1.1 · 10−3 ,

UFEL

Wbunch
= 0.7 · 10−3 ,

2 Note that the electron transit time has nothing to do with the time duration of the spontaneous
radiation pulse which is in 10–100 fs range just like the FEL pulse.
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Fig. 9.10 Left : Calculated energy loss of a 13.6 GeV electron beam as a function of undulator
length. The loss is due to the FEL gain process (red), spontaneous undulator radiation (green) and
resistive-wall wake fields (purple). Right : Variation of the undulator parameter K that is needed to
keep the light wavelength λℓ constant, thereby preserving the resonance condition.

where Wbunch = NeW is the sum of the kinetic energies of the electrons in the bunch.
Resistive-wall wake fields constitute another loss mechanism which is indeed the
dominating effect at LCLS. The calculated energy loss is plotted in Fig. 9.10 as a
function of the path length traveled in the undulator.

When the electrons travel through the long undulator system, their fractional
energy loss will eventually exceed the energy bandwidth of LCLS, which is given
by the FEL parameter ρFEL = 5 · 10−4. One can say that the electrons “fall out of
resonance”. In order to restore the resonance condition one can gradually reduce
the undulator parameter with increasing z by reducing the magnetic field. At LCLS
this field reduction is easy to accomplish owing to the canted undulator pole shoes
mentioned before. A slight horizontal movement of the undulator sections in question
is sufficient. This correction method is often called “undulator tapering”, and by
applying undulator tapering the saturation power can be more than doubled.

9.3 Undulator Radiation Background and Quantum Effects

9.3.1 Background from Undulator Radiation

In view of the big amount of spontaneous undulator radiation energy, the question
arises what the benefit of FEL radiation is at all in the X-ray regime. This benefit is
in fact present and it is overwhelming. The superiority of FEL radiation results from
the fact that it is emitted into a tiny solid angle and a narrow spectral band, while
undulator radiation has a much wider angular distribution and moreover exhibits a
strong wavelength variation with increasing emission angle.

The solid angle subtended by FEL radiation can be estimated as follows. Accord-
ing to Sect. 9.1 the FEL beam in the saturation regime is well described by the
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Fig. 9.11 Transverse photon beam profiles measured with a Ce:YAG scintillation screen 50 m
downstream of the LCLS undulators. Left picture : Low FEL gain. 10 undulator segments are
active, the peak current is 0.5 kA. The picture is dominated by undulator radiation, the weak FEL
radiation appears as a dark spot in the center. Right picture : High FEL gain, 12 undulator segments
are active and the peak current is 3.0 kA. The sensitivity of the pixel camera has been reduced
to avoid overexposure of the bright FEL spot, therefore undulator radiation is no longer visible.
(Courtesy of P. Emma and Z. Huang).

fundamental Gaussian mode. It is shown in Sect. 10.3 that the rms divergence angle
of a TEM00 beam is σθ = λℓ/(4πσx ). If the photon beam is matched in size to the
electron beam, σx = √

εxβx , the divergence angle at LCLS is σθ ≈ 3 · 10−7rad, and
the corresponding solid angle is

∆%FEL < 10−12 sterad . (9.7)

In contrast to this tiny angular divergence, the opening cone angle (2.27) con-
taining the major fraction of spontaneous undulator radiation power is significantly
larger3 with

θspont =
K
γ

∼ 10−4 rad , ∆%spon ≈ 10−7 sterad .

The corresponding solid angle is some five orders of magnitude larger than the solid
angle of the FEL radiation, so there will be a strong suppression of the spontaneous
radiation if one restricts the aperture of the detector to the small solid angle ∆%FEL.
Figure 9.11 is an illustration of these considerations. The photon distribution in a
plane transverse to the photon beam direction was measured with a scintillation screen
50 m downstream of the LCLS undulators. The left image was made at low FEL gain
and is dominated by the large background from spontaneous undulator radiation; the
onset of the FEL gain process is barely visible as a small dark spot at the center. The

3 The rather tight collimation of the first harmonic of undulator radiation given in Eq. (2.26) is due
to the requirement that the angle-dependent wavelength shift stays within the spectral bandwidth
observed in forward direction. Dropping this requirement a large amount of radiation is found at
substantially larger angles.
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Fig. 9.12 Measured spectra of SASE-FEL radiation (red curves) and spontaneous radiation (blue
curves) at λℓ = 1.24 Å (left) and at λℓ = 0.635 Å (right). Data are from SACLA. Figure reprinted
with permission from [2]. © 2012 by Macmillan Publishers Ltd.

right image was taken at high FEL gain, but with a much reduced sensitivity of the
pixel camera. Here only the bright spot from FEL radiation is visible.

Likewise, the spectral bandwidth of SASE FEL radiation is narrow at saturation:

(
∆ωℓ

ωℓ

)
≈ 2.5 ρFEL ≈ 10−3 ,

while the undulator radiation entering a small-aperture spectrometer has a wider
spectrum and a much lower intensity. This is demonstrated in Fig. 9.12 with data
from SACLA. The measured spectra of SASE-FEL radiation and of spontaneous
radiation (the latter one multiplied with 100) are shown.

9.3.2 Quantum Effects and Beam Energy Spread

The classical FEL theory turns out to be adequate for a description of all existing
and proposed X-ray FEL facilities. Nevertheless, the quantum nature of the photons,
which plays an essential role for synchrotron radiation in storage rings, must be
taken into account. When an electron in a storage ring emits a photon, its energy will
abruptly change, and this quantum recoil affects the beam dynamics by exciting a
horizontal betatron oscillation. In an FEL, the emission of a single photon has a much
smaller impact. It is shown in Ref. [19] that quantum effects become only relevant
in a high-gain FEL when the fractional energy loss due to single-photon emission is
comparable to the FEL bandwidth:
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!ωℓ

W
≃ ρFEL .

In the case of LCLS with an electron beam energy of W = 13.6 GeV and a photon
energy of ! ωℓ = 8.27 keV, the fractional energy loss of an electron is only 6 · 10−7

and thus far below the FEL parameter ρFEL ≈ 5 · 10−4. Hence, quantum recoil is of
no importance as long as only single-photon emission is considered. However, the
accumulated beam energy loss due to the many photons that are emitted in the long
undulator of an X-ray FEL may exceed the FEL bandwidth, as discussed above.

Spontaneous undulator radiation has another undesirable effect. An additional
energy spread σγ is induced within the electron beam that has its origin in the quan-
tum nature of the radiation. The growth rate of this additional energy spread σγ is
[20, 21]:

dσ2
γ

dz
= 7e2!γ4 K 3k3

u

60πε0m2
ec3

(
1.2 + 1

K + 1.33 K 2 + 0.4 K 3

)
. (9.8)

For the 13.6 GeV electron beam at the LCLS, the additional energy spread after 60 m
of undulators isσγ/γ ≈ 0.2 ρFEL . The energy spread caused by this so-called quantum
diffusion effect is thus of minor importance. The growth rate (9.8) increases with the
fourth power of the electron energy. Quantum diffusion will thus be a serious concern
for X-ray FELs with significantly higher electron beam energies than in LCLS.

The quantum regime of FELs starting from noise is discussed in Ref. [22].

9.4 X-Ray Beam Lines

The peak intensity of the X-ray beam leaving the undulator is many orders of mag-
nitude higher than what can currently be handled with existing optical technologies.
The safest method of reducing the power density without degrading the beam quality
is to let the photon beam propagate through a long vacuum pipe until it is spread
out over a substantially increased area via its natural divergence. Thereby a tolerable
irradiation level for optical elements like mirrors, lenses, and monochromators can
be achieved.

What matters for the optical elements of the photon beam lines of an X-ray FEL
is the high instantaneous energy dose deposited in a thin surface layer. During the
femtosecond X-ray pulse the surface layer is far away from thermal equilibrium, and
hence it is meaningless to consider equilibrium properties like melting temperature or
expansion coefficient. From experience, the tolerable energy dose causing no damage
is approximately 0.01 eV/atom, much less than the energy required for melting (about
0.9 eV/atom for graphite).

In order to reduce the energy dose, the optical elements are designed to achieve the
highest reflectivity possible. For mirrors this can be realized by choosing a grazing
incidence geometry with angles below the critical angle for total external reflection
(remember that the refractive index of common materials is slightly less than 1 in
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Fig. 9.13 Top view and side view of a 400 m long X-ray beam line equipped with a high-power
grating monochromator, foreseen for the European XFEL. M are grazing-incidence mirrors, G is a
diffraction grating. (Courtesy of Th. Tschentscher).

the X-ray regime). This is the only way for reaching a reflectivity of more than 90 %
over a wide range of X-ray wavelengths. A good material combination is a highly
polished silicon substrate with carbon coating. For Ångstrøm radiation, such mirrors
are operated at a glancing angle of 2 mrad, but even then photon beam drift lengths
of some 100 m are needed to stay below the 0.01 eV/atom limit. The consequence
of the grazing incidence geometry and the long drift length is that the mirrors and
lenses have to be about 0.5 m long. The surface must be polished to 0.1 nm residual
roughness and 0.3 µrad tangential slope errors to preserve the wave fronts of the
FEL radiation. As an example, a photon beam line design for the European XFEL is
shown in Fig. 9.13.

Many experiments at X-ray FELs cannot cope with the maximum power of the
FEL. While is it always possible to reduce the X-ray intensity, for example by choos-
ing a low bunch charge, in practice many experiments with different intensity require-
ments will be running in parallel, and then a variable power reduction in a specific
beamline may be needed. At LCLS the photon beam attenuation is accomplished
by the system shown in Fig. 9.14. The main components are beryllium disks with
a thickness between 0.1 and 32 mm, which can be inserted into the photon beam,
and a nitrogen gas absorption cell. Differential pumping sections isolate the gas
cell from the ultra-high vacuum in the upstream and downstream sections of the
photon beam line. The reduction of the photon pulse energy can be measured with
two gas detectors which are installed upstream and downstream of the attenuation
section.
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Fig. 9.14 Photon beam attenuation system at the LCLS, consisting of beryllium (Be) disks of
different thickness and a nitrogen (N2) gas absorption cell. The attenuation system is located between
two differential pumping sections. These incorporate two gas detectors for measuring the FEL pulse
energy before and after the attenuation. Figure reprinted with permission from Ref. [23]. © 2012
Elsevier BV.
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Chapter 10
Appendices

10.1 Hamiltonian Formalism

10.1.1 Basic Elements of the Hamiltonian Formalism

In this section we demonstrate how Hamiltonian mechanics can be used to derive
the trajectory of an electron in an undulator magnet and its coupling to the radiation
field. For a thorough presentation of the Lagrange–Hamilton formulation of classical
mechanics we refer to the textbooks by Landau and Lifshitz [1] and Goldstein [2].

10.1.1.1 Non-relativistic Hamiltonian

In non-relativistic mechanics the Hamilton function of a particle is the sum of its
kinetic and potential energies

H(qj, pj, t) = Wkin + Wpot. (10.1)

The qj and pj are the generalized coordinates and momenta. The Hamilton equations
express the time derivatives of the coordinates and momenta in terms of partial
derivatives of the Hamiltonian

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

. (10.2)

The total time derivative of the Hamiltonian is

dH
dt

= ∂H
∂t

+
∑

j

[
∂H
∂qj

q̇j +
∂H
∂pj

ṗj

]
. (10.3)

Because of the Hamilton equations (10.2) the second term vanishes, hence
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dH
dt

= ∂H
∂t

. (10.4)

This means that the total energy of the particle is conserved if the Hamilton function
has no explicit time dependence. The implicit time dependence contained in the
generalized coordinates and momenta may increase the kinetic energy at the expense
of the potential energy, or vice versa, but the sum of both remains invariant.

10.1.1.2 Example: Mathematical Pendulum

A mechanical example which is of relevance for the FEL is the mathematical pen-
dulum. The mathematical pendulum consists of a mass m attached to a massless bar
of length ℓ. In this case the natural choice for the canonical coordinate is the angle
φ, the conjugated canonical momentum is then the angular momentum L

q = φ, p = L = m ℓ2 φ̇ = m ℓ2 ω.

The kinetic and potential energies and the Hamiltonian are

Wkin = L2

2mℓ2 , Wpot = m g ℓ(1 − cos φ),

H(φ,L) = L2

2mℓ2 + m g ℓ(1 − cos φ), (10.5)

where g is the acceleration of gravity. The Hamiltonian is independent of time, and
hence the total energy is conserved:

W = Wkin + Wpot =
L2

2mℓ2 + m g ℓ(1 − cos φ) = const.

The Hamilton equations are

dφ

dt
= ∂H

∂L
= L

mℓ2 ,
dL
dt

= −∂H
∂φ

= −m g ℓ sin φ. (10.6)

The trajectories in the phase space (φ,L) can be easily constructed by writing the
coupled differential equations (10.6) as difference equations and solving these in
small time steps. These trajectories are the curves of constant Hamiltonian. For
small angles we have sin φ ≈ φ, and the pendulum carries out a harmonic oscillation
of the form:

φ(t) = φ0 cos(ωt), L(t) = −m ℓ2ω φ0 sin(ωt),

corresponding to an elliptic phase-space curve. With increasing angular momentum
the motion becomes anharmonic. At very large angular momentum one gets a rotation
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Fig. 10.1 Phase space curves of a mathematical pendulum. The separatrix (dashed curve) separates
the region of bounded motion (periodic oscillation) from that of unbounded motion (rotation). The
point (0, 0) is a fixpoint.

(unbounded motion). The two regions of motion are separated by a curve called the
separatrix. The equation of the separatrix can be derived from the initial conditions

φ0 = π, L0 = 0 ⇒ Hsep = m g ℓ(1 − cos φ0) = 2 m g ℓ.

Since the Hamiltonian is constant on the separatrix, the angular momentum as a
function of the angle φ can be computed from

[Lsep(φ)]2
2mℓ2 = Hsep − m g ℓ(1 − cos φ)

from which follows
Lsep(φ) = ±2mℓ2

√
g/ℓ cos(φ/2). (10.7)

The phase space picture of the mathematical pendulum is shown in Fig. 10.1.

10.1.1.3 Relativistic Hamiltonian

The relativistic Hamiltonian of a particle of rest mass m0 moving in a force- and
field-free region is

H(qi, pi) ≡ γm0c2 = c
√

p2 + m2
0c2 = c

[
p2 + m2

0c2
]1/2

. (10.8)

The canonical coordinates qi are taken here as the Cartesian coordinates r = (x, y, z),
and the canonical momentum is p = γm0v. The Hamiltonian is identical with the
total relativistic energy of the particle, for a free particle it is the sum of kinetic energy
Wkin and rest energy m0c2.
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In the presence of an electromagnetic field the Hamiltonian of a particle with
charge q must be modified. We characterize the field by its scalar and vector poten-
tials:

E = −∇Φ − ∂A
∂t

, B = ∇ × A. (10.9)

Remember that we use the SI system in contrast to many articles and books on
FEL theory that use Gaussian cgs units. To account for the electromagnetic field we
have to add the potential energy Wpot = q Φ, and moreover the kinetic momentum
p = γm0v has to be replaced by the canonical momentum

P = p + q A = γm0v + q A. (10.10)

The relativistic Hamiltonian of a charged particle in an electromagnetic field is thus

H(r,P, t) = c
[
(P − q A)2 + m2

0c2
]1/2

+ q Φ. (10.11)

Again this Hamiltonian is identical with the total relativistic energy of the particle,
namely the sum of kinetic energy, potential energy, and rest energy m0c2. The Hamil-
tonian has to be considered a function of the canonical coordinates r = (x, y, z), the
canonical momenta P = (Px,Py,Pz), and the time t.

In the following we consider an electron (charge q = −e, rest mass m0 = me)
moving in the magnetic field of an undulator magnet and in the electric field of a
light wave. Then no scalar potential Φ is present and the Hamilton function has the
form

H(r,P, t) = c
[
(P + e A)2 + m2

ec2
]1/2

≡ γmec2. (10.12)

The vector potential A(r, t) comprises both fields. This Hamiltonian is equal to the
total energy W = γmec2 of the electron and will be time-dependent if the electron
exchanges energy with the light wave, in which case the Lorentz factor is a function
of time, too. The Hamilton equations are evaluated using the formula

d
√

f (x)
dx

= f ′(x)

2
√

f (x)
.

With the help of this formula we find for example

dx
dt

= ∂H
∂Px

= 2c(Px + e Ax)

2
√
(P + e A)2 + m2

ec2
= (Px + e Ax)

γme
= γmevx

γme
= vx. (10.13)

Note that one can replace the square root in the denominator by γmec. The time
derivative of the Hamiltonian is found by the same method
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∂H
∂t

= (P + e A)
γme

· ∂(eA)
∂t

= −e v · E, (10.14)

where we have used P + e A = γmev and E = −∂A/∂t.

10.1.2 Electron Motion in a Planar Undulator

The Hamiltonian formulation is now applied to compute the electron trajectory in a
planar undulator, following partly the procedure in Ref. [3]. The emission of undu-
lator radiation is neglected for the time being. We consider a simplified form of the
undulator field, see Eq. (2.3)

B = −B0 sin(kuz)ey (10.15)

which can be derived from the vector potential

A = B0

ku
cos(kuz)ex. (10.16)

Here ex and ey are the unit vectors in x and y direction, respectively. An electric
field is not present in the undulator, hence the potential energy term is missing. We
note that the vector potential has only an x component which depends on the single
variable z. The Hamiltonian of the electron becomes thus

H(z,Px,Py,Pz) = c

[(
Px + e

B0

ku
cos(kuz)

)2

+ P2
y + P2

z + m2
ec2

]1/2

≡ γmec2. (10.17)

The two Hamilton equations

Ṗx = −∂H
∂x

= 0, Ṗy = −∂H
∂y

= 0

imply that Px = γmevx − e Ax and Py = γmevy are constants of motion. The vector
potential Ax vanishes at z = λu/4, right after the beginning of the undulator. Choosing
the initial conditions such that vx = vy = 0 at this position, we obtain Px,Py ≡ 0
all along the undulator from which follows vy(z) ≡ 0 and

vx(z) =
eB0

γmeku
cos(kuz) = Kc

γ
cos(kuz). (10.18)

This is identical with Eq. (2.9) in Chap. 2.



188 10 Appendices

Since the canonical momenta Px,Py are zero all along the undulator, the Hamil-
tonian depends only on z and Pz:

H = H(z,Pz) = c

[
e2B2

0

k2
u

cos2(kuz)+ P2
z + m2

ec2

]1/2

. (10.19)

The Hamilton equations are evaluated using the method of Eq. (10.13):

ż = ∂H
∂Pz

= Pz

γme
, Ṗz = −∂H

∂z
= e2B2

0

2γmeku
sin(2kuz).

Using z(t) ≈ v̄zt the second equation can be integrated over time. Inserting the result
into the first one we obtain

vz(t) ≈ v̄z − e2B2
0

4γ2m2
ek2

uc
cos(2kuv̄zt),

where the first term comes from the integration constant. By the same consideration
as in Chap. 2 we find that the constant velocity term is identical with the average
longitudinal speed (2.11). If we define ωu = v̄zku the above expression is identical
with Eq. (2.10). The particle trajectory is, choosing x(0) = y(0) = 0,

x(t) = cK
γωu

sin(ωut), y(t) = 0, z(t) = v̄zt − cK2

8γ2ωu
sin(2ωut), (10.20)

in agreement with Eq. (2.12).

10.1.3 Electron Motion in a Helical Undulator

Generalizing Eq. (10.16) we choose a vector potential

A = B0

ku

[
cos(kuz)ex + sin(kuz)ey

]
(10.21)

which corresponds to the helical undulator field

B = −B0
[
cos(kuz)ex + sin(kuz)ey

]
. (10.22)

This field has the sense of rotation of a right-handed screw. Note that it is a simplified
field, not in accordance with the Maxwell equation ∇ × B = 0, but it is a good
approximation for the field of a real helical undulator for small deviations from the
axis. Again the Hamiltonian does not depend on x and y with the consequence that
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the corresponding canonical momenta are constants of motion and can be set equal
to zero by choosing appropriate initial conditions. Hence we have Px ≡ 0, Py ≡ 0,
yielding the important equations:

γmevx(z) = eAx(z) =
eB0

ku
cos(kuz),

γmevy(z) = eAy(z) =
eB0

ku
sin(kuz),

from which follows

vx = c K
γ

cos(kuz), vy = c K
γ

sin(kuz). (10.23)

Like in the planar undulator the Hamiltonian depends only on z and Pz

H = H(z,Pz) = c

[
e2B2

0

k2
u

(cos2(kuz)+ sin2(kuz))+ P2
z + m2

ec2

]1/2

,

but now even the z dependence drops out:

H = H(Pz) = c

[
e2B2

0

k2
u

+ P2
z + m2

ec2

]1/2

. (10.24)

From this expression follows immediately

Ṗz = −∂H
∂z

= 0 ⇒ Pz = γmevz = const., (10.25)

so the speed in z direction is a constant. From (10.23) we find

v2
x + v2

y = K2c2

γ2

and

vz =
√
v2 − v2

x − v2
y = c

√
β2 − K2/γ2 ≈ v0 ≡ c

(
1 − 1

2γ2 (1 + K2)

)
.

(10.26)
This differs from the planar undulator case in two aspects: the factor (1+K2) appears
instead of (1+K2/2), and longitudinal oscillations do not exist. The absence of these
oscillations is the reason why helical undulator radiation has no higher harmonics
(this applies for radiation in forward direction).
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The particle trajectory is found by integration of Eq. (10.23)

x(t) = eB0

γmek2
uv0

sin(ωut), y(t) = − eB0

γmek2
uv0

cos(ωut), z(t) = v0t. (10.27)

It is a right-handed helix with the radius

rhel =
e B0

γmek2
uv0

≈ K
γku

. (10.28)

10.1.4 Energy Exchange Between Electron and Light Wave

10.1.4.1 Planar Undulator

We want to demonstrate that Eq. (3.4), describing the energy transfer between elec-
tron and light wave, can also be obtained in the Hamiltonian formalism. Like in
Chap. 3 the radiation field is described by a plane wave with linear horizontal polar-
ization

Ex(z, t) = E0 cos(kℓz − ωℓt + ψ0).

The field can be derived from the vector potential

Aℓ(z, t) = E0

ωℓ
sin(kℓz − ωℓt + ψ0) ex (10.29)

which satisfies the homogeneous wave equation. The total vector potential is the sum
of the vector potentials of the undulator (10.16) and the light wave (10.29):

A(z, t) = Au(z)+ Aℓ(z, t).

It has only an x component but is a function of both z and t. The Hamiltonian of an
electron passing a planar undulator in the presence of a horizontally polarized light
wave is

H(r,P, t) = c
[(

Px + e Au
x(z)+ e Aℓ

x(z, t)
)2

+ P2
y + P2

z + m2
e

]1/2

. (10.30)

The important new feature of this Hamiltonian is its explicit time dependence, brought
in by the vector potential of the radiation field. The electron energy is therefore
not conserved, which we know already, because there is energy exchange with the
radiation field. To find the rate of change dW/dt of the electron energy we compute
the partial derivative of H with respect to time using Eq. (10.14). The rate of change
of the electron energy is
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dW
dt

= ∂H
∂t

= −e vx(z)Ex(z, t) = −ecK
γ

cos(kuz)E0 cos(kℓz − ωℓt + ψ0)

≡ −e c KE0

2γ
[cos ψ + cos χ] (10.31)

which is identical with Eq. (3.4). Here ψ = (kℓ + ku)z − ωℓt + ψ0 is the pon-
deromotive phase defined in Chap. 3, and χ = (kℓ − ku)z − ωℓt + ψ0 is the rapidly
oscillating phase. Equation (10.31) is only valid in the low-gain regime because we
have treated the field amplitude E0 of the light wave as a constant when computing
the time derivative of the Hamiltonian.

It is very easy to understand that vertically polarized radiation cannot couple to
the electron: an electric field having only a y component yields a vanishing scalar
product with the velocity vector v = (vx, 0, vz) of the electron.

10.1.4.2 Helical Undulator

The helical undulator field (10.22) has a right-handed screw sense. Hence we expect
that the helical undulator radiation will be circularly polarized and make the following
Ansatz for the light wave interacting with the electrons

E(z, t) = E0
[
cos(kℓz − ωℓt)ex − sin(kℓz − ωℓt)ey

]
(10.32)

which derives from the vector potential

Aℓ(z, t) = E0

ωℓ

[
sin(kℓz − ωℓt)ex + cos(kℓz − ωℓt)ey

]
. (10.33)

A possible constant phase shift ψ0 has been omitted here. In the language of modern
particle physics the photons described by (10.32) are called right-handed and have
positive helicity (a positive projection of angular momentum onto the direction of
motion). However, in the nomenclature of optics, Eq. (10.32) describes a left cir-
cularly polarized wave.1 The vector potential of the undulator magnet is given by
Eq. (10.21):

Au(z) = B0

ku

[
cos(kuz)ex + sin(kuz)ey

]
.

We can again use Eq. (10.14) to compute the time derivative of the electron energy.
The velocities are taken from Eq. (10.23).

1 In particle physics one looks along the direction of motion of the photon. In that case the electric
vector at a fixed spatial position rotates in clockwise direction. In optics the convention is such that
the observer is facing into the oncoming wave, and then the field vector at a fixed spatial position
rotates counterclockwise, see Ref. [4].
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dW
dt

= ∂H
∂t

= −e v · E = −evx(z)Ex(z, t) − evy(z)Ey(z, t)

= −ecKE0

γ
[cos(kuz) cos(kℓz − ωℓt) − sin(kuz) sin(kℓz − ωℓt)] .

It follows
dW
dt

= −ecKE0

γ
cos ψ (10.34)

with the ponderomotive phase ψ = (kℓ + ku)z − ωℓt defined in Chap. 3. Sustained
energy transfer from the electron to the light wave is obtained if the ponderomotive
phase remains constant during the motion through the undulator, the optimum value
being ψ = 0. From the condition of a stationary phase

ψ̇ = 0 ⇒ (kℓ + ku)vz − kℓc = 0

we compute the wavelength of helical undulator radiation, using Eq. (10.26):

λℓ =
λu

2γ2

(
1 + K2

)
. (10.35)

What happens if we choose the wrong polarization, i.e. right circular polarization
(negative helicity)? The field is

E(z, t) = E0
[
cos(kℓz − ωℓt)ex + sin(kℓz − ωℓt)ey

]
,

and one obtains for the time derivative of the electron energy

dW
dt

= −ecKE0

γ
[cos(kuz) cos(kℓz − ωℓt)+ sin(kuz) sin(kℓz − ωℓt)]

= −ecKE0

γ
cos χ. (10.36)

In this case the rapidly varying phase χ = (kℓ−ku)z−ωℓ t appears which was defined
in Chap. 3. As a consequence, the time derivative of the electron energy averages
to zero over half an undulator period which means that no energy transfer happens
between electron and light wave. In other words: radiation with the wrong circular
polarization will not be emitted. From this observation it is obvious that a helical
undulator cannot produce linearly polarized radiation either as this is a superposition
of left-hand and right-hand circularly polarized waves with 90◦ relative phase shift.
Furthermore we see that it is possible to seed an FEL equipped with a helical undulator
with linearly polarized light: a linearly polarized wave can be decomposed into two
counter-rotating circularly polarized waves, but only the wave with the correct sense
of rotation will be amplified in the FEL. The output light will of course be circularly
polarized.
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10.2 Supplements to Chapter 4

10.2.1 Derivation of the Third-Order Equation Using
the Vlasov Equation

In a one-dimensional description of particle motion in an accelerator we have to
specify two quantities for each particle in a bunch: (1) its longitudinal position ζ
inside the bunch, and (2) its relative deviation η from the reference energy. These
two quantities, which are conjugate variables in a Hamiltonian description of the FEL,
define the so-called longitudinal phase space. The ponderomotive phase is related
to the longitudinal coordinate of an electron inside the bunch, compare Eq. (3.12):

ψ = 2πζ

λℓ
− π

2
. (10.37)

Furthermore, it is customary in accelerator physics to replace the independent vari-
able time t by the path length z along the nominal beam orbit. The equations of the
one-dimensional high-gain FEL can therefore be written in terms of the variables
(ψ, η, z), where z plays the role of a quasi-time.

The ensemble of particles can be described by a distribution function F(ψ, η, z) in
the (ψ, η) phase space. The number of electrons in the phase-space volume element
dψdη is

dne = ne F(ψ, η, z)dψ dη, (10.38)

where ne is the particle density in the bunch, the number of particles per unit volume.
The distribution function is normalized to unity:

1
2π

2π∫

0

(∫
F(ψ, η, z) dη

)
dψ = 1. (10.39)

A microscopic expression for the distribution function is presented in Ref. [5].
From our assumption (4.3) of a periodically modulated charge distribution follows

that there will be a periodic term in the distribution function, too. Hence we write in
complex notation

F(ψ, η, z) = ℜ
{

F̃(ψ, η, z)
}
= F0(η)+ ℜ

{
f̃1(η, z) · eiψ

}
. (10.40)

The modulation amplitude in Eq. (10.40) must remain small to justify the approxima-
tions which will be made in the derivation of the third-order equation:

∣∣∣f̃1(η, z)
∣∣∣ ≪

|F0(η)|. An example for a periodically modulated particle distribution function is
presented in Fig. 10.2.
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ψ

η

ψ

η

Fig. 10.2 Illustration of a periodically modulated charge density. The particle distribution function
is plotted as a function of the ponderomotive phase ψ and the relative energy deviation from
resonance η = (W − Wr)/Wr . Note that in the beginning the periodic modulation is mainly an
energy modulation which results from the energy exchange between the electrons and the periodic
light wave. The relation between the particle distribution function and the charge density can be
found in Eq. (10.43).

For the unperturbed term F0 we assume a narrow distribution in the relative energy
deviation, for example a Gaussian

F0(η) =
1√

2π ση
exp

(

− (η − η0)
2

2σ2
η

)

with η0 = W0 − Wr

Wr
. (10.41)

Note that in general the mean value W0 of the electron energy may differ slightly from
the resonance energy Wr which is defined by the wavelength λℓ of the incident light
wave according to Eq. (3.13). The rms spread ση is usually small, ση ≤ 10−4 . . . 10−3

for the electron beam in a linac-driven FEL. Hence the relative energy deviation is
restricted to a narrow range |η| < δ, where 0 < δ ≪ 1 is chosen such that F0(η)
vanishes identically for all |η| ≥ δ. The Gaussian (10.41) must be truncated at
η = ± δ to fulfill this condition.

The integral over the unmodulated part of the distribution function yields

δ∫

−δ

F0(η)dη = 1. (10.42)

The relation between distribution function and charge density or current density is

ρ̃1(z) = ρ0

δ∫

−δ

f̃1(η, z)dη, j̃1(z) = j0

δ∫

−δ

f̃1(η, z)dη. (10.43)
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10.2.1.1 Vlasov Equation

According to the Liouville Theorem of Hamiltonian mechanics, the phase space vol-
ume occupied by an ensemble of particles is conserved along the particle trajectory.
This leads to a generalized continuity equation which is called the Vlasov equation
(see for example [6, 7])

dF
dz

= ∂F
∂z

+ ∂F
∂ψ

dψ

dz
+ ∂F

∂η

dη

dz
= 0. (10.44)

Note that ψ, η and z are real variables. Inserting Eq. (10.40) one obtains

dF
dz

= ℜ
{(

∂ f̃1
∂z

+ i f̃1
dψ

dz

)

eiψ

}

+
(

dF0

dη
+ ℜ

{
∂ f̃1
∂η

eiψ

})
dη

dz
= 0.

The derivative of f̃1 with respect to η will be neglected here since we assume a small
modulation amplitude,

∣∣∣f̃1(z, η)
∣∣∣ ≪ |F0(η)|. Using the pendulum equations (4.23)

and (4.24) we obtain

ℜ
{(

∂ f̃1
∂z

+ i 2kuηf̃1 − e
mec2γr

dF0

dη

[
K̂

2γr
Ẽx + Ẽz

])

eiψ

}

= 0. (10.45)

This equation holds for any value of ψ. As a consequence, the expression in round
brackets must vanish:

∂ f̃1
∂z

+ i 2kuηf̃1 − e
mec2γr

dF0

dη

[
K̂

2γr
Ẽx + Ẽz

]
= 0. (10.46)

The proof is straightforward. For ψ = 0, the phase factor is exp(iψ) = 1, hence
from Eq. (10.45) follows that the real part of (10.46) is zero. For ψ = π/2 one has
exp(iψ) = i, so the imaginary part of (10.46) must vanish as well.

The task is now to find a function f̃1 obeying Eq. (10.46). To this end we replace
the longitudinal space charge field by the derivative of the transverse field according
to Eq. (4.22) and construct a solution of the following equation

∂ f̃1
∂z

+ i 2kuηf̃1 = e
mec2γr

[. . .]
dF0

dη
(10.47)

with

[. . .] =
[

K̂
2γr

Ẽx + Ẽz

]
=

[
K̂

2γr
Ẽx + i

4γrc

ωℓK̂

dẼx

dz

]

. (10.48)

The differential equation (10.47) is of the type
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y′ + iαy(z) = f (z)

with the general solution

y(z) =
z∫

0

f (s) exp(−iα · (z − s))ds + c1 exp(−iα z).

Here c1 is an arbitrary constant. Since the beam is unmodulated at the entrance to
the undulator we request f̃1(0) = 0 and thus c1 = 0, so we obtain

f̃1(η, z) = e
mec2γr

z∫

0

[. . .]
dF0

dη
exp [−i 2kuη · (z − s)] ds. (10.49)

10.2.1.2 Integro-Differential Equation

The time evolution of the radiation field amplitude is described by the differential
equation (4.21) which in combination with Eq. (10.43) yields

dẼx

dz
= −µ0cK̂

4γr
j̃1 = µ0c2K̂nee

4γr

δ∫

−δ

f̃1(η, z)dη. (10.50)

Inserting f̃1(η, z) from (10.49) we get

dẼx

dz
= µ0K̂nee2

4meγ2
r

z∫

0

⎧
⎨

⎩[. . .]

δ∫

−δ

dF0

dη
exp(−i2kuη · (z − s))dη

⎫
⎬

⎭ ds.

Integrating by parts over η, using F0(±δ) = 0, yields an integro-differential equation

dẼx

dz
= i ku

µ0K̂nee2

2meγ2
r

z∫

0

[
K̂

2γr
Ẽx + i

4γrc

ωℓK̂

dẼx

dz

]

h(z − s)ds (10.51)

with h(z − s) =
δ∫

−δ

(z − s) exp [−i2kuη · (z − s)] F0(η)dη.

The two-dimensional problem in the variables (η, z) has now been reduced to a
one-dimensional problem in z.
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10.2.1.3 Third-Order Equation

The integro-differential equation (10.51) can be simplified if we assume a mono-
energetic beam of energy W = W0. Then

h(z − s) = (z − s) exp [−i 2kuη0 (z − s)] with η0 = (W0 − Wr)/Wr

and Eq. (10.51) becomes

dẼx

dz
= i ku

µ0K̂nee2

2meγ2
r

z∫

0

[. . .] (z − s) exp [−i 2kuη0 (z − s)] ds. (10.52)

In the following we write η instead of η0, dropping the subscript. Equation (10.52)
is of the type

y(z) =
z∫

0

f (s)(z − s) exp[−iα (z − s)]ds.

It is easy to verify that the function y(z) fulfills the differential equation

y′′ + 2iαy′ − α2y = f .

Applied to Eq. (10.52) this yields

Ẽ′′′
x + 4ikuηẼ′′

x − 4k2
uη2Ẽ′

x = i ku
µ0K̂nee2

2meγ2
r

[
K̂

2γr
Ẽx + i

4γrc

ωℓK̂
Ẽ′

x

]
.

By ordering terms we finally obtain the well-known third-order differential equation
of the high-gain FEL

d3Ẽx(z)
dz3 + 4ikuη

d2Ẽx(z)
dz2 +

(
k2

p − 4k2
uη2

) dẼx(z)
dz

− iΓ 3Ẽx(z) = 0. (10.53)

10.2.2 Low-Gain Limit of the High-Gain FEL Theory

In this section we want to demonstrate that the low-gain FEL theory and the Madey
theorem can be obtained from the high-gain FEL theory if the undulator magnet is
short enough. To this end we start from Eq. (10.52)

dẼx

dz
= i ku

µ0K̂nee2

2meγ2
r

z∫

0

[. . .] (z − s) exp [−i 2kuη(z − s)] ds
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with

[. . .] =
[

K̂
2γr

Ẽx + i
4γrc

ωℓK̂

dẼx

dz

]

.

In a short undulator the square bracket can be simplified: the electric field can be
considered as roughly constant, Ẽx ≈ E0, and its derivative can be neglected in the
square bracket. We then get

dẼx

dz
= i ku

µ0K̂2nee2E0

4meγ3
r

z∫

0

(z − s) exp [−i 2kuη(z − s)] ds

= i Γ 3E0

z∫

0

(z − s) exp [−i 2kuη(z − s)] ds. (10.54)

The definite integral yields

I(z) ≡
z∫

0

(z − s) exp [−i 2kuη(z − s)] ds = (1 + i 2kuηz) exp(−i 2kuηz) − 1
(2kuη)2 .

The complex field at the end of an undulator of length Lu is

Ẽx(Lu) = E0 + i Γ 3E0

Lu∫

0

I(z)dz ≡ E0(1 + A(Lu)),

where A(Lu) is defined as

A(Lu) = − i Γ 3

(2kuη)2

{
Lu +

i
kuη

+
(

Lu − i
kuη

)
exp(−i 2kuηLu)

}
.

The absolute square of the field at z = Lu is

∣∣∣Ẽx(Lu)
∣∣∣
2
= E2

0

(
1 + 2ℜ[A(Lu)] + (ℜ[A(Lu)])2 + (ℑ[A(Lu)])2

)
.

The quadratic terms can be neglected in a short undulator, and hence the gain function
becomes
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G =
∣∣∣∣∣
Ẽx(Lu)

E0

∣∣∣∣∣

2

− 1 ≈ 2 ℜ[A(Lu)]

= 2 Γ 3

(2kuη)2

{
1

kuη
− cos(2kuηLu)

kuη
− Lu sin(2kuηLu)

}
.

Introducing the variable ξ = kuηLu the gain function can be written as

G(η) = −Γ 3L3
u

2
d
dξ

(
sin2 ξ

ξ2

)
with ξ = ξ(η) = kuLuη = 2πNuη. (10.55)

This is in perfect agreement with the Madey theorem as stated in Eq. (3.26).

10.2.3 Beam Energy Loss During the FEL Process

In Chap. 4 we have neglected the energy loss of the electron beam which is caused
by the continuous energy transfer to the light wave during the FEL gain process. The
coupled first-order equations (4.31) are well suited to account for this effect. We take
Eq. (4.31b) and average it over the N particles in the FEL bucket:

〈
dηn

dz

〉
= − e

mec2γr
ℜ

{(
K̂Ẽx

2γr
− iµ0c2

ωℓ
· j̃1

)

⟨ exp(iψn) ⟩
}

.

From Eq. (4.31c) follows

⟨ exp(iψn) ⟩ =
1
N

N∑

n=1

exp(iψn) =
j̃∗1

2 j0
.

Inserting this expression into the previous equation yields

d⟨η⟩
dz

= − e K̂
4 mec2γ2

r j0
ℜ

{
Ẽx(z) j̃∗1(z)

}
+ eµ0

2 meγr j0ωℓ
ℜ

{
i j̃1(z)j̃∗1(z)

}
.

The second term vanishes since i j̃1(z)j̃∗1(z) = i |j̃1(z)|2 is purely imaginary. This
mathematical result has a deep physical significance: The second term arises from
the internal space charge forces among the electrons inside the bunch, and these
forces leave the mean electron energy ⟨W⟩ = (1+ ⟨η⟩)Wr invariant. Hence we arrive
at the equation

d⟨η⟩
dz

= − e K̂
4 mec2γ2

r j0
ℜ

{
Ẽx(z) j̃∗1(z)

}
. (10.56)
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This equation shows that the differential energy loss of the electron beam grows expo-
nentially along the undulator axis and eventually goes into saturation. The reasoning
is as follows. Below saturation, the field Ẽx(z) grows as exp(z/(2Lg0)), and the same
is true for dẼx/dz. Then Eqs. (10.43) and (10.50) imply that f̃1(η, z) and j̃1(z) also
grow as exp(z/(2Lg0)). Therefore the differential energy loss grows as exp(z/Lg0),
just like the FEL power. This is exactly what one would expect intuitively.

When the FEL power goes into saturation, also the termℜ
{

Ẽx(z) j̃∗1(z)
}

approaches
its maximum value.

10.2.4 Non-periodic First-Order Equations

Our goal is to generalize the first-order equations in such a way that non-periodic
processes in the FEL can be handled. Examples are the SASE mechanism where the
initial particle distribution is random, FEL seeding with a superposition of harmonic
waves of different frequencies, non-uniform charge density profiles in the electron
bunches, effects at the head or tail of the electron bunch, or slippage between the
electrons and the light wave.

In the periodic model, outlined in Sect. 4.6, the slowly varying amplitudes depend
only on the position z in the undulator. Field and current density have been written as

Ẽx(z, t) = Ẽx(z) exp[i kℓz − i ωℓt],
j̃z(ψ, z) = j0 + j̃1(z) exp [i (kℓ + ku)z − i ωℓt] .

In the non-periodic generalization the current density inside the electron bunch
depends in addition on our previously defined internal bunch coordinate

ζ = z − β̄ c t = z − v̄zt

and the electric field depends on a corresponding coordinate u inside the FEL pulse

u = z − c t =
(

1 − c
v̄z

)
z + c

v̄z
ζ.

Hence the Ansatz is made

Ẽx(z, t) = Ê(z, u) exp[i kℓz − i ωℓt], (10.57)

j̃z(z, t) = j0(ζ)+ ĵ1(z, ζ) exp[i (kℓ + ku)z − i ωℓt]. (10.58)

The complex field amplitude is now denoted with Ê(z, u), and the subscript x is
dropped for simplicity. These expressions are substituted into the wave equation (4.9).
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[
∂2

∂z2 − 1
c2

∂2

∂t2

]
Ẽx(z, t) = µ0

∂ j̃x
∂t

. (10.59)

Then we obtain

∂2Ẽx(z, t)
∂z2 =

[
∂2

∂z2 + 2
∂2

∂z∂u
+ ∂2

∂u2 + 2ikℓ

(
∂

∂z
+ ∂

∂u

)
− k2

ℓ

]
Ê(z, u)

× exp[i kℓz − i ωℓt],
∂2Ẽx(z, t)

∂t2 = c2
[

∂2

∂u2 + 2ikℓ
∂

∂u
− k2

ℓ

]
Ê(z, u) exp[i kℓz − i ωℓt].

In the slowly varying amplitude (SVA) approximation, Ê(z, u) is assumed to be a
smooth and slowly varying function of z and u, so that its second derivatives can be
neglected: ∣∣∣∣

∂2Ê
∂z2

∣∣∣∣ ≪ kℓ

∣∣∣∣
∂Ê
∂z

∣∣∣∣ ,
∣∣∣∣
∂2Ê
∂z∂u

∣∣∣∣ ≪ kℓ

∣∣∣∣
∂Ê
∂z

∣∣∣∣ .

Then the left-hand side of the wave equation becomes

[
∂2

∂z2 − 1
c2

∂2

∂t2

]
Ẽx(z, t) = 2i kℓ

∂

∂z
Ê(z, u) exp[i kℓz − i ωℓt]. (10.60)

The current density j̃x appearing on the right-hand side of (10.59) is written in the
form (compare Eq. (4.15))

j̃x ≈ vx

c
j̃z =

[
j0(ζ)+ ĵ1(z, ζ) exp[i (kℓ + ku)z − i ωℓt]

] K
γ

cos(kuz).

The stimulation by the shape term j0(ζ) is far away from the FEL resonance, and
hence this term can be dropped when computing the time derivative:

∂ j̃x
∂t

= −
[
v̄z

∂̂j1
∂ζ

+ i ωℓ̂j1(z, ζ)
]

exp[i (kℓ + ku)z − i ωℓt] K
γ

cos(kuz).

In the SVA approximation

v̄z

∣∣∣∣
∂̂j1
∂ζ

∣∣∣∣ ≪
∣∣ωℓ̂j1(z, ζ)

∣∣ ,

so the wave equation (10.59) reduces to

∂

∂z
Ê(z, u) = −µ0cK

2γ
ĵ1(z, ζ) exp(ikuz) cos(kuz).
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The average value of exp(i kuz) cos(kuz) over one undulator period is 1/2. Replac-
ing K by K̂ to take the longitudinal oscillation into account we finally obtain the
generalization of Eq. (4.31d):

∂

∂z
Ê(z, u) = −µ0cK̂

4γr
ĵ1(z, ζ). (10.61)

The microscopic expression for the current density is

jz =
Qb v̄z

NtAb

Nt∑

n=1

δ(ζ − ζn(z)),

where Qb = −Nt e is the charge of the bunch, Ab is the cross section, and Nt is the
total number of electrons in the bunch. Since the present FEL codes work with a far
smaller number N of test particles, jz must be approximated by smooth functions
j0(ζ) and ĵ1(z, ζ) that vary slowly in the z coordinate (compared to the undulator
period λu) and in the ζ coordinate (compared to the FEL wavelength λℓ). Indeed,
the conversion of the particle positions ζn to smooth functions is a delicate and
sensitive part of FEL simulations using macroparticle descriptions. Pseudo-random
distributions can be used yielding the same statistical fluctuations that are present in
the real electron beam.

In most FEL codes locally periodic conditions are assumed. The bunch is sub-
divided into slices of length λℓ which are similar the FEL buckets. Within each
slice periodic conditions are assumed. The local amplitude of the first harmonic is
written as

ĵ1(z, cm) ≈ j0(cm)
2

Nm

∑

n∈Im

exp(−i kℓζn), (10.62)

where cm = m λℓ is the center of slice m, Nm is the number of particles in that slice,
and Im is the index range.

We know from Sect. 5.6 that not all particles stay in their bucket during the FEL
gain process but many of them move into the next bucket. In a simulation program this
is accounted for by replacing particles leaving a slice on one side by corresponding
particles entering the slice from the other side. Further details are beyond the scope
of this book. The non-periodic form of the coupled equations is
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dψn

dz
= 2kuηn, n = 1, . . . ,N, (10.63a)

dηn

dz
= − e

mec2γr
ℜ

{(
K̂ Ê(z, un)

2γr
− iµ0c2 ĵ1(z, ζn)

ωℓ

)
eiψn

}
, (10.63b)

ĵ1(z, cm) = j0(cm)
2

Nm

∑

n∈Im

exp(−i kℓζn), cm = m λℓ, (10.63c)

∂Ê(z, u)
∂z

= −µ0cK̂
4γr

ĵ1(z, ζ). (10.63d)

Here ζn = (ψn + π/2)λℓ/(2π) and un ≈ ζn − (1 − β̄)z. In these equations, N is the
total number of test particles per bunch and not the number of test particles per slice
as in the periodic case.
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10.3 Gaussian Modes of Laser Beams

Gaussian beam modes are characteristic of the output of lasers. They are also well
suited to describe the beam in a free-electron laser. In this section we follow essen-
tially the treatments in Refs. [8] and [9].

10.3.1 Fundamental Gaussian Mode

Laser beams are coherent electromagnetic radiation and obey the Maxwell equations.
In a medium with refractive index n the electric field vector satisfies the wave equation

∇2E − n2

c2

∂2E
∂t2 = 0, (10.64)

where E(x, y, z, t) can be any Cartesian component of E. We restrict ourselves to
homogeneous media (n = const) or vacuum (n = 1). In the laser literature often
quadratic index media are considered, see e.g. [8, 9]. We look for a cylindrically
symmetric solution of the wave equation which depends only on r =

√
x2 + y2, z,

and t, but not on the azimuthal angle. Writing

E(x, y, z, t) = f (r, z) exp(i kz − i ωt) with k = nω/c

we obtain the equation
∂2f
∂r2 + 1

r
∂f
∂r

+ 2 i k
∂f
∂z

= 0. (10.65)

In practice the field amplitude varies slowly with z, hence the second derivative
∂2f /∂z2 can be neglected in comparison with 2 i k ∂f /∂z (SVA approximation). The
simplest solution has no zeros in radial direction. It is convention to write it in the
form

f (r, z) = exp
[

iP(z)+ ikr2

2q(z)

]

with two complex functions P(z) and q(z). Substituting this into Eq. (10.65) we
obtain

−
(

k
q

)2

r2 + 2i
(

k
q

)
− 2kP′ − k2r2

(
1
q

)′
= 0,

where the prime indicates differentiation with respect to z. This equation holds for
all r, so the coefficients of different powers of r must vanish:

(
1
q

)2

+
(

1
q

)′
= 0, P′ = i

q
. (10.66)
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The solutions are

q(z) = z + q0 , P(z) = i ln
(

1 + z
q0

)
(10.67)

with a complex constant q0. The amplitude function becomes

f (r, z) = exp
[
− ln

(
1 + z

q0

)
+ i k r2

2(q0 + z)

]
. (10.68)

The amplitude must vanish in the limit r → ∞ for any value of z. At z = 0 this is
realized if the constant q0 is a negative imaginary number. It is expressed in the form

q0 = −i zR with zR = k w2
0

2
= πw2

0

λ/n
. (10.69)

Here zR is the so-called Rayleigh length, a characteristic length for diffraction, and
λ = 2πc/ω is the wavelength in vacuum.

The laser beam is assumed to have a waist of width w0 at z = 0. Furthermore the
following quantities are defined

w(z) = w0

√
1 + (z/zR)2, R(z) = z

(
1 + (zR/z)2

)
. (10.70)

We will see below that the beam width at position z is described by w(z) while R(z)
is the radius of curvature of the wave front. Then

1
q(z)

= 1
R(z)

+ i
λ/n

πw2(z)
. (10.71)

With these quantities the first exponential term in the amplitude function (10.68) can
be written in the form

exp [− ln (1 + i z/zR)] =
w0

w(z)
exp(−i χ(z))

with the so-called Gouy phase

χ(z) = arctan(z/zR). (10.72)

We have used ln(a + i b) = ln(
√

a2 + b2)+ i arctan(b/a). The second exponential
term in Eq. (10.68) becomes after separating real and imaginary parts

exp
[

i k r2

2q(z)

]
= exp

[
− r2

w2(z)

]
exp

[
i k r2

2R(z)

]
.

The electric field of a horizontally polarized laser wave is
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Fig. 10.3 The beam envelope ±w(z)/w0 in the vicinity of a waist. The dotted line indicates the
divergence angle θdiv. The spherical wavefronts at z = ±zR and z = ±2 zR are sketched.

Ex(r, z, t) = E0
w0

w(z)
exp

[
− r2

w2(z)

]
exp [ikz − iχ(z) − i ωt] exp

[
ikr2

2R(z)

]

= E0 exp
(−(r/w0)

2

1 + i z/zR

)
exp(ikz − iωt)

1 + i z/zR
. (10.73)

There are many differences to a plane wave:

• The field amplitude drops to 1/e of its peak value at a radius r = w(z). The smallest
width w0 is obtained at the waist at z = 0.

• The phase velocity is different from that of a plane wave, which is vph = ω/k =
c/n. The presence of the Gouy phase changes the phase velocity of the Gaussian
laser wave near a beam waist.

• The phase factor exp
[
i k r2/(2R(z))

]
implies that the wave fronts are curved and

of nearly spherical shape.

The beam is sketched in Fig. 10.3. The radius of curvature becomes infinite at the
waste position z = 0 and assumes its minimum value of Rmin = 2zR at z = zR.
Due to the divergence of the beam the light rays are not exactly parallel to the z
axis. As a consequence the electric field has a small z component. This follows also
from the first Maxwell equation ∇ · E = 0: the radial derivative is non-zero, hence
a longitudinal field component Ez must be present.

The divergence angle of the beam emerging from the waist is

θdiv ≈ tan θdiv = λ

n π w0
. (10.74)

The product of beam width and divergence is for a beam in vacuum

w0 · θdiv = λ

π
. (10.75)
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The intensity of the laser beam is quadratic in the electric field and thus proportional
to exp

[
−2r2/w2(z)

]
. In terms of Gaussian variances one gets at z = 0

σx = w0/2 , σθ = θdiv/2.

From (10.75) follows then the fundamental relation between laser beam width and
beam divergence

σx · σθ = λ

4π
. (10.76)

In accelerator terminology this product is called the beam emittance.

10.3.2 Higher-Order Gaussian Beam Modes

The fundamental Gaussian mode depends only the distance r from the axis and
the longitudinal coordinate z. If we do not impose cylindrical symmetry the wave
equation (10.64) has solutions of the form [9]

Ex(x, y, z) = E0
w0

w(z)
Hm

(√
2 x

w(z)

)

Hn

(√
2y

w(z)

)

exp
[
−x2 + y2

w2(z)

]

× exp [ikz − i(m + n + 1)χ(z)] exp
[

ik(x2 + y2)

2R(z)

]
. (10.77)

The Hm are the Hermite polynomials. The fundamental mode is the special case
m = n = 0. The TEM00 mode is identical with the fundamental Gaussian mode
discussed in Sect. 10.3.1. This mode has its highest intensity on the axis. In an FEL
there is optimum overlap between the TEM00 mode and the electron beam, and for
this reason this mode will be strongly amplified. The higher modes with odd indices
have vanishing intensity on the axis and can generally be neglected in the high-gain
FEL while the modes with even indices have a finite size on the beam axis. In the
TEM10 mode the electric field Ex changes sign when going from positive to negative
x. This is because H1(x) is an odd function. Therefore this mode cannot couple
to an electron beam with a charge distribution that is symmetric in x. The electric
field pattern of the TEM00 and TEM10 Hermite–Gaussian laser modes is shown in
Fig. 10.4. In the TEM20 and TEM22 modes (see Fig. 10.5) the electric field Ex is an
even function of x. These modes couple to a symmetric electron beam.
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TEM10TEM00 Ex Ex

x

x

Fig. 10.4 Top : Electric field distribution of the TEM00 and TEM10 Hermite–Gaussian laser modes
in a plane transverse to the axis of propagation. Bottom : The field Ex(x, 0, 0) of the TEM00 and
TEM10 modes as a function of the horizontal coordinate x at y = z = 0.

Fig. 10.5 Electric field dis-
tribution of the TEM20 and
TEM22 Hermite–Gaussian
laser modes.

TEM20 TEM22
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10.4 Eigenmode Approach of 3D FEL

We have seen in Chap. 4 that the third-order equation for the slowly varying field
amplitude Ẽx(z) is solved by an exponential function exp(αz). For a mono-energetic
beam which is on resonance (η = (W − Wr)/Wr = 0) and for negligible space
charge (kp = 0), the three eigenvalues are solutions of the simple cubic equation

α3
j = i Γ 3.

In this section we consider more general cases. For a beam energy different from
the resonance energy (W ̸= Wr , η ̸= 0) and with space charge present (kp ̸= 0) the
third-order equation is still applicable, and for reasonable values of these parameters
there exists one eigenvalue α1 with positive real part leading to exponential growth.
However, the third-order equation is not applicable if beam energy spread is present
(ση > 0). In this case the linear integro-differential equation (10.51) can be used
which will usually possess an eigenvalue with ℜ(α1) > 0, provided ση is small
enough to preserve the main features of the solutions. The eigenvalue leading to
exponential growth will be determined in the following sections. First the general
procedure is described, resulting in Eq. (10.88), and then it is applied to the one-
dimensional FEL and a simplified version of the three-dimensional FEL. We will
show that in the 1D case the two dimensionless quantities ση/ ρFEL and kp/Γ have a
significant influence on the FEL gain. In the 3D case the relative size of the product
Lg0λℓ and the beam cross section Ab play a role in addition.

10.4.1 General Procedure

In this section we generalize the method for determining the eigenvalues αj to the
3D case. To this end the full three-dimensional wave equation for the electric field
of a horizontally polarized light wave has to be considered

[
∇2 − 1

c2

∂2

∂t2

]
Ex(x, y, z, t) = µ0

∂jx
∂t

+ 1
ε0

∂ρ

∂x
= 1

ε0

(
1
c2

∂jx
∂t

+ ∂ρ

∂x

)
.

The second term on the right-hand side can be neglected for two reasons:

(1) Its magnitude is usually small compared to that of the first term, for example
less than 5 % at FLASH.

(2) More importantly, this term has a phase slippage exp(ikuz) against the FEL wave
and its contribution to the growth rate of the field averages out over one undulator
period. This can be seen from the equation

∂ρ

∂x
= ∂ρ̃1

∂x
exp(iψ) = ∂ρ̃1

∂x
exp(ikℓz − iωℓt) exp(ikuz).
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The phase of ∂ρ̃1/∂x varies slowly (SVA approximation) and can be taken as
constant over one undulator period.

In the present eigenmode approach we neglect betatron oscillations. The trans-
verse offset r⊥ = (x, y) appears as an independent coordinate in the distribution
function but the derivatives with respect to x and y will be dropped in the Vlasov
equation. For the transverse electric field the Ansatz is made

Ẽx(r⊥, z, t) = Ẽx(r⊥, z) exp[i(kℓz − ωℓt)] with r⊥ = (x, y) . (10.78)

Applying the slowly varying amplitude approximation and expressing jx in terms of
j̃1, this equation assumes the form

[
∇2

⊥ + 2 i kℓ
∂

∂z

]
Ẽx = − i kℓµ0c K̂

2γr
j̃1(r⊥, z) with ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 . (10.79)

This is the three-dimensional generalization of Eq. (4.21).
In the 3D case the distribution function acquires a dependency on the transverse

coordinates. To keep the relation to the 1D model, an equivalent beam cross section Ab
is chosen which is used for normalization purposes but has no influence on absolute
(unnormalized) quantities. We set

Ab = I0

max(|j0|)
,

where I0 is the magnitude of the dc beam current and max(|j0|) the maximum value
of the dc current density. For a round beam with constant charge density we get
Ab = πr2

b , and for a Gaussian beam with σx = σy = σr one gets Ab = 2πσ2
r . The

dc beam current is I0 = neAb e c.
Generalizing Eq. (10.40) the particle distribution function is written as

F(r⊥,ψ, η, z) = F0(r⊥, η)+ ℜ
{

f̃1(r⊥, η, z) · eiψ
}
. (10.80)

The dc current density and the modulated current density are according to Eq. (10.43)

j0(r⊥) = −I0

δ∫

−δ

F0(r⊥, η) dη, j̃1(r⊥, z) = −I0

δ∫

−δ

f̃1(r⊥, η, z) dη. (10.81)

Remember that I0 is the absolute magnitude of the dc current and thus positive,
while j0 is negative since the electron charge is qe = −e. The modulated distribution
function obeys an equation similar to Eq. (10.47)

(∂z + i2kuη)f̃1(r⊥, η, z) = e
mec2γr

[
K̂

2γr
Ẽx(r⊥, z)+ Ẽz(r⊥, z)

]
dF0

dη
. (10.82)
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The longitudinal space charge field Ẽz can be computed from the modulated charge
density using the Maxwell equation ∇ · E = ρ/ε0. Neglecting the derivatives with
respect to the transverse coordinates x and y, and using the SVA approximation one
finds as a generalization of Eq. (4.18)

Ẽz(r⊥, z) = − iµ0c
kℓ

j̃1(r⊥, z) = iµ0c I0

kℓ

∫
f̃1(r⊥, η, z) dη. (10.83)

It is the spirit of the linear eigenmode analysis to assume that Ẽx and f̃1 depend
exponentially on z :

Ẽx(r⊥, z) = A(r⊥)eαz, f̃1(r⊥, η, z) = B(r⊥, η)eαz. (10.84)

Substitution in Eqs. (10.79) and (10.82) yields the equations

[
∇2

⊥ + 2 i kℓα
]

A(r⊥) =
i kℓµ0c I0K̂

2γr

∫
B(r⊥, η) dη, (10.85)

[α + 2 i kuη] B(r⊥, η) =
e

mec2γr

[
K̂

2γr
A(r⊥)+

iµ0c I0

kℓ

∫
B(r⊥, η) dη

]
dF0

dη
.

(10.86)
The quantities to be determined are the eigenvalues αj and the coefficient functions
A(r⊥) and B(r⊥, η). Note that the integral

∫
B(r⊥, η) dη =

δ∫

−δ

B(r⊥, η) dη

depends only on the transverse coordinates r⊥ but not on the fractional energy devi-
ation η. This allows us to divide Eq. (10.86) by [α + 2 i kuη] to obtain B(r⊥, η), and
then to integrate over η.

δ∫

−δ

B(r⊥, η) dη = e
mec2γr

⎡

⎣ K̂
2γr

A(r⊥)+
iµ0c I0

kℓ

δ∫

−δ

B(r⊥, η) dη

⎤

⎦

×
δ∫

−δ

1
[α + 2 i kuη]

dF0

dη
dη.

(For the definition of the integration limits ±δ see Eq. (10.42)).
Now we make the assumption that there is no correlation between energy spread

and transverse offset in the unmodulated part F0 of the distribution function so that
F0 can be factorized
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F0(r⊥, η) = G(r⊥)H(η). (10.87)

Integrating by parts and using H(±δ) = 0 we obtain

∫
B(r⊥, η)dη = i 2ku e

mec2γr

[
K̂

2γr
A(r⊥)+

iµ0cI0

kℓ

∫
B(r⊥, η)dη

]
G(r⊥)C(α)

=
[

i kue K̂
mec2γ2

r
A(r⊥) − k2

pAb

∫
B(r⊥, η)dη

]
G(r⊥)C(α)

with the abbreviations

C(α) =
∫

H(η)

(α + i2kuη)2 dη, k2
p = 2kuµ0e

mecγrkℓ

I0

Ab
.

Then we can express
∫

B(r⊥, η)dη in terms of A(r⊥):

∫
B(r⊥, η)dη = ikueK̂

mec2γ2
r

CAbG
1 + k2

pCAbG
A(r⊥).

When this is substituted in Eq. (10.85) we get an implicit equation for the determi-
nation of the eigenvalues αj:

[
∇2

⊥ + 2ikℓα
]

A(r⊥) = (2ikℓ) · iΓ 3 C(α)AbG(r⊥)
1 + k2

pC(α)AbG(r⊥)
A(r⊥). (10.88)

Note that the gain parameter Γ and the space charge parameter kp are defined in the
same way as in the one-dimensional theory, see Eq. (4.44).

10.4.2 One-Dimensional Case

In the 1D case the function A(r⊥) ≡ A is a constant and the operator ∇2
⊥ can be

omitted from Eq. (10.88). Moreover, we can replace H(η) by F0(η) and AbG(r⊥)
by 1. Dividing Eq. (10.88) by A and ordering terms we obtain the following eigenvalue
equation

α =
[
iΓ 3 − k2

pα
] δ∫

−δ

F0(η)

(α + i2kuη)2 dη. (10.89)

Note that this eigenvalue equation is valid for an arbitrary initial energy distribution
F0(η) in the beam. An alternative derivation of this result is possible by inserting the
Ansatz Ẽx = A exp(αz) into Eq. (10.51).

The power growth in the exponential regime is determined by the real part of α1:
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P(z) ∝ exp(2ℜ(α1)z).

The growth rate depends on the mean relative energy offset

⟨η⟩ =
δ∫

−δ

ηF0(η)dη.

The maximum value of the function 2ℜ(α1(η)) yields the fastest power rise and is
thus directly related to the power gain length. It is therefore meaningful to define the
power gain length by the equation

Lg =
1

max{2ℜ(α1(η))}
. (10.90)

We can convince ourselves that this expression reduces to the 1D power gain length
Lg0 for a beam with η = 0 and kp = 0. In that case we have

α1 = (i +
√

3)Γ /2 ⇒ 1
2ℜ(α1)

= 1√
3Γ

= Lg0.

The above discussion shows that it is useful to introduce a normalized growth rate
function

fgr(η) = 2ℜ(α1(η))Lg0.

The maximum value of this function is identical with the ratio Lg0/Lg .

For the special case of a mono-energetic beam of energy W , Eq. (10.89) becomes

α3 + i4kuηα2 + (k2
p − 4k2

uη2)α − iΓ 3 = 0. (10.91)

Alternatively, this result is obtained by inserting the Ansatz Ẽx = A exp(αz) into Eq.
(10.53). The three roots αj can in principle be computed analytically, although this
may be cumbersome. Often a numerical computation is easier.

An analytical approach is reasonably straightforward for the case kp = 0. Equation
(10.91) can be transformed into a normalized algebraic equation

a (a + ib)2 − i = 0 with a = α

Γ
and b = η

ρFEL

. (10.92)

The three solutions of this cubic equation are
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Fig. 10.6 The real part of the first and second eigenvalue, multiplied with 2Lg0, is plotted as a
function of η/ρFEL , the relative energy deviation divided by the FEL parameter. Note that ℜ(α1)
(continuous red curve) is positive, corresponding to exponential growth of the eigensolution V1(z) =
exp(α1z). Note that the real part vanishes above η ≈ 1.88ρFEL . This means that the exponential
growth stops if the electron energy W exceeds the resonant energy Wr by more than $W =
1.88ρFEL Wr . The real part of α2 (dashed blue curve) is always negative, hence the eigenfunction
V2(z) drops exponentially. Finally, ℜ(α3) ≡ 0, so V3(z) oscillates along the undulator axis.

a1 = 1
6

(
u − 4b2

u
− i4b

)
, (10.93)

a2 = 1
6

(

−1 − i
√

3
2

u + 2

1 − i
√

3

4b2

u
− i4b

)

,

a3 = 1
6

(

−1 + i
√

3
2

u + 2

1 + i
√

3

4b2

u
− i4b

)

,

where the complex function u(b) is defined by

u = u(b) = 3
√

108i − 8ib3 + 12
√

12b3 − 81. (10.94)

The eigenvalues depend on the relative energy offset η = (W − Wr)/Wr through the
function u(b) = u(η/ρFEL).

As said above, the maximum value of 2ℜ{α1(η)} is equal to the inverse power
gain length. The real parts of the eigenvalues α1 and α2, multiplied with 2Lg0, are
plotted in Fig. 10.6 as a function of η/ρFEL . The third eigenvalue α3 remains purely
imaginary even for η ̸= 0. The physical relevance of this figure is discussed in
Chap. 6. The maximum value of the growth rate function fgr(η) = 2ℜ(α1(η))Lg0
is unity which means that in this special case the power gain length Lg is indeed
identical with the 1D power gain length Lg0 of a mono-energetic beam, as expected.
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Now we make an approximation which is important for computing the FEL band-
width curve, compare Sect. 5.22. In the vicinity of the maximum at η = 0 the growth
rate function can be approximated by a parabola (second-order Taylor expansion)

fgr(η) = 2ℜ(α1(η))Lg0 ≈
(

1 − η2

9ρ2
FEL

)

. (10.95)

The imaginary part of α1 is needed when ones wants to compute the FEL group
velocity, which is done in Sect. 6.5. For this purpose the derivative of ℑ(α1) with
respect to the light frequency ω has to be calculated. For this purpose, we express
the detuning parameter η in terms of the relative frequency deviation, see Eq. (5.8):

η = η(ω) = −ω − ωr

2ωr
, b = b(ω) = − ω − ωr

2ωrρFEL

.

In the vicinity of ω = ωr the derivative of ℑ(α1) is approximately given by

dℑ(α1)

dω
≈

[
dℑ(α1)

db
db
dω

]

ω=ωr

= Γ

3ωrρFEL

= 2ku

3ωr
. (10.96)

In order to prove this relation one takes the derivative of Eq. (10.92) with respect to
b = η/ρFEL , yielding (

da
db

)

b=0
= −2i

3
,

and makes use of α1 = a1Γ and η = −(ω − ωr)/(2ωr).

10.4.3 Cylindrical Beam with Constant Charge Density

For simplicity we restrict ourselves to the case of a cylindrical beam with homo-
geneous charge density. More general beam cross sections are considered in Ref.
[10]. Cylindrical coordinates (r,φ, z) with r =

√
x2 + y2 are used and azimuthal

symmetry is assumed. Then A = A(r) and

G(r) = 1/Ab for r ≤ rb, G = 0 for r > rb,

where rb is the beam radius. Equation (10.88) reads now

A′′ + A′

r
+ i2kℓαA = −2kℓΓ

3CGAb

1 + k2
pCGAb

A. (10.97)

Defining coefficients u = u(α) and v = v(α) by
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u2 = 2kℓΓ
3C(α)

1 + k2
pC(α)

+ i2kℓα, v2 = −i2kℓα,

the differential equation for A(r) can be written as

A′′ + A′

r
+ u2A = 0 for r ≤ rb, (10.98)

A′′ + A′

r
− v2A = 0 for r > rb.

The solutions which remain finite at r = 0 and tend to zero for r → ∞ are

A(r) = c1J0(u r) for r ≤ rb, (10.99)

A(r) = c2K0(v r) for r > rb.

Here J0 and K0 are Bessel functions. The continuity of A and A′ at r = rb leads to
the system of equations

c1 · J0(urb) = c2 · K0(vrb),

c1 · u J ′
0(urb) = c2 · v K ′

0(vrb).

In order to have a nontrivial solution for the coefficients c1 and c2 the determinant
must vanish

det =
∣∣∣∣

J0(urb) K0(vrb)

uJ ′
0(urb) vK ′

0(vrb)

∣∣∣∣ = 0. (10.100)

The roots u = u(α), v = v(α) of the equation det = 0 can be found numerically.
Note that a whole sequence of roots (un, vn) of the equation det = 0 exists owing to
the oscillatory nature of the Bessel function J0(x). The first root (u1, v1) yields an
eigenvalue α1 with a larger positive real part than obtained for the higher roots. This
eigenvalue leads to the fastest growth rate and is therefore the most relevant one for
the FEL.

It is worthwhile mentioning that a sequence of eigenvalues with positive real
part is also obtained for realistic electron beam profiles. The FEL beam can then be
characterized in good approximation by the Gaussian modes described in Sect. 10.3.
The fundamental TEM00 mode has the highest growth rate and dominates in an FEL
equipped with a long undulator while higher modes such as TEM10 or TEM20 have
a lower growth rate.
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10.4.4 When is the 1D Theory Applicable?

In order to investigate the range of validity of the 1D theory the simplest model of a
cylindrical electron beam with constant charge density is too unrealistic. Instead we
consider the most important practical case that the beam has a Gaussian transverse
charge distribution. So we assume an amplitude depending on r =

√
x2 + y2 in the

form

A(r) = A0 exp
(

− r2

2σ2
r

)

which has cylindrical symmetry, i.e. σx = σy = σr . The left-hand side of Eq. (10.88)
becomes [

∇2
⊥ + 2ikℓα

]
A(r⊥). (10.101)

The magnitude of the derivative is bounded

∣∣∣∇2
⊥A(r)

∣∣∣ =
∣∣∣∣A

′′ + A′

r

∣∣∣∣ ≤ 2
σ2

r
A0.

To find the magnitude of the second term in (10.101) we insert for α the eigenvalue
α1 of the exponentially growing solution which is roughly given by Eq. (4.49):

α1 ≈ (i +
√

3)Γ /2, |α1| ≈ Γ = (
√

3Lg0)
−1.

The derivative term can be disregarded if

2
σ2

r
≪ 2kℓΓ .

It follows that the rms width of the electron beam has to obey the inequality

σr ≫ 0.52
√

Lg0λℓ.

As a rule of thumb one can say that the 1D FEL theory is adequate if the rms radial
width of the electron beam is much larger than the geometric mean of FEL wavelength
and power gain length

σr ≫
√

Lg0λℓ. (10.102)

With reasonable parameters this criterion cannot be fulfilled at ultraviolet and X-ray
free-electron lasers. The obvious conclusion is that a realistic description of these
high-gain FELs must be based on a 3D theory.
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10.5 Statistical Methods and Tools

10.5.1 Current Modulation Resulting from Shot Noise

The quantization of charge is the deeper reason why shot noise (in German Schro-
trauschen) is observed in electronic circuits. This type of noise occurs also in the
electron beam of an FEL. Our discussion of shot noise follows the lucid presentation
in Ref. [8].

10.5.1.1 Power in Time and Frequency Domain

Consider a real function A(t), for example the current through an ohmic resistor of
R = 1 %, and its Fourier transform a(ω). They are related by

A(t) = 1
2π

∞∫

−∞
a(ω) exp(−i ωt)dω, (10.103)

a(ω) =
∞∫

−∞
A(t) exp(iωt)dt. (10.104)

Since A(t) is real it follows
a(ω) = a∗(−ω). (10.105)

In practice the measurement time is restricted to a finite duration T . If A(t) is put to
zero outside the range −T/2 ≤ t ≤ T/2 we can define

aT (ω) =
T/2∫

−T/2

A(t) exp(i ωt)dt (10.106)

which will approach a(ω) for a sufficiently long time T . The average power is

P = R
1
T

T/2∫

−T/2

|A(t)|2 dt

= R
4π2T

T/2∫

−T/2

⎡

⎣
∞∫

−∞
aT (ω) exp(−iωt)dω

∞∫

−∞
a∗

T (ω
′) exp(i ω′t)dω′

⎤

⎦ dt.
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The factor R = 1 % will be dropped in the following. Interchanging the order of
integration and using the approximation

T/2∫

−T/2

exp(i [ω′ − ω]t)dt ≈
∞∫

−∞
exp(i[ω′ − ω]t)dt = 2πδ(ω′ − ω),

which is valid for large T , we obtain

P = 1
2πT

∞∫

−∞
|aT (ω)|2 dω.

This can be written as an integral over positive frequencies

P = 1
πT

∞∫

0

|aT (ω)|2 dω. (10.107)

If we define the spectral density function by

S(ω) = lim
T→∞

1
πT

|aT (ω)|2 (10.108)

then S(ω)dω is the average power within the frequency range [ω,ω + dω], and

P =
∞∫

0

S(ω)dω (10.109)

is the total power.

10.5.1.2 Shot Noise

We consider relativistic electrons (v → c ) that are randomly distributed along the
bunch and call N the number of electrons in the time interval T . Then Ṅ = N/T
is the average number of electrons per unit time. The absolute magnitude of the dc
beam current is

I0 = eṄ .

The current seen by a stationary observer has a time dependence
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I(t) = e
N∑

j=1

δ(t − tj) with t, tj ∈ [−T/2,T/2], (10.110)

where the delta functions account for the point-like nature of the electrons in the
beam. The average of I(t) over a large sample of identical systems is equal to I0:

⟨I(t)⟩ = e N/T ≡ I0. (10.111)

The Fourier transform of I(t) is

iT (ω) =
T/2∫

−T/2

I(t) exp(iωt)dt = e
N∑

j=1

exp(iωtj). (10.112)

Using Eq. (10.108) the spectral density function is computed by forming the expres-
sion

S(ω) = lim
T→∞

1
πT

|iT (ω)|2 = lim
T→∞

e2

πT

⎡

⎣N +
∑

j

∑

k ̸=j

exp(iω[tj − tk])

⎤

⎦ .

(10.113)
When we take the average over a large sample of identical systems, the double sum
in this expression vanishes because the times tj and tk are random and independent.
Moreover, N = ṄT , hence we obtain for the ensemble-averaged spectral density
function

S(ω) = eI0

π
. (10.114)

Owing to the delta-function like shape of the current pulses of single electrons this
spectral density is independent of frequency. This is a characteristic feature of white
noise: the spectral density does not depend on frequency, and for different samples
the phase of the current iT (ω) in Eq. (10.112) is uniformly distributed between 0 and
2π.

The rms current is defined by P = RI2
rms. For white noise we have to limit the

bandwidth either by a band-pass filter or—in our case—by the FEL bandwidth $ω.
Therefore

I2
rms = S(ω)$ω = eI0

π
$ω.

The spectral current density is defined by the relation

|AbJ(ω)|2 = S(ω) (10.115)

where Ab is the cross sectional area of the electron beam. The rms modulation current
density j̃1 needed in Sect. 7.1 is given by
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j̃1 =
√

I2
rms

Ab
=

√
eI0$ω

π

1
Ab

. (10.116)

10.5.2 The Gamma Distribution

In this section we study the statistical properties of SASE radiation and demonstrate
that the FEL pulse energy fluctuates according to the gamma distribution. The one-
dimensional approximation is applied, neglecting the dependencies on the transverse
coordinates and treating the electromagnetic waves as truncated plane waves. The
number of undulator periods Nu is considered as large so that the frequency ωℓ of
undulator radiation is restricted to a narrow range. We consider two limiting cases:

(1) The electron bunch is short compared to the length lcoh = cτcoh of the optical
wavetrains that are produced when the electrons emit undulator radiation. Then
the amplitudes of the wavetrains from different electrons must be added and we
obtain a single wave packet which is often called a longitudinal mode. In this
case the statistical properties of the FEL radiation energy are described by the
negative exponential distribution.

(2) The bunch length is large compared to the length lcoh of the optical wavetrains.
The wavetrains emitted by electrons of sufficient spatial separation do not over-
lap. In that case several independent wave packets will be excited, and the total
FEL pulse energy obeys the gamma distribution.

10.5.2.1 Single Wave Packet

We consider first an electron bunch which is shorter than the optical wave trains. The
electrons are randomly distributed along the bunch axis. Particle j emits a radiation
field which we write approximately as a horizontally polarized plane wave

Ej(t) = E0 exp(−iωℓt) exp(iφj).

The total electric field generated by all electrons in the bunch is

E(t) = E0 exp(−iωℓt)
∑

j

exp(iφj). (10.117)

The time-averaged field energy is

U ∝ E2
0

∣∣∣∣∣∣

∑

j

exp(iφj)

∣∣∣∣∣∣

2

. (10.118)
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Fig. 10.7 Two examples of random walks in a plane. The step size is 1, the number of steps is
N = 10. The start and end points of the walks are indicated by blue boxes.

We are interested in the statistical fluctuations of the energy. To this end, it is
useful to realize that the sum of the phase factors

∑
j exp(iφj) with random phases

can be interpreted as a random walk in the complex (x + iy) plane with unit step
size, writing the phase factors in the form exp(iφj) = xj + iyj with x2

j + y2
j = 1.

Figure 10.7 illustrates such random walks for two different sets of random phases.
After N steps, the end point of a random walk starting from the origin will have a

certain probability to be found in the intervals [x, x+dx] and [y, y+dy]. According to
the Central Limit Theorem, this probability is given by the two-dimensional Gaussian
(see e.g. [11, 12])

p(x, y)dxdy = 1
2πσ2 exp

(
−x2 + y2

2σ2

)
dxdy with 2σ2 = N . (10.119)

The distance r from the origin is r =
√

x2 + y2. Using dxdy = 2πrdr the probability
of finding the end point within a distance interval [r, r + dr] is

p(r)dr = r
σ2 exp

(
− r2

2σ2

)
dr. (10.120)

The mean square radius is

〈
r2

〉
=

∞∫

0

r2p(r)dr = 2σ2 = N . (10.121)

The dimensionless variable

ξ = r2
〈
r2

〉

obeys the simple exponential probability distribution
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p(ξ)dξ = exp (−ξ) dξ, (10.122)

where we have used dξ = (2r/
〈
r2〉)dr = (r/σ2)dr. Since the radiated field energy U

is proportional to the square of the electric field we can conclude from this equation
that the probability distribution of the radiation field energy is given by

p1(u)du = exp(−u)du with u = U1

⟨U1⟩
. (10.123)

Here the index 1 indicates the presence of one wave packet. This is the negative
exponential distribution. The most probable value of the FEL pulse energy is zero.

10.5.2.2 Many Wave Packets

When the bunch is far longer than the optical wave trains there will be more than one,
say M, wave packets. Each of them will obey the exponential distribution (10.123).
For sufficient spatial separation these M “modes” are uncorrelated and the respective
probability distributions are statistically independent. We want to prove that the
probability distribution for the total energy of M independent wave packets is given
by the expression

pM(u)du = uM−1

Γ (M)
exp(−u)du (10.124)

with the gamma function Γ (M). The proof is made by complete induction. The
statement is true for M = 1, then Eq. (10.124) is identical with (10.123). Now
assume that formula (10.124) has been proved up to some value of M. We make the
step from M to M + 1:

pM+1(u) =
u∫

0

pM(v) · p1(u − v)dv

where we make explicit use of the statistical independence of the wave packets
by taking the product of the probability distributions pM and p1. Inserting formula
(10.124) we get

pM+1(u) =
u∫

0

vM−1

Γ (M)
exp(−v) · exp(−(u − v))dv = uM

Γ (M + 1)
exp(−u).

This completes the proof.
Formula (10.124) is the gamma distribution as defined in the mathematical liter-

ature. It is not directly applicable at the SASE FEL but must be modified slightly.
From the above derivation it is obvious that the variable u is the ratio of the total FEL
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Fig. 10.8 The gamma distribution for M = 1 (negative exponential distribution) and M = 2, 4.
For the large value M = 50 the distribution is scaled down with the factor 0.35. The area under
each of the curves is equal to 1, see Eq. (10.126).

pulse energy UM (summed over all M wave packets), divided by the average energy
of a single wave packet. However, the energy contained in a single wave packet
is difficult to measure, while its average value is just the measurable total average
energy, divided by the number of wave packets:

⟨U1⟩ = ⟨UM⟩ /M.

Hence it is convenient to introduce a modified dimensionless variable ũ

ũ = UM

⟨UM⟩ = u
M

.

Then the gamma distribution can be written in terms of measurable quantities:

pM(ũ)dũ = MMũM−1

Γ (M)
exp(−Mũ)dũ with ũ = Urad

⟨Urad⟩
.

Here Urad ≡ UM is the energy of the entire radiation pulse.
To simplify notation we drop the “tilde” in the following and write the gamma

distribution in the form

pM (u)du = MMuM−1

Γ (M)
exp(−Mu)du with u = Urad

⟨Urad⟩
. (10.125)

The gamma distribution for M = 1, 2, 4, 50 is plotted in Fig. 10.8. For very large M
it approaches a Gaussian centered at u = 1. The distribution is normalized to unity

∞∫

0

pM (u)du = 1. (10.126)
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The mean value and the variance of the normalized FEL pulse energy are

⟨u⟩ =
∞∫

0

upM (u)du = 1, σ2
u =

〈
(u − ⟨u⟩)2

〉
= 1

M
. (10.127)

It must be pointed out that only two limiting cases have been considered here:
(1) fully overlapping wave trains, yielding a single wave packet (or optical mode), and
(2) several perfectly separated modes. In reality partially overlapping wave packets
will exist too. One can approximate their probability distribution by a gamma distri-
bution with a non-integer index M. This is done in Chap. 7.
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10.6 Conventions and Frequently Used Symbols

In this book we use the international system of units (SI). Specifically

c = 299792458 m/s: speed of light in vacuum,
e = 1.60218 · 10−19 A s: elementary charge,
ε0 = 8.854 · 10−12 A s/(V m): permittivity of free space,
µ0 = 4π · 10−7 V s/(A m): permeability of free space,
me = 9.109 · 10−31 kg: rest mass of electron,
! = h/(2π) = 1.05 · 10−34 J s: Planck’s constant.

The charge of the electron is written as qe = −e. The electron energy in the acceler-
ator is quoted in MeV or GeV = 1000 MeV as usual (1 MeV = 1.602 · 10−13 J). A
right-handed Cartesian coordinate system (x, y, z) is used. The electron beam moves
along the z direction, x is the horizontal displacement of an electron from the nom-
inal orbit and y is the vertical displacement. Following the usage in many modern
physics textbooks we call the field B the magnetic field because it appears in the
Lorentz force and is thus directly responsible for the deflection and focusing of the
electron beam (H is called the “magnetizing field”). We will often call ω = 2πf the
frequency although it is an angular frequency.

In the following Table 10.1 we summarize the designation of frequently used
quantities, their dimension in SI units, their meaning, and the equation or the chapter
where the quantity is introduced.

Table 10.1 List of frequently used symbols

Symbol SI Units Meaning Eq./Chap.

A V s/m Magnetic vector potential Sect. 10.1
Ab m2 Electron beam cross section Chap. 5
α1, α2, α3 m−1 Eigenvalues of third-order equation Eq. (4.49)
B T Magnetic field vector –
B0 T Peak magnetic field of undulator Chap. 2
β = v/c – Normalized velocity of electron –
β̄ – Averaged normalized velocity Eq. (2.11)
βx(z),βy(z) m Horizontal/vertical beta function Sect. 6.3.1
βav m Average beta function Eq. (6.12)
εx, εy, ε m Emittance of electron beam Eq. (6.11)
εn m Normalized emittance Eq. (6.13)
Ẽx V/m Field of light wave Eqs. (4.1), (4.10)
Ẽz V/m Space charge field Eq. (4.18)
η – Relative energy deviation Eq. (3.14)
F0(η), f̃1(η, z) – Particle distribution function Eq. (10.40)
ϕE – Phase of field Ẽx Eq. (5.21)
ϕj1 – Phase of current j̃1 Eq. (5.22)

(continued)
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Table 10.1 (continued)

Symbol SI Units Meaning Eq./Chap.

G – Gain function of FEL Eqs. (3.26), (5.3)
γ – Lorentz factor of electron Eq. (1.2)
γr – Resonant value of Lorentz factor Eq. (3.13)
Γ m−1 Gain parameter Eq. (4.44)
I0 A DC electron beam current –
Ipeak A Peak electron beam current Chap. 5
j0 A/m2 DC electron beam current density Eq. (4.4)
j̃1 A/m2 Modulated current density Eq. (4.4)
K – Undulator parameter Eq. (2.8)
K̂ – Modified undulator parameter Eq. (3.30)
kℓ m−1 Wave number of FEL radiation Eq. (3.1)
kp m−1 Space charge parameter Eq. (4.44)
ku m−1 Undulator wave number Chap. 2
λℓ m Wavelength of undulator/FEL radiation Eqs. (2.19), (3.9)
λu m Undulator period Chap. 2
Lg0 m 1D power gain length Eq. (4.51)
Lg m 3D power gain length Chap. 6
Lsat m Saturation length Eq. (7.5)
pM (u) – Gamma distribution Sect. 10.6
Pbeam W Electron beam power Eq. (5.16)
Prad W Undulator radiation power Eq. (2.21)
Psat W FEL saturation power Eq. (6.27)
ψ – Ponderomotive phase Eq. (3.7)
ψb – Bucket center phase Eq. (5.23)
ψm – Microbunch phase Eq. (5.24)
rb m Radius of electron bunch Chap. 6
ρ C/m3 Electron beam charge density Eq. (4.3)
ρ̃1 C/m3 Modulated charge density Eq. (4.3)
ρFEL – FEL parameter Eq. (4.47)
ση – Normalized RMS energy spread Chap. 6
σr m RMS radius of electron beam Chap. 6
v̄z m/s Longitudinal speed Eq. (2.11)
W MeV Relativistic electron energy Chap. 2
Wr MeV Resonant value of electron energy Chap. 3
w(z) m Radial width of photon beam Eq. (6.19), Sect. 10.3
Xd – Diffraction parameter Eq. (6.21)
Xε – Angular spread parameter Eq. (6.21)
Xγ – Energy spread parameter Eq. (6.21)
ζ m Internal bunch coordinate Eq. (3.12)
zR m Rayleigh length Eq. (6.18), Sect. 10.3
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A
Angular spread

parameter, 95

B
Bandwidth of FEL, 68
Beta function, 90
Betatron oscillation, 92
Bose-Einstein statistics, 5
Brightness, 165
Bucket

FEL bucket, 34, 77, 81
RF bucket, 34

Bunch compression, 142

C
Canonical momentum, 186
Coherence

longitudinal, 117
transverse, 115

Coherence time, 120
Coherent transition radiation, 152
Collective effects, 145
Correlation function, 119
Coupled first-order equations

non-periodic model, 202
periodic model, 51

D
Detuning, 66, 86

energy, 63
parameter, 66

Diffraction, 94

parameter, 95
Diffraction limit, 166
Distribution function, 193
Doppler effect, 3, 16

E
Echo-enabled harmonic generation, 128
Eigenfunctions, 57
Eigenvalues, 57, 212, 214
Electro-optic effect, 150
Emittance, 90, 207

criterion, 93
measurement, 158
normalized, 91
slice emittance, 158

Energy spread, 87, 92, 179
parameter, 95

Exponential gain regime, 72
Exponential growth regime, 1

F
FAST, 85
FEL

amplifier, 25
oscillator, 25
seeding, 25

FEL parameter, 56, 65
FEL radiation

wavelength, 28
FEL-seeding, 123
FERMI at Elettra, 126
Fixpoint, 33
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Focusing
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natural, 90
strong, 90
weak, 90

G
Gain function

high-gain FEL, 64
low-gain FEL, 35

Gain guiding, 94
Gain length

1D case, 57
3D case, 95

Gain parameter, 56
Gamma distribution, 120, 221
Gaussian beam optics, 94, 204
GENESIS, 84, 85
GINGER, 85
Group velocity, 100
Growth rate function, 86

H
Hamiltonian

low-gain FEL, 32
non-relativistic, 183
pendulum, 184
relativistic, 185

Helical undulator, 60, 188
Helicity, 60, 191
High-gain harmonic generation, 125
High-gain regime, 65
Higher harmonics, 20, 36, 114

I
Integro-differential equation, 196
Internal bunch coordinate, 30

L
Larmor formula, 15
Laser

free-electron laser, 7
quantum laser, 5

Laser amplifier, 30
LCLS, 168
Lethargy regime, 59, 64
Linear regime, 1, 73
Lineshape, 19
Liouville theorem, 195
Lorentz factor, 3
Lorentz transformation, 15, 16, 137
Low-gain limit, 64, 197

M
Madey theorem, 35, 65, 66, 199
Microbunch, 40, 75, 77, 113
Mode

Gaussian, 204
longitudinal, 120
transverse, 115

Mode competition, 115

N
Nonlinear regime, 75

O
Optical eigenmode, 5
Optical resonator, 5
Optical transition radiation, 113

P
Pendulum equations, 31
Phase space

high-gain FEL, 76
longitudinal, 193
low-gain FEL, 33
pendulum, 184

Phase velocity, 99
Photocathode, 135
Photon quantum state, 5
Pierce parameter, 56
Plasma frequency, 56
Polarization

circular, 61, 191
linear, 17, 190

Ponderomotive phase, 28
Power

FEL saturation, 73, 97
SASE FEL, 110
synchrotron radiation, 3
undulator radiation, 17

Q
Quality factor

cavity, 141
Quantum diffusion, 179
Quasi-monochromatic radiation, 117

R
Rayleigh length, 94, 205
Relative energy deviation, 31
Resonance energy, 30
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S
SACLA, 168
SASE

fluctuations, 117, 120
SASE FEL, 67, 107

power, 109
Saturation, 71

FEL power, 73
length, 109

Seeding, 66
by higher-order harmonics , 124
echo-enabled harmonic generation, 128
high-gain harmonic generation, 125

Self-seeding, 173
Separatrix, 33, 76, 185
Shot noise, 218
Slippage effects, 101
Space charge, 87, 136, 145

parameter, 56
Space charge field, 47
Spontaneous emission, 6, 7
Stimulated emission, 5
Superconducting cavity, 139
Superposition principle, 73
Superradiance, 105
Surface resistance

superconductor, 141
SVA approximation, 45
Synchrotron radiation, 3

coherent, 145
power, 3, 18

T
Third-order equation, 55, 197
Transmission function, 110
Transversely deflecting structure, 149

U
Undulator

magnet, 3, 12, 134
period, 3, 12
tapering, 176

Undulator parameter, 4, 13
modified, 38, 48

Undulator radiation, 3
angular width, 20
higher harmonics, 20
lineshape, 19
power, 18
spectral energy, 21
wavelength, 17, 21

V
Vector potential, 186
Vlasov equation, 195

W
Wake fields, 147
Water window, 114

X
X-ray beam lines, 179


