
 February 18, 2003                                                                                 CBN 03-1 
     CHARACTERISTICS OF GRADIENT UNDULATOR1 

A. Mikhailichenko 
Cornell University, LEPP, Ithaca NY 14853 

Undulator/wiggler having the same polarities of magnetic field in opposing though medial 
plane poles can be used for generation radiation which intensity is a function of the beam 
size and displacement. Characteristics of such device analyzed here analytically and by 
tracking.  
 

INTRODUCTION   
     Utilization of a quadrupole wiggler is an interesting option for broadening the bandwidth of 
pick-ups in fast feedback systems [1] and for beam alignment [2]. Such a wiggler, which is a 
sequence of ordinary focusing and defocusing quadrupoles, generates a radiation, which depends 
on the beam shape and position.  
    Although in such system radiation for two transverse coordinates can be easily distinguished 
by polarization, desire to have sensitivity to one coordinate only is always an option. In [3] a 
device, called gradient undulator, was described for the first time. Practical utilization of this 
device suggested in [4].  
    Here we will concentrate our attention on practical aspects of design and properties of 
magnetic fields in gradient undulator. The test was also included trajectories analyses, which was 
carried out numerically on the basis of real 3D model. Knowing the real trajectory allows finding 
radiated field instantly in principle.  

 
ANALYTICAL CONSIDERAIONS  

     Let us consider first some simple aspects of symmetry of gradient undulator/wiggler in 
comparison with usual dipole wiggler; both are represented in Fig.1.   
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FIGURE 1: Dipole wiggler, upper one and gradient undulator/wiggler, lower. Beam is moving along x –axis. In 

normal to the drawing’s plane direction, z –direction, the poles are much longer, than period in x direction. 
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One can see, first that in dipole wiggler the fields between poles represent a quadrupole type as 
functions of x and y with longitudinal axes of these quadrupoles oriented in z direction. This 
means, that x component of the field is absent at the center plane {x, z}. ),( yxBx -component is a 
linearly growing function of y . ),( yxBy  is zero at the places between the poles and reaches its 
maximal value in plane {x, z} below the pole. So the particle moves across this set of 
quadrupoles experiencing focusing from these quadrupoles proportional to the wiggling angle, 

γγα //),(),( 2 KmcyxeByx wy ≡⋅≅ ! , and w!π2  stands for the wiggler period. Motion is a pretty 
much sinusoidal one. Longitudinal field are increasing linearly in y direction, while wiggling 
amplitude remains the same. So, the mechanism of focusing in y direction–is in bending by 
longitudinal fields, what is a quadrupole type here. Gradient can be estimated as 

wywy /B)//(BG !πλ 24 =≅ , but effective gradient acting at the particle’s trajectory is 
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α ≡=⋅≅  , where (HR) stands for magnetic rigidity.  As the passing over 

the pole region, particle changes its angle too, effective action over whole dipole wiggler is 
LGdxG effeff ⋅≅∫ 2

1 , where L  is total wiggler length.  

      In gradient wiggler, the longitudinal field )(yBx has nonzero value at the plane {x, z},  but 
now wiggling amplitude linearly increasing with y coordinate following )(yBy .  
      Ideal dipole wiggler must have appropriate profile of quadrupoles to reduce appearance of 
undesirable harmonics. For wigglers with superconducting windings, the iron is saturated 
typically, so this kind of shaping is not much practical.  From Fig. 1 it is clear that for dipole 
wiggler with infinitely wide poles, function )x(By and its derivatives describe all 3D fields 
around. In gradient wiggler this can be done with knowing )x(Bx .   
     Let us make first, some analytical representations for the fields of gradient wiggler, using its 
specific symmetry. The mostly general form for the fields of gradient wiggler, having wide poles 
(width in z direction is much bigger, than period) has the form 
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Equalizing terms with the same power, one can obtain recurrent formula  
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In it’s turn, (3) yields the following  
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where function )x(B)x(B 0≡  defines profile of longitudinal field at the axis x and 
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gradient wiggler as the following 
( )

∑
∞

=

−
=

0

22

2
1

k

kkk

x )!k(
)x(By)()y,x(B , 

(5) 
( )

∑
∞

=

++

+
−

−=
0

1212

12
1

k

kkk

y )!k(
)x(By)()y,x(B  

For demonstration, fields (5) can be represented in lowest order as the following 
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One can see from here, that gradient in y direction associated with )x(Bʹ′ . For example if 

dependence in x direction is periodic, 
w
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So we are coming to fundamental conclusion for this type of wiggler, that the gradient is 
proportional to the longitudinal field and reciprocally proportional to the period. This relation 
does not depend on hardware details, such as saturation of yoke iron and so on.  We will see 
lower, than numerical calculations in realistic system confirm (7). As it could be seen from (6) 
condition Bdiv

!
=0 and 0=Brot

!
 satisfied in every order of y. 

     It is interesting that for dipole wiggler with infinitely wide poles formulas for the fields can be 
represented in form (5), but now )x(B defines the transverse dipole field and xB  needs to be 
replaced by yB  and vice versa [5, 6].   
If the field is time dependent, then the following substitution needs to be done in all formulas [6] 
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where c stands for the speed of light. Odd derivative obtained by taking integral over x in this 
combination.  
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      Of cause, for realistic situation, when poles are not wide, z dependence of fields manifests 
itself. Mostly general form for potential of magnetic field in this case can be represented as the 
following [6]  
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where iyz +=ξ , and derivatives are taken along longitudinal axes x, and m numerates 
multipoles and 40 /πϕ = reflects the pole orientation (skew quad type). For simplicity in 
definition of coefficients, the terms responsible for longitudinal component separated in first 
brackets. The multipoles defined by theirs angular dependence. In case of dipole or gradient 
wigglers with sinusoidal dependence along longitudinal axes, angular dependence is not 
associated with the transverse one due to the presence of derivatives. Not all terms are present 
here for pure quadrupole symmetry remaining the only ones with m=2, 6, 10 and so on 
( ...,,,k),k( 210122 =+⋅≡ ). Magnetic field can be expressed trough this potential as  
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  We will not develop this subject here, limiting our interest by (5) and coming to next topic.   
 
 

HARDWARE ASPECTS 
     Let us consider now more or less realistic model of such a wiggler. Orientation of the poles is 
represented in Figs.1,2. This model has not associated with any specific project, but taken for 
example only.  
 

 
FIGURE 2(Color):  View to the gradient wiggler model. Particles supposed to move along x. Pole size in z direction 

is ± 15 cm (=30cm), radiuses of cylinders 4 cm, coil cross-section is 2× 2.3 cm2, period =wλ 24.84 
cm, gap between poles ± 3.5 cm.  
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This wiggler is not sensitive to z- position of the particle, giving linear dependence in radiated 
field across y direction. Radiation in this wiggler is polarized along z – axis.  
     Yoke modeled by soft Steel 1010.  Total current running in central coil is 60 kA-Turns, what 
suggests utilization of SC windings. All field calculation done with 3D code MERMAID, 
Vectorial post-processing done with MATHEMATICA.  
 
           y 

     
                                                                                                                                                                          x 

 
FIGURE 3(Color):  Lines of magnetic field in central plane of wiggler, z=0. Half of the wiggler is 

shown; right side of the plot is a plane of symmetry along x.  Radiuses of the poles are 4 cm, 
period -25 cm. Gap between coils 0.5 cm. Length of the pole in z direction is ± 15 cm. 
Particles are moving from the left side. {xz, y=0}  represents medial plane.  

 
FIGURE 4(Color): Vectorial representation of the fields in the gap of 11-pole gradient wiggler inside 

the 3D volume {x=0-150;y= ± 3;z=± 24} cm. Medial plane of the wiggler {x, z} runs at y=0.  
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What is interesting about (7) is that at first look, the gradient defined by the distance between 
poles and period is not playing any role at all. One can see however from Fig.3, that field yB  
below the pole defined by the flux, what is coming from sides. The last one, of cause, depends on 
the wiggler period and yB .  

 
FIGURE 5(Color):  Fragment of previous picture with coordinates {x=50-75;y=± 5, z=0-25} cm, i.e. close 

to the central region of magnet.  
 

First arises the question about the pole shape. The field must be as strong as possible for higher 
sensitivity. In case of flat poles this will produce an increase of field values at the side tips of the 
poles braking pure sinusoidal longitudinal field dependence. One can see, that as two opposing 
poles generating linear field dependence, they must have a shape close to hyperbolic. We used 
poles with cylindrical shape, however.   
Wiggler is focusing towards medial plane {x, z} in y –direction. This focusing is typical for any 
wiggler and is proportional to the associated angle of wiggling γα /K≅ , with K –factor 
depending on vertical position itself. Effective gradient experienced by particle passing one pole 
gap is going to be ∫ ≡ )y(Bdx)y,x(G α2

1 . In its turn,  yk)y(B ⋅≅ .  
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Calculations were carried for yoke with soft steel 1010 so the numbers are realistic and giving 
impression about whole picture.  Current running in central pole is 60 kATurns total. Two end 
poles from each side adjusted for zero offset of trajectory, see lower.  
Coil cross section is a rectangle with dimensions 2}5.22{}{ cmyx ×=× . Yoke plate ends at y=15 
cm from medial plane y=0.  

 
FIGURE 6(Color):  Field graphs for y=+2 cm, z=0. Half wiggler is shown as in Figure 3. Center is at the 

right side of the plot at 75 cm. yB comes to it’s maximum, xB , indeed comes to zero. 
Basically Bz=0 along this axis as it must be according to symmetry properties.  

 

 
FIGURE 7 (Color): Fields across central pole, starting from z=0, y=2 cm. Material of yoke St1010. Points at {x=75, 

y=2, z=0-24} cm. The increase in By component (lower curve) at the side of the pole explained by the 
flux concentration here. The flux expelled from central region escapes from the sides. This effect also 
generates zB component.  
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The component yB  as a function position towards the pole tip is represented in Fig. 8.   

 
FIGURE 8(Color):  Fields at the line, starting from y=0; z=0, x=75 cm (middle of central pole) towards the 

central pole. Pole iron begins at 3.5 cm.  Basically the only yB  is present.  
 

 
FIGURE 9: Fields between poles: the central one and next to it as functions of y.  Basically only 

Bx component is present, as it must be according to symmetry properties. Next to the 
central pole gap was chosen for representation.  
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Field xB  from Fig.9 as a function of y coordinate can be represented as the following  
 

...0031.027.00786.082.7)( 32 +⋅+⋅+⋅+−= yyyyBx   . 
 

One can see, that this is a quadratic dependence mostly as it must be from symmetry 
considerations.  
From Fig. 8 one can calculate gradient cm/kGG 21 −≅ . From Fig.9, longitudinal field  

kG.Bx 827≅ . Taking into account, that period is 24.8 cm, or cm./.w 9532824 ≅≅ π! , one can 
obtain  981953827 .././B wx ==!  in good agreement with prediction (7).  

 
TRAJECTORIES  

Formally, as formulas for magnetic field is known, (5), it is possible to make analytical 
calculations of particle’s trajectory. We will continue here our numerical exercises, however. 
Trajectories calculated numerically by using code UMKA [7] on the basis of MERMAID 3D 
field calculations.  
 

 
 

FIGURE 10(Color): Trajectories for different initial positions in Y direction. There are shown ones for  
=0y +0.5 cm, +1.0 cm, +2.0 cm, -2.0 cm. The last one corresponds the start point below median 

plane.  Beam energy 2 GeV. 
 
 
One can expect, as the field in vertical direction is linearly varying, trajectories with zero angle 
and displacement at output for one vertical input will have different resulting kicks and angles for 
other vertical input. This is seen in Fig.10, where particle with input cm.y 500 =  has 
displacement ~10 mµ at the exit.   
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FIGURE 11: Trajectory for start position at y=0.5 cm. Beam energy 2 GeV. 
 
 

 
 

FIGURE 12:    y-coordinate at the out  as a function of input one.  
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FIGURE 13: The difference between initial and final coordinates. Manifestation of nonlinear focusing is visible 

here. 
 
 

Dependence of deviation in y –direction from initial coordinate, represented in Fig. 10, right can 
be expressed analytically as the following  
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So for input coordinate at the edge of aperture, =0y 3 cm, the fraction of nonlinear kick to the 
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drastically lower for small deviations from medial plane.  
So one can see, that this type of wiggler can be used for fine-tuning of dynamic aperture of 
damping ring for linear collider, typically overloaded by dipole wigglers.  
The set with only a pair of poles can be used for transformation of kick orientation. Really, 
particles directed towards one or another pole receive the kick in orthogonal direction depending 
to which pole they were deflected primary.    
 
 

RADIATION AND ACTION TO THE PARTICLE  
 
As trajectory )(xz is known, this allows calculation of second derivative )ctx(zv =≅ !!!

" and hence, 

electric field as  [8] ( )[ ][ ]
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and derivatives are taken over time structure at the moment of radiation.  So basically to obtain 
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time structure at the observation point one needs to take second derivative with graph in Fig.10 
and shrink this curve by Doppler factor )1/(1 vn!!− , where n!  is unit vector to the observer. One 
can see that a single particle spectrum is the same as in a dipole wiggler with the same trajectory 
and formulas are the same (see for example [4]).   
       Let us see however, what are limitations for the width of spectrum might be. Evidently, the 
frequency of radiation  
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 where 2
00 /mceBK w!= . For the wiggler considered above, 0B ~0.8T,  ≅w!π2 0.25 m, 

≅0K 18.7 and amplitude must be cmy 3.0≤  i.e. below 3 mm. For narrower width, the amplitude 
must be restricted proportionally.  
     Energy of the photon defined    
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where  maximal energy defined as  
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Taking into account that conversion constant fmMeVc ⋅≅ 33.197! , and for the wiggler 
discribed, fmmw

1510248.02484.0 ⋅≅=λ , for 4000=γ (~2GeV), 72 106.1 ⋅=γ , 
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     One can imaging a situation, however, in which dependence of frequency of radiation on 
amplitude can be useful for selection of beam amplitudes determined for processing. In Optical 
Stochastic Cooling, OSC, for example, this might be a specific tuning for cooling the particles 
with large amplitudes only. As optical amplifiers are working within eV105.0max −≈ω! , energy, 
period of the wiggler must be adjusted properly, together with angle of observation.   
       For OSC, implementation of quadrupole like devices might be interesting for reduction of 
radiation from cold central part of the bunch. Typically this radiation heats the rest of the bunch 
and its elimination helps in cooling. This device investigated, similarly to the quadrupole 
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wiggler, provides the energy shift as a function of particle displacement at location of kicker. 
Really the energy shift for the particle interacting with plane electromagnetic wave co-
propagating with the particle at the length of wiggler L, can be described as  
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where 0E  stands for electric field strength in co-directionally propagating  electromagnetic wave. 
One can see that action is also linearly dependent of position of particle in the gradient undulator 
or in quadrupole wiggler.  
 
 
 

CONCLUSIONS 
 
     The device analyzed –gradient undulator/wiggler can be interesting not only for the purposes 
of beam size measurements, but also for nonlinear correction of magnetic properties in the 
damping ring or in a transport channel, acting in one particular direction only. Minimal number 
of poles for this purpose –three–gives closed bump.  
     Device can be interesting for implementation into OSC, serving as a pickup and/or a kicker 
linearly (re)acting to the particle’s instant position in one direction.        
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