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Abstract 

Intrabeam scattering and other diffusion mechanisms result in a growth of beam emittances 

and luminosity degradation in hadron colliders. In particular, at the end of Tevatron Run II when 

optimal collider operation was achieved only about 40% of antiprotons were burned in collisions 

to the store end and the rest were discarded. Taking into account a limited rate of antiproton 

production further growth of the integral luminosity was not possible without beam cooling. 

Similar problems limit the integral luminosity in the RHIC operating with protons. For both 

cases beam cooling is the only effective remedy to increase the luminosity integral. 

Unfortunately neither electron nor stochastic cooling can be effective at the beam energy and the 

bunch density required for modern hadron colliders. Even in the case of LHC where synchrotron 

radiation damping is already helpful for beam cooling its cooling rates are still insufficient to 

support an optimal operation of the collider. In this paper we consider principles and main 

limitations for the optical stochastic cooling (OSC) representing a promising technology capable 

to achieve required cooling rates. The OSC is based on the same principles as the normal 

microwave stochastic cooling but uses much smaller wave length resulting in a possibility of 

dense beam cooling.  

Introduction 
The stochastic cooling was suggested by Simon Van der Meer [1]. It was critically important 

technology for success of the first proton-antiproton collider [2]. Since then it has been 

successfully used in a number of machines for particle cooling and accumulation. There is 

considerable literature on the subject. Here we would like to point out two references [3,4] 

reviewing its theory and development for the Tevatron Run II, as well as practical aspects of 

stochastic cooling usage. These papers also present extended bibliography on the subject.  

Although the usage of stochastic cooling has been indispensable for antiproton accumulation 

and precooling its use is limited for bunched beam cooling at high energy. The bunched beam 

cooling has been demonstrated for heavy ions in RHIC [5] where the number of particles in the 

bunch is comparatively small. However it cannot be used for cooling of dense bunched beams in 

proton-(anti)proton colliders due to much larger number of particles per bunch and, 

consequently, much higher beam brightness. In the case of optimal cooling the maximum 

damping rate can be estimated as: 
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where W is the bandwidth of the system, N is the number of particles in the bunch, s is the rms 

bunch length, and  C is the machine circumference. Assuming a system with one octave band 

and upper boundary of 8 GHz one obtains  = 12000 hour for the LHC proton beam ( s  = 9 cm, 

C = 26.66 km). Effective cooling requires damping rates being at least 3 orders of magnitude 

higher.  

The OSC suggested in Ref. [6] was aimed to address this deficiency. Instead of microwave 

frequencies it operates at the optical frequencies and, consequently, it can have a bandwidth of 

~1014 Hz; thus, suggesting a way to achieve the required damping rates. The basic principles of 

the OSC are similar to the normal (microwave) stochastic cooling. The key difference is the use 

of optical frequencies, which allows one an increase of system bandwidth by almost 4 orders of 

magnitude.  

Although the OSC was proposed 20 years ago it still was not tested in experiment. There were 

suggestions of its experimental implementation in Tevatron [7, 8], RHIC [9] but it was too risky 

to implement it on the operating collider and the work did not proceed beyond initial proposal. 

The first attempt to make a test of the OSC with small energy electrons was done in the BATES 

[10] but it did not get enough support. Presently, Fermilab is constructing a new ring [11,12] 

devoted to test of the integrable optics and the OSC. 

In this paper we consider the theory of stochastic cooling and its implications to the beam and 

light optics. 

1. Principle of OSC Operation 
The wavelength of e.-m. radiation used in the OSC is orders of magnitude smaller than the 

transverse size of vacuum chamber. In this case usual pickups and kickers employed in the 

microwave stochastic cooling cannot be used; instead, undulators were suggested [6] to be used 

for both a pickup and a kicker. In other words, in the OSC a particle emits e.-m. radiation in the 

first (pickup) undulator. Then, the radiation amplified in an optical amplifier (OA) makes a 

longitudinal kick to the particle in the second (kicker) undulator as shown in Figure 1. Further 

we will call these undulators as the pickup and the kicker. Note that efficiency of transverse 

kicks is much smaller and therefore the OSC is based on the longitudinal kicks only. Cooling in 

other planes is based on the plane-to-plane coupling of particle motion. A magnetic chicane is 

used to make space for an OA and to bring the particle and its amplified radiation together in the 

kicker undulator.   

In further consideration we assume that the path lengths of particle and radiation are adjusted 

so that the relative longitudinal momentum change of a particle is equal to: 

 sin
p

k s
p
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Here k = 2 /  is the radiation wave number, and s is the particle displacement on the way from 

pickup to kicker relative to the reference particle which obtains zero kick. In the linear 

approximation one can write: 



 51 52 56 /xs M x M M p p  ,  (3) 

where M5n are the elements of 6x6 transfer matrix from pickup to kicker, x, x and p/p are the 

particle coordinate, angle and relative momentum deviation in the pickup center. In such 

arrangement the horizontal cooling is achieved by coupling between horizontal and longitudinal 

motion in the chicane. The vertical cooling is supported by x-y coupling in the rest of the ring. 
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Figure 1: Layout of the cooling system. 

2. Transfer Matrix for Coupled Longitudinal and Horizontal Motions  
We assume that a particle motion in the cooling chicane is only coupled between longitudinal 

and horizontal planes. Consequently, the vertical motion is uncoupled and can be safely omitted 

from the below analysis. The motion symplecticity binds up the transfer matrix elements so that 

for 4x4 matrix only 10 of its 16 elements are independent. In the absence of longitudinal kicks 

between points 1 and 2 (see Figure 2) the matrix between them can be expressed through the 

Twiss parameters of the points and the M56 element, so that: 
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Here the matrix elements of horizontal motion are well-known: 
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and the matrix elements describing x-s coupling are bound up by motion symplecticity, 

 TM UM U  , (6) 

resulting: 
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where 1,2 and 1,2 are the beta-functions and their negative half derivatives at the points 1 and 2, 

D1,2 and D′1,2  are the dispersions and their derivatives,  is the betatron phase advance between 

points 1 and 2, and 
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is the unit symplectic matrix. The matrix elements are enumerated similar to a 6x6 matrix but the 

elements related to the vertical motion (decoupled from other two degrees of freedom) are 

omitted. Note also that the symplecticity condition implies that the s coordinate used in Eq. (2)

and (4) represents particle displacement in the bunch frame but not the orbit lengthening often 

used in the definition of the transfer matrix, so that 56 /L M p p . For an ultra-relativistic 

bunch these two definitions are bound up as following: 

 56 562

1
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Figure 2: OSC schematic. 

Similar to the ring slip-factor, 21/ g , we introduce the partial pickup-to-kicker slip-

factor, 12 , which describes the longitudinal displacement for a particle with momentum 

deviation p/p in the absence of betatron oscillations:  

 51 1 52 1 56
12

2

M D M D M

R
 . (10) 

Here  is the ring momentum compaction, and R is the average ring radius ( 2C R ). To 

simplify further formulas we also introduce the pickup-to-kicker slip-parameter 12 122S R . 

Substituting the matrix elements from Eq. (7) one obtains: 
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where indices 1 and 2 mark the Twiss parameters at the pickup and kicker locations, 

correspondingly, and 1 is the pickup-to-kicker betatron phase advance. 

3. Ratio of Damping Rates  
The longitudinal kick to a particle due to its interaction with own amplified radiation in the 

kicker is determined by Eq. (2). Leaving only linear term in the expansion of sin(ks) and 

expressing s through the particle positions in the pickup (see. Eq. (3)) one obtains: 
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or in the matrix form: 
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Here 1x  is the vector of particle coordinates in the pickup, and we additionally denote the matrix 

elements of the pick-up to kicker transfer matrix by index 1. Taking this into account one can 

write down a kicker-to-kicker one turn map: 

 2 1 2 2 2 0 2 21 cn n n n
x M M x δx M M M x  , (14) 

where n enumerates turns, M2 is the kicker-to-pickup transfer matrix, M0 = M1 M2 is the entire 

ring transfer matrix, 2( )nx is related to the particle coordinates at n-th turn at the point 

immediately downstream of the kicker, and we took into account 1 2 2n n
x M x  . 

The perturbation theory developed in Ref. [13] (see also [4] for details) for the case of 

symplectic unperturbed motion yields that the tune shifts are: 
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1

4

T
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where vk are two of four eigen-vectors of unperturbed motion chosen out of each complex 

conjugate pair and normalized so that 2k k iv U v  (k = 1,2). Performing matrix multiplication 

and taking into account that the symplecticity binds up M51, M52 and M16, M26 one finally 

obtains: 
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In the case of small synchrotron tune, s << 1, one can neglect the effect of RF cavities on 

components of the eigen-vector related to the horizontal betatron motion. Then, the eigen-vector 

is equal to:  
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Substituting Eq. (17) to Eq. (16) and using Eq. (11) one obtains the damping rate (amplitude, per 

turn) of the betatron motion: 

 
2,6 1,6 561 1 2 1 2 1 1 122 Im

2 2
x

k k
Q D M D M M S  . (18) 

The condition s << 1 also allows one to neglect the betatron motion on the synchrotron 

motion. Consequently, for the second eigen-vector (related to the synchrotron motion) one 

obtains: 
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where s=R / s is the -function of the longitudinal motion introduced so that smax= s ( p/p)max. 

That yields the damping rate (amplitude, per turn) of the synchrotron motion: 

 12
2 22 Im

2
s

k S
Q  . (20) 

Summing Eqs. (18) and (20) one obtains the sum of the damping rates: 
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2

k
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Although 
561M  and, consequently, the sum of damping rates depend only on focusing inside 

the chicane, the ratio of damping rates depends on the dispersion at the chicane beginning, i.e. on 

the ring dispersion. Eqs. (18) and (20) yield the ratio of damping rates,  
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4. The Cooling Range 
The cooling force is linear for small amplitude oscillations only. Combining Eqs. (2) and (3), 

and performing simple transformations one obtains:  

 sin sin( ) sin( )x x p p

p
a a

p
 , (23) 

where ax, ap, x and p are the dimensionless amplitudes (expressed in the phase advance of 

laser wave) and phases of pickup-to-kicker path lengthening due to betatron and synchrotron 

motions. The dimensionless amplitude due to synchrotron motion directly follows from Eq. (10): 
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p
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where ( p/p)m is the amplitude of momentum oscillations. To find the dimensionless amplitude 

due to betatron motion we express particle coordinates through its Courant-Snyder invariant2, , 

and phase, :  
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Substituting these expressions to the equitation describing the longitudinal displacement due to 

betatron motion, 
51 52 11 1 1 xM x M , and performing simple transformations one obtains the 

dimensionless amplitude due to betatron motion:  
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Averaging momentum kicks over betatron and synchrotron oscillations one obtains the fudge 

factors for the transverse and longitudinal damping rates: 

 

1 1 1

2 2 2

( , ) / ( , )

( , ) / ( , )

sin2 / cos
sin sin sin ,

sin2 / 2 2

x p x p

x p x p

xx c px
x x c p p

pp

a a F a a

a a F a a

a dd
a a

a

  (27) 

where c is the phase shift of the transverse cooling force. Computation of the integrals yields: 
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where J0(x) and J1(x) are the Bessel functions. One can see that the damping rates oscillate with 

growth of amplitudes. For a given degree of freedom the damping rate changes the sign at its 

own amplitude equal to 11≈3.832 and at the amplitude of 01≈2.405 for other degree of 

freedom. Taking into account that the both cooling rates have to be positive for all amplitudes 

one obtains the stability condition, , 01 2.405x pa . That yields the stability boundaries for the 

emittance and the momentum spread: 
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For further analysis we introduce the relative cooling ranges as ratios of cooling area 

boundaries ( p/p)max and max to the rms values of momentum spread, p, and horizontal 

emittance, . That yields:  

   max( / ) / , /s max p xn p p n   . (31) 

As one can see the transverse cooling range does not depend on the dispersion in the pickup 

undulator but depends on the beta-function in there. Beam cooling in a collider requires

, 4x sn n .  

5. Beam Optics and its Limitations 
The analysis of possible optics arrangements in the cooling area yielded that the layout 

presented in Figure 1 is not only the most straightforward but also represents a reliable and 

effective choice. The cooling chicane consists of four dipoles with parallel edges, which in the 

absence of other focusing elements does not produce focusing in the horizontal plane resulting in 

that 
561M = 12S . As one can see from Eq. (18) transverse cooling requires 

561M  and 12S  being 

different. It is achieved by placing a defocusing quad in the chicane center.  

To make a simple estimate showing interdependency of cooling parameters we leave only 

leading terms in the thin lens approximation assuming also that the bends have zero length and 

do not produce horizontal focusing. That yields: 
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Here s and h are the path lengthening and the trajectory offset in the chicane, =1/F is the 

defocusing strength of the quad located in the chicane center, and D* is the dispersion in there. 

Similarly, using Eq. (31) one obtains estimates for the cooling ranges:  
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where * is the beta-function in the chicane center. Above we assumed that the optics is 

symmetric relative to the chicane center, i.e. dD/ds=0 and d /ds=0 in the chicane center. Such 

choice minimizes the maximal dispersion and beta-function in the cooling area. 

Table 1: Tentative beam optics parameters for the Fermilab OSC test and the LHC 

 Fermilab OSC test OSC for the LHC 

Rms momentum spread, p  1.2∙10-4 10-4 

Rms emittance, , nm 4.4 0.5 

Delay in the cooling chicane, s, mm 2 2 

Cooling range, ,x sn n  3 4 

Required wave length, m 1.8 2.1 

Dispersion invariant in the chicane center, A*, m  1.3 0.35 

As one can see from Eq. (32) the parameter D*h determines the ratio of cooling rates. 

Assuming equal damping rates one obtains, *s D h , and, consequently, the cooling ranges 

are:  
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  (34) 

where A*=D*2/ * is the dispersion invariant3 in the chicane center. Its value is conserved in a 

straight line where bending magnets are absent. As one can see from the above equations the 

cooling dynamics is determined by a handful of parameters: the initial rms momentum spread 

and emittance ( p, ), the wave number of optical amplifier (k), the dispersion invariant (A*) and 

the path length delay ( s). The value of s is determined by signal delay in optical amplifier and 

normally should be in the range of few mm. Further we will assume s=2 mm – the value 

expected for the OSC test in Fermilab [12]. Table 1 presents tentative beam optics parameters for 

the Fermilab OSC test and the LHC operating at 4 TeV. Note that if parameters presented for the 

Fermilab OSC test represent the actual proposal; the LHC parameters are presented as an 
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example only. Note also that one can significantly affect the optics parameters by changing the 

distribution of cooling rates. In particular, an increase of horizontal damping can allow a 

reduction of the optical amplifier wavelength, but at the same time it makes more difficult to 

handle an increase of beta-function in the cooling area required to keep sufficiently large value 

for the horizontal cooling range. 

Large value of the dispersion invariant required for OSC leads to a collider type optics, i.e. 

optics with small value of the beta-function in the chicane center so that the large value of the 

invariant could be achieved with manageable value of dispersion. Figure 3 presents beta-

functions and dispersion in the cooling area for the Fermilab OSC test. Figure 4 shows 

corresponding dispersion invariant. The equilibrium horizontal emittance is mainly excited by 

synchrotron radiation and its contribution to diffusion is proportional to the average value of 

dispersion invariant in dipoles. Therefore the strength of quadrupoles in the chicane vicinity was 

adjusted so that to reduce the invariant as fast as possible outside of cooling area and, thus, to 

minimize the equilibrium horizontal emittance. As one can see the value of the invariant is 

significantly larger than the value presented in Table 1. It allowed significant increase of cooling 

ranges. It has been required for an improvement of beam lifetime which is mainly determined by 

particle scattering on atoms of residual gas. The choice of optics supports: n x = 9.2,  n s = 5.6,  

x/ s =2.5.  Figure 5 presents dependences for 
561M  and S12 on the beam travel from pickup to 

kicker. One can see that S12 has large variations of its value on the beam travel through the 

chicane. These variations are excited by large dispersion in the chicane. In the absence of 

focusing S12 and 
561M  would be equal at the chicane end. Non-zero focusing makes them 

different. Large S12 variations make resulting S12 being quite sensitive to optics errors. There is 

even higher sensitivity of sample lengthening to optics errors in the case of betatron motion. 

Figure 6 presents sample lengthening due to betatron motion. One can see that the final 

lengthening is about 300 times smaller than its peak value located between chicane dipoles.   

 

s [m] 

Figure 3: Beta-functions ( x – red, y – green) and dispersion (dark blue) for half of cooling area of the 

Fermilab OSC test. Chicane center is located at s = 0; red squares at the bottom mark positions of 

quadrupoles, the blue squares – dipoles and undulator.  



 
Figure 4: The dispersion invariant, Ax, for half of cooling area of the Fermilab OSC test. 

 
Figure 5: Dependence of M56 and S12 in the cooling area of the Fermilab OSC test; s = 0 corresponds to 

the chicane center. 

 

Figure 6: Dimensionless rms sample lengthening due to betatron motion, ap, in the cooling area of the 

Fermilab OSC test; s = 0 corresponds to the chicane center. 



Another important limitation on the beam optics is associated with the higher order 

contributions to the sample lengthening coming from the betatron and synchrotron motions. The 

major contribution comes from particle angle, (s), which introduce the relative delay s/s equal 

to (s)2/2. To obtain the particle angle on the way from pickup to kicker we differentiate its 

horizontal position 0( ) ( ) cos ( )x s s s  over s. An integration of square of the obtained 

angle yields the orbit lengthening:   
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Here 0 is the initial betatron phase,  is the betatron phase advance along the particle trajectory, 

Lc is the total path length from pickup to kicker, and we took into account that d =ds/ . 

Assuming that the optics in the cooling area is symmetric relative to the chicane center one can 

reduce Eq. (35) to the following form:  
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where 0 is related to the particle betatron phase in the chicane center. The maximum 

lengthening is achieved for 0= /2 and is equal to: 1 2 / 2s I I .  

Numeric averaging of cooling force with the second order lengthening taken into account 

shows that to avoid shrinking of cooling boundary the second order contribution at the cooling 

boundary has to be less or about half of the first order contribution (see Eq. (26)). That yields the 

requirement on an acceptable value of the second order contribution computed at the boundary of 

cooling range (defined by Eq. (29)): 2 1.5k s .  

Figure 7 presents integrals I1 and I2 as functions of path length for the Fermilab OSC test. One 

can see that the values of integrals are significantly larger for the horizontal plane. It is related to 

the small beta-function in the chicane center which yields large particle angles in the area 

between focusing doublets, */ . In this case the total lengthening can be estimated by 

simple formula: */ 2qs L , where Lq is the distance between quadrupole doublets. For the 

Fermilab OSC test the non-linear path lengthening due to vertical betatron motion is 0.017 m at 

1  and does not represent a problem. However its value for the horizontal plane of 0.25 m at 1  

destroys cooling for betatron amplitudes above 1.5  and therefore has to be compensated. 



The compensation is achieved by placing a sextupole in between dipoles of each chicane leg. It 

decreases the sample lengthening by more than an order of magnitude so that the contribution for 

the horizontal plane is smaller than for the vertical one. The sextupoles are located at the betatron 

phase advance close to 180 deg. It significantly decreases the driving terms of sextupole related 

resonances. However the compensation is not perfect and an additional suppression by ring 

sextupoles is required. They also have to compensate undesired chromaticity introduced by the 

chicane sextupoles. 

 

Figure 7: Integrals I1 (red) and I2 (blue) of Eq. (36) in the cooling area of the Fermilab OSC test; 

horizontal plane – left, vertical plane – right.  

6. Damping Rates  
To compute the OSC damping rates we need to find a longitudinal kick which a particle 

receives in the kicker undulator from its own radiation radiated in the pickup undulator and then 

amplified and focused to the kicker undulator. We split this problem into the following steps: 

finding electric field of the radiation on the focusing lens surface, computing the electric field in 

the kicker undulator by integration of the field distribution on the lens, and, finally, finding the 

longitudinal kick in the kicker undulator. We assume that the distances from the pickup center to 

the lens and from the lens to the kicker center are equal and are much larger than the pickup and 

kicker lengths; so large that the depth of field would not result in a deterioration of the 

interaction. Applicability of such requirement will be discussed later. We also assume that the 

pickup and kicker undulators are flat, have the same length and the same number of periods. 

The e.-m. radiation coming out from the pick-up undulator is determined by the Liénard-

Wiechert formula [14]: 
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Here e is the particle charge, =v/c is the dimensionless particle velocity, R is the vector from 

point of the radiation, r´, to the point of observation, r, and all values are taken at the retarded 

time t´= t  R/c. Let the coordinates of a particle moving in a flat undulator to depend on time as 

following: 
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where u is the frequency of particle motion in the undulator, and e is the amplitude of particle 

angle oscillations. Substituting velocities of Eq. (38) to Eq. (37) and simplifying the obtained 

equation one obtains the horizontal component of electric field in the far zone:   
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where  and  are the angles in the polar coordinate frame for the vector R, and we took into 

account that ax = c e u . The vertical and longitudinal components of the electric field are 

averaged out at the focus and therefore can be safely omitted from further consideration.  

Only the first harmonic of the radiation interacts resonantly with the particle in the kicker 

undulator. Therefore we keep only the first harmonic of radiation in further calculations: 
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Omitting higher harmonics is also justified by the fact that their radiation is usually absorbed in 

the lens(es) focusing radiation from the pickup to the kicker and is not amplified by optical 

amplifier (if present).  

To find the electric field in the kicker undulator, where the radiation is focused, we use the 

Kirchhoff formula: 
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Here r  is the coordinate in the observation point in the kicker undulator, the integration is 

performed over the lens surface S, and the electric field there is described by Eqs. (39) and (40).  

The focal length of the lens is equal to R/2. It results in that an increase of delay time related to 

path lengthening, 22 / 2R , is compensated in the lens. It makes all waves arriving to the focus 

point having the same phase, and, consequently, the exponent in Eq. (41) accounting for these 

delays is reduced to a complex constant which will be omitted in further calculations. Note that 

although the frequency of radiation coming out from radiation point depends on  this 

dependence disappears in the kicker undulator (in the image plane) due to interference of the 

waves coming from different directions.  

The above equations can be significantly simplified in the case of small undulator parameter, 

K=g e<<1. Then Eq. (39) can be simplified yielding the wave amplitude on the lens surface:  
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The dependence of frequency on e can be neglected and an integration in Eq. (41) results in the 

amplitude of electric field in the kicker undulator: 
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Here m is the angle subtending the lens from the pickup undulator and we assume a round lens. 

Averaging the energy transfer (d /dt=eExvx) over oscillations in the kicker undulator we finally 

obtain the amplitude of the energy change in the kicker undulator in the absence of optical 

amplification: 
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Here B0 is the peak magnetic field in the undulator, Lu is its total length, and m is the particle 

mass. We also took into account that 0 /e ueB mcg .  

Note that in the absence of optical amplification and g max >> 1 the amplitude of energy loss is 

equal to the total energy loss in both undulators: 4 2 2 2 4

02 / 3tot ue B L m cg . The interference 

of radiation of two undulators results in the energy loss being modulated with the path length 

difference on the travel from pickup to kicker: ( ) 1 cos( )tots k s . For longitudinal 

motion we can rewrite it as: 

 12( ) 1 costot

p
p kS

p
  . (45) 

Taking into account that the damping decrement is proportional to /d dp  one obtains that the 

interference of radiation from two undulators amplifies the damping rate due to their synchrotron 

radiation by the ratio of beam energy to it’s the cooling range, / p pp n . The same statement is 

justified for the betatron motion. Note that an average energy loss presented in Eq. (45) is 

compensated by an RF system and does not effect on the cooling dynamics.  

The cooling rates are determined by Eqs. (18) and (20) where parameters k and  introduced in 

Eq. (2) are equal to: 
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Here we added an effect of e.-m. wave amplification in an optical amplifier with gain Ka (in 



amplitude). We also assume that the bandwidth of optical amplifier is large enough so that the 

spectrum widening due to finite number of undulator periods 22 /u wng  and the angular spread 

of radiation 4

max2 ug  would be inside the amplifier bandwidth. Here nw is the number of 

undulator periods. Otherwise one needs to average the cooling force within amplifier bandwidth. 

Note also that for large amplitude oscillations the fudge factors introduced in Eqs. (27) and (28) 

have to be taken into account.  

In the general case of arbitrary undulator parameter the amplitude of electric field in the kicker 

undulator can be expressed in the following form: 
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where  
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For the large acceptance lens, m ≥ e + 3/g the function ,h e mF  computed with numerical 

integration can be interpolated by the following equation:  
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Integrating the force along the kicker length one obtains the longitudinal kick amplitude in a flat 

undulator:  
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Here 2 /F e c  is the fine structure constant, and 2 2

0 2 1 / 2u Kg  is the base frequency 

of the radiation. For small K this equation coincides with Eq. (44). Figure 8 presents a 

dependence of dimensionless kick, 2 2( , ) 1 / 2 ,t m h m u uF K K K F K Fg g , on the 

undulator parameter for different values of g m. The same as above we imply here that the optical 

amplifier gain is equal to one and its bandwidth is larger than the bandwidth of the first harmonic 

radiation coming from the pickup undulator. Otherwise averaging over the bandwidth is 

additionally required.   



 

Figure 8: Dependence of dimensionless longitudinal kick on the undulator parameter. 
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Figure 9: Light optics layout for passive cooling. 

 

Figure 10: Trajectories of rays radiated at the beginning, in the middle and at the end of pickup undulator. 

Right pain shows details near the center of the system. Vertical lines show positions of the lenses.  

7. Light optics  
Above we assumed that the radiation emitted by a particle in the course of its motion in the 

pickup is focused to the location of the same particle in the kicker (when the particle arrives to it) 

in the course of particle entire motion in the kicker. It is automatically achieved for the lens 

located at the infinity (i.e. if the distance to the lens is much larger than the length of undulator) – 

the condition which is impossible to achieve in practice. A practical solution can be obtained 

with lens telescope which has the transfer matrix MT from the center of pickup to the center of 

kicker equal to ±I, where I is the identity matrix. In this case the transfer matrix between 
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emitting and receiving points is O(l)MT O(-l ) = ±I, i.e. coincides with the matrix for the system 

where the lens is located at infinity. Here O(l) is the transfer matrix of a drift with length l. The 

simplest telescope requires 3 lenses. An example is presented in Figure 9. For symmetrically 

located lenses their focusing distances are: 
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Here F1 is the focal distance for two outer lenses, and F2 is the focal distance for the central lens. 

Figure 10 presents an example of ray propagation through such focusing system. As one can see 

the light focus is propagated together with particle displacement in the kicker undulator.  

Conclusions 

The optical stochastic cooling can support the cooling rates orders of magnitude larger than 

have been achieved with the micro-wave stochastic cooling. Its experimental study is required 

before it can be used in practical application for high intensity storage rings and hadron colliders. 

Such applications will require a new generation of optical amplifiers with the following 

requirements: (1) small signal delay (less than few mm), (2) large gain (more than ~20-30 Db), 

duration of single pulse amplification sufficient to cover a bunch of cooled particles (0.1-1 ns), 

and (3) sufficiently large power (10 – 100 W). Fermilab plans to do the OSC tests with 100 MeV 

electrons in the IOTA ring [12] within next few years. Choice of small energy electrons greatly 

simplifies the experiment and reduces its cost. 
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