## **‡Fermilab**

## TEST OF OPTICAL STOCHASTIC COOLING AT FERMILAB

Valeri Lebedev Fermilab

## <u>Contents</u>

- Basics of Optical Stochastic Cooling
- Optics and lattice
- Beam physics limitation
- Discussion

<sup>2</sup> ADVANCED • Accelerator Concepts • WORKSHOP

## **Basics of Optical Stochastic Cooling**

The damping rate of stochastic cooling:

$$\lambda_{opt} \approx \frac{2\pi^2 W}{N n_{\sigma}^2} \frac{\sqrt{\pi} \sigma_s}{C}, \quad \begin{cases} W = f_{max} - f_{min}, & \text{for Rectangular gain shape} \\ W = 2\sqrt{\pi} \sigma_f, & \text{for Gaussian gain shap} \end{cases}$$

- OSC was suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- Transition from the microwave SC to OSC increases the bandwidth by about 3 orders of magnitude ( $\lambda$ ->10<sup>-4</sup> $\lambda$ ,  $\Delta$ f/f=50% ->  $\Delta$ f/f=10%)
- Pickup and kicker must work in the optical range and support the same bandwidth as the amplifier
  - Undulators were suggested for both pickup and kicker
  - Bandwidth: OA bandwidth & inverse number of wiggles



## **Basics of Optical Stochastic Cooling (continue)**

- OSC can operate only with ultra-relativistic particles
  - Slow particles do not radiate at optical frequencies
- Radiation wave length

$$\lambda = \frac{\lambda_{wgl}}{2\gamma^2} \left( 1 + \gamma^2 \left( \frac{1}{2} \theta_e^2 + \theta^2 \right) \right) - \text{flat undulator}$$



- Radiation is concentrated in the angle  $1/\gamma$
- Correction signal is proportional to a longitudinal position change on the travel from pickup to kicker
- Only longitudinal kicks are effective
  - Requires s-x coupling for hor. cooling and x-y coupling for vert. cooling Non-zero dispersion in OSC pickup introduces difference between  $M_{56}$  and partial slip-factor ( $\tilde{M}_{56}$ ), and, consequently x-s coupling  $\Rightarrow$  Cooling rates (per turn)  $\frac{\delta p}{m} = \xi_0 \sin(k \delta s), \quad \delta s = \tilde{M}_{56} \frac{\Delta p}{m}$

$$\begin{split} \lambda_{x} &= \frac{\xi_{0}}{2} k \left( M_{56} - \tilde{M}_{56} \right) \\ \lambda_{s} &= \frac{\xi_{0}}{2} k \tilde{M}_{56} \end{split}$$

$$\frac{z}{p} = \xi_0 \sin(k \delta s), \quad \delta s = N$$
$$\Rightarrow \quad \lambda_x + \lambda_s = \frac{\xi_0}{2} k M_{56}$$





and  $a_x \& a_p$  are the amplitudes of longitudinal displacements in cooling chicane due to  $\bot$  and L motions measured in units of laser phase Averaging yields the form-factors for damping rates

$$\lambda_{s,x}(a_x, a_p) = F_{s,x}(a_x, a_p)\lambda_{s,x}$$
$$F_x(a_x, a_p) = \frac{2}{a_x}J_0(a_p)J_1(a_x)$$
$$F_p(a_x, a_p) = \frac{2}{a_p}J_0(a_x)J_1(a_p)$$

Damping requires both lengthening amplitudes ( $a_x$  and  $a_p$ ) to be smaller than  $\mu_0 \approx 2.405$ 



## **Basics of OSC - Sample Lengthening**

- On the way from pickup to kicker a zero length sample lengthens on its way from pickup-to-kicker
  - Both  $\Delta p/p$  and  $\epsilon$  contribute to the lengthening

$$\sigma_{\Delta s}^{2} = \sigma_{\Delta s \varepsilon}^{2} + \sigma_{\Delta s p}^{2}$$
  

$$\sigma_{\Delta s \varepsilon}^{2} = \varepsilon \left(\beta_{p} M_{51}^{2} - 2\alpha_{p} M_{51} M_{52} + \gamma_{p} M_{52}^{2}\right)$$
  

$$\sigma_{\Delta s p}^{2} = \sigma_{p}^{2} \tilde{M}_{56}^{2}$$



where 
$$\tilde{M}_{56} \equiv M_{51}D_p + M_{52}D'_p + M_{56}$$

While in linear approximation  $\beta_p$  and  $\alpha_p$  do not affect damping rates they affect sample lengthening due to beam horizontal emittance and, consequently, the horizontal cooling range

$$n_{\sigma\varepsilon}\sigma_{\Delta s\varepsilon}k \le \mu_0$$
  
$$n_{\sigma\rho}\sigma_{\Delta s\rho}k \le \mu_0$$
  
$$\mu_0 \approx 2.405$$

## **Test of OSC in Fermilab**

- First attempt to test the OSC in BATES, ~2007
  - Existing electron synchrotron
  - Did not get sufficient support
- Presently Fermilab is constructing a dual purpose small electron ring called IOTA to test:



## **OSC Limitations on IOTA Optics**

- Delay in OA amplifier determines delay in the chicane ( $\Delta s$ ) =>  $M_{56} \approx 2\Delta s$
- D quad in the center and non-zero dispession introduce xs-coupling:  $\tilde{M}_{56} \approx M_{56} - \Phi D^* h$
- h orbit offset in the chicane Sample lengthening minimization due to betat. motion requires collider type optics with small  $\beta^*$   $\Rightarrow$  large dispersion invariant  $A^* = D^{*2} / \beta^*$





- An average value of A in dipoles
  determines the equilibrium emittance.
  - A<sup>\*</sup> is large and A needs to be reduced fast to get an acceptable value of the equilibrium emittance



Optics functions and dispersion invariant for IOTA half ring

## Sample Lengthening on the Travel through Chicane



and due to betatron motion (bottom)

- Very large sample lengthening on the travel through chicane
- High accuracy of dipole field is required to prevent uncontrolled lengthening, ∆(BL)/(BL)<sub>dipole</sub><10<sup>-3</sup>

## **Second Order Contributions to Sample Lengthening**

Linear part of long. displacement due to bet. motion:

$$\Delta L_{\max X} = (a_x / \sigma_x) \times 97 \,\mathrm{nm}$$

Major non-linear contribution comes from angle:  $\Delta L = \int \left(\frac{\theta^2(s)}{2}\right) ds$  Integration over trajectory yields:

$$\Delta L = \frac{\varepsilon}{4} (I_1 + (I_2 + I_3)\cos(2\psi) + (I_4 + I_5)\cos(2\psi)), \quad I_2 = 2\int \alpha \sin(2\mu)d\mu, \quad I_3 = -\int (1 - \alpha^2)\cos(2\mu)d\mu$$
$$I_4 = 2\int \alpha \cos(2\mu)d\mu, \quad I_5 = \int (1 - \alpha^2)\sin(2\mu)d\mu$$

 $\psi$  - the phase of betatron motion

Performing numerical integration from pickup to kicker results in:

$$\Delta L_{\max X} = \left(\frac{a_x}{\sigma_x}\right)^2 \times 690 \,\mathrm{nm} \,, \quad \Delta L_{\max Y} = \left(\frac{a_y}{\sigma_y}\right)^2 \times 140 \,\mathrm{nm}$$

- These values are too large and need to be compensated
- Sextupole correction
  - 1-st Sext correction  $\Delta L$
  - 2-nd sext major correction non-linearity
  - ... correction of chromaticity & RDT work in progress (next presentation)



## **IOTA Optics and Parameters**

| Main | Parameters | of IOT | A storage | ring f | or OSC |
|------|------------|--------|-----------|--------|--------|
|      |            | •••••• |           |        |        |

| Circumference                                                              | 40 m             |  |  |  |  |
|----------------------------------------------------------------------------|------------------|--|--|--|--|
| Nominal beam energy                                                        | 100 MeV          |  |  |  |  |
| Bending field                                                              | 4.79 kG          |  |  |  |  |
| Transverse emittances, $\varepsilon = \varepsilon_x = \varepsilon_y$ , rms | 11 nm            |  |  |  |  |
| Rms momentum spread, $\sigma_p$                                            | 1.21.10-4        |  |  |  |  |
| SR damping times (ampl.), $\tau_s / (\tau_x = \tau_y)$                     | 1.36 / 1.58 s    |  |  |  |  |
| Main parameters of cooling chicane                                         |                  |  |  |  |  |
| Delay in the chicane, $\Delta s$                                           | 2 mm             |  |  |  |  |
| Horizontal beam offset, h                                                  | 20.1 mm          |  |  |  |  |
| M <sub>56</sub>                                                            | 3.95 mm          |  |  |  |  |
| $D^{\star} / \beta^{\star}$                                                | 307 mm / 8.59 mm |  |  |  |  |
| Cooling rates ratio, $(\lambda_x = \lambda_y)/\lambda_s$                   | 1.18             |  |  |  |  |
| Cooling ranges (before OSC), $n_{\sigma x}/n_{\sigma s}$                   | 2.1 / 3.2        |  |  |  |  |
| Dipole: magnetic field *length                                             | 4.22 kG * 10 cm  |  |  |  |  |
| Strength of central quad, GdL                                              | 1.58 kG          |  |  |  |  |
|                                                                            | 1                |  |  |  |  |

- Energy is reduced 150→100 MeV to reduce ε, σ<sub>p</sub> and undulator period and length
- Operation on coupling resonance Q<sub>x</sub>/Q<sub>y</sub>= 5.83/3.83 reduces horizontal emittance and introduces vertical OSC damping
  - Small β<sup>\*</sup> is required to minimize sample lengthening due betatron motion

## **RF, Touschek, IBS and Gas scattering**

| Slip-factor                                                               | -0.065                |
|---------------------------------------------------------------------------|-----------------------|
| RF harmonic                                                               | 4                     |
| RF voltage                                                                | 100 V                 |
| SR loss                                                                   | 14 V/turn             |
| RF bucket height                                                          | 1.4·10 <sup>-3</sup>  |
| Rms bunch length,                                                         | 25 cm                 |
| Number of particles                                                       | 2.5·10 <sup>6</sup>   |
| Emittance growth rate due to SR (H)                                       | 36 nm/s               |
| Emittance growth rate due to IBS (H) ( $\epsilon_x = \epsilon_y$ )        | 3.6 nm/s              |
| Growth rate for $(\Delta p/p)^2$ due to SR                                | 2.1·10 <sup>-8</sup>  |
| Growth rate for $(\Delta p/p)^2$ due to IBS ( $\epsilon_x = \epsilon_y$ ) | 2.7·10 <sup>-9</sup>  |
| Touschek lifetime (set by bucket height)                                  | 4.3 hour              |
| Machine acceptance (set by dynamic aperture)                              | <b>1</b> μ <b>m</b>   |
| Average vacuum (H2 equivalent)                                            | 1.5·10 <sup>-10</sup> |
| Emittance growth due to gas scattering (H/V)                              | 2.5/1.8 nm            |
| Gas scattering lifetime                                                   | 17 min.               |

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013

Number of particles per bunch is set so that IBS would be  $\sim 10\%$ of growth rates set by SR Very good vacuum is required to support good lifetime in the presence of strong limitation of dynamic aperture

## <u>Optical Amplifier</u>

### Ti:Sapphire Optical Amplifier has a few advantages

- Quite wide bandwidth
  - 10% FWHM at G<sub>0</sub>=100
- Allows operation in the CW regime
  - Decay time due to sp. rad. ~3.15 μs



- Can deliver significant amplification with only ~1 mm signal delay.
- We bought a highly doped (0.5%wt Ti<sub>2</sub>O<sub>3</sub>) 2 mm thick Ti: Sapphire crystal from GT Crystal Systems for a prototype of OA
- An estimated low power gain is ~100 (20 Db) with pumping power density of 1.8 MW/cm<sup>2</sup>
- Pumping along the direction of amplified radiation
  - P = 50 W, square profile with r = 30  $\mu$ m
- Cooling the OA to the liquid nitrogen temperature is required.
  - It increases the crystal thermal conductivity  $\Rightarrow$  an acceptable  $\Delta T$  across the crystal (~8K) and thermal stress
  - It reduces dn/dT ⇒
     reduces optics distortions related to high pumping power

## Focusing of Beam Radiation to OA and Kicker

- Two lens system (F=8 cm, radius 3.5 mm)
  - Reasonable compromise between major requirements
  - + The spot size in OA to be sufficiently small: r<30  $\mu\text{m}$ 
    - diffraction limited size in OA: HWHM=6  $\mu m$  or total size r  $\approx\!15~\mu m$
    - size due to beam convergence/divergence at OA input/exit  $\approx 25 \ \mu m$
  - Requirements to suppress Depth of field effects in kicker wiggler
    - diffraction limited size in kicker wiggler: HWHM=120 μm or total size r≈300 μm
    - Size increase due to the depth of field for radiation radiated at the entrance or exit of pickup wiggler: 170  $\mu$ m
  - To mitigate the depth of field effects the wigglers are moved from the chicane by ~50 cm
- For OSC tests without OA the 4 lens telescope will be used



## **Test of Optical Amplifier Prototype (continue)**



Interference picture displacements on time<sup>#</sup>

- Interferometer is assembled
  - first tests started
  - Working on
    - the stabilization of interference picture
    - electronics to measure displacement of interference pattern with wave-length change

# Courtesy of Matt Andorf

## <u>Cooling Rates</u>

2 mrad angular

- Undulator period was chosen so that  $\lambda|_{\theta=0}=750 \text{ nm}$
- Cooling rates were computed using earlier developped formulas(HB2012)
  - Averaging over amplifier band yielded additionally ~20% reduction of rates.

## <u>Main parameters of OSC</u>

| Undulator parameter, K             | 0.6                     |
|------------------------------------|-------------------------|
| Undulator period                   | 4.92 cm                 |
| Radiation wavelength at zero angle | 750 nm                  |
| Number of periods, m               | 10                      |
| Total undulator length, $L_w$      | 0.50 m                  |
| Length from OA to undulator center | 1.65 m                  |
| Amplifier gain (amplitude)         | 10                      |
| Telescope aperture, 2 <i>a</i>     | 7 mm                    |
| Lens focal length, F               | 80 mm                   |
| Damp. rates (x=y/s)                | 160/140 s <sup>-1</sup> |

- acceptance of optical system (aperture r=3.5 mm)
  - $\Rightarrow$  upper boundary of the band = 850 nm
- E.-m. wave dispersion in the OA amplifier is included into the gain
  - G = 10 implies an amplitude amplification of 10
    - $\Rightarrow$  Dispersion makes the power gain to be somewhat larger than  $G^2$ .

#### Undulator parameter K=0.6 is close to the optimal for chosen bandwidth and aperture

## <u>Conclusions</u>

- Optical stochastic cooling looks as a promising technique for future hadron colliders
- Experimental study of OSC in Fermilab is in its initial phase
  - It is aimed to validate cooling principles and to demonstrate cooling with and without optical amplifier
    - Even in the absence of amplification (passive system, G = 1) the OSC damping exceeds SR damping by more than an order of magnitude
- The beam intensity ranges from a single electron to the bunch population limited by operation at the optimum gain (10<sup>8</sup>)
  - Single electron cooling localization of electron wave function and essence of quantum mechanics
    - Quantum noise for passive cooling
  - Cooling at the optimal gain (ultimate cooling) gets us to otherwise hidden details of OSC, in particular, to signal suppression

# **Backup Slides**

## **OSC Limitations on IOTA Optics**

- In the first approximation the orbit offset in the chicane (h), the path lengthening ( $\delta s$ ) and the defocusing strength of chicane quad ( $\Phi$ ) together with dispersion and beta-function in the chicane center ( $D^*$ ,  $\beta^*$ ) determine the entire cooling dynamics
- δs is set by delay in the amplifier
   => M<sub>56</sub>
- An average value of A in dipoles determines the equilibrium emittance.  $A^*$  is large and A needs to be reduced fast to get an acceptable value of the emittance ( $\varepsilon$ )



$$M_{56} \approx 2\Delta s ,$$
  

$$\tilde{M}_{56} \approx 2\Delta s - \Phi D^* h ,$$
  

$$\lambda_x / \lambda_s \approx \Phi D^* h / (2\Delta s - \Phi D^* h) ,$$
  

$$n_{\sigma p} \approx \mu_0 / ((2\Delta s - \Phi D^* h) k \sigma_p) ,$$
  

$$n_{\sigma x} \approx \mu_0 / (2kh \Phi \sqrt{\varepsilon \beta^*}) ,$$
  

$$\Rightarrow \Phi D^* h \approx \frac{\mu_0}{2kn_{\sigma x}} \sqrt{\frac{A^*}{\varepsilon}} , A^* \equiv \frac{D^{*2}}{\beta^*}$$

## **Effect of Beams Overlap on Cooling Rates**

- In computation of cooling rates we neglected incomplete overlap of light and particle beams in the kicker undulator at the beginning of cooling process when the e-beam size is determined by SR.
- The problem is negligible for cooled beam
  - Factor of 5 reduction at the cooling beginning



Rms beam sizes (horizontal -  $\sigma_x$ , vertical -  $\sigma_y$ , and due to momentum spread -  $|D\sigma_p|$ ) in vicinity of cooling chicane starting from the center of OSC section

## **Basics of OSC – Radiation from Undulator**



- Radiation of ultra-relativistic particle is concentrated in 1/γ angle
- Undulator parameter:

$$K \equiv \gamma \theta_e = \frac{\lambda_{wgl}}{2\pi} \frac{eB_0}{mc^2}$$

■ For K ≥ 1 the radiation is mainly radiated into higher harmonics

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, 1

Liénard-Wiechert potentials and Efield of moving charge in wave zone

$$\begin{cases} \varphi(\mathbf{r},t) = \frac{e}{(R - \boldsymbol{\beta} \cdot \mathbf{R})} \Big|_{t-R/c} \\ \mathbf{A}(\mathbf{r},t) = \frac{e\mathbf{v}}{(R - \boldsymbol{\beta} \cdot \mathbf{R})} \Big|_{t-R/c} \end{cases} \Rightarrow$$

$$\mathbf{E}(\mathbf{r},t) = \frac{e}{c^2} \frac{(\mathbf{R} - \boldsymbol{\beta} \cdot R)(\mathbf{a} \cdot \mathbf{R}) - \mathbf{a}R(R - \boldsymbol{\beta} \cdot \mathbf{R})}{(R - \boldsymbol{\beta} \cdot \mathbf{R})^3} \bigg|_{t-R/c}$$



## **Basics of OSC – Radiation Focusing to Kicker Undulator**

Modified Kirchhoff formula

$$E(r) = \frac{\omega}{2\pi i c} \int_{S} \frac{E(r')}{|r-r'|} e^{i\omega|r-r'|} ds'$$
  
$$\Longrightarrow \qquad E(r) = \frac{1}{2\pi i c} \int_{S} \frac{\omega(r') E(r')}{|r-r'|} e^{i\omega|r-r'|} ds'$$



- Effect of higher harmonics
  - Higher harmonics are normally located outside window of optical lens transparency and are absorbed in the lens material



Dependences of retarded time (t<sub>p</sub>) and E<sub>x</sub> on time for helical undulator
 Only first harmonic is retained in the calculations presented below

## <u>Basics of OSC – Longitudinal Kick for K<<1</u>

- For  $K \ll 1$  refocused radiation of pickup undulator has the same structure as radiation from kicker undulator. They are added coherently:  $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 e^{i\phi} \xrightarrow{\mathbf{E}_1 = \mathbf{E}_2} 2\cos(\phi/2)\mathbf{E}_1 e^{i\phi/2}$
- $\Rightarrow \quad \text{Energy loss after passing 2 undulators} \\ \Delta U \propto \left| E^2 \right| = 4\cos(\phi/2)^2 \left| \mathbf{E}_1^2 \right| = 2\left(1 + \cos\phi\right) \left| \mathbf{E}_1^2 \right| = 2\left(1 + \cos\left(kM_{56}\frac{\Delta p}{p}\right)\right) \left| \mathbf{E}_1^2 \right|$
- Large derivative of energy loss on momentum amplifies damping rates and creates a possibility to achieve damping without optical amplifier
  - SR damping:  $\lambda_{\parallel\_SR} \approx \frac{2\Delta U_{SR}}{pc} f_0$



• OSC: 
$$\lambda_{\parallel OSC} \approx f_0 \frac{2\Delta U_{wgl}}{pc} (GkM_{56}) \xrightarrow{kM_{56}(\Delta p/p)_{max} = \pi} f_0 \frac{2\Delta U_{wgl}}{pc} \left( \frac{G}{(\Delta p/p)_{max}} \right)$$

where G - optical amplifier gain,  $(\Delta p/p)_{max}$  - cooling system acceptance  $\Rightarrow \lambda_{\parallel OSC} \propto B^2 L \propto K^2 L$  - but cooling efficiency drops with K increase above ~1

## <u>Basics of OSC – Longitudinal Kick for K<<1(continue)</u>

Radiation wavelength depends on  $\theta$  as

$$\lambda = \frac{\lambda}{2\gamma^2} \left( 1 + \gamma^2 \theta^2 \right)$$

Limitation of system bandwidth by (1) optical amplifier band or (2) subtended angle reduce damping rate

$$\lambda_{\parallel\_SR} = \lambda_{\parallel\_SR0} F(\gamma \theta_{\rm m}), \qquad F(x) = 1 - \frac{1}{\left(1 + x^2\right)^3}$$



For narrow band: 
$$\Delta U_{wgl} = \Delta U_{wgl0} \left( \frac{3\Delta \omega}{\omega} \right), \quad \frac{3\Delta \omega}{\omega} << 1$$

where  $\Delta U_{wgl0} = \frac{e^4 B^2 \gamma^2 L}{3m^2 c^4} \begin{cases} 1, & F \text{lat wiggler} \\ 2, & \text{Helical wiggler} \end{cases}$  the energy radiated in one undulator

## **Basics of OSC – Radiation from Flat Undulator**

For arbitrary undulator parameter we have

$$\Delta U_{OSC_{-}F} = \frac{1}{2} \frac{4e^4 B_0^2 \gamma^2 L}{3m^2 c^4} GF_f(K, \gamma \theta_{max}) F_u(\kappa_u)$$
  

$$F_u(\kappa_u) = J_0(\kappa_u) - J_1(\kappa_u), \quad \kappa_u = K^2 / (4(1+K^2/2))$$
  
Fitting results of numerical integration yields:  

$$F_h(K, \infty) \approx \frac{1}{1+1.07K^2 + 0.11K^3 + 0.36K^4}, \quad K \equiv \gamma \theta_e \le 4$$
  

$$\Theta_m^2 F_h(K, \Theta_m) F_u(K)$$
  

$$0 = \frac{1}{1+1.07K^2 + 0.11K^3 + 0.36K^4}, \quad K \equiv \gamma \theta_e \le 4$$

Dependence of wave length on θ:

$$\lambda \approx \frac{\lambda_{wgl}}{2\gamma^2} \left( 1 + \gamma^2 \left( \theta^2 + \frac{\theta_e^2}{2} \right) \right)$$

 $K \equiv \gamma \theta_e$ 

- Flat undulator is "more effective" than the helical one
- For the same K and λ<sub>wgl</sub> flat undulator generates shorter wave lengths

For both cases of the flat and helical undulators and for fixed B a decrease of  $\lambda_{wgl}$  and, consequently,  $\lambda$  yields kick increase

but wavelength is limited by both beam optics and light focusing

## **Basics of OSC – Correction of the Depth of Field**

- It was implied above that the radiation coming out of the pickup undulator is focused on the particle during its trip through the kicker undulator
  - It can be achieved with lens located at infinity

$$\frac{1}{2F + \Delta s} + \frac{1}{2F - \Delta s} = \frac{1}{F} \quad \rightarrow \quad \frac{1}{F - \Delta s^2 / 4F} = \frac{1}{F} \quad \xrightarrow{F \to \infty} \quad \frac{1}{F} = \frac{1}{F}$$

- but this arrangement cannot be used in practice
- A 3-lens telescope can address the problem within limited space  $\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_2^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$



## **Test of Optical Amplifier Prototype**

- OA operation in pulsed regime  $\Rightarrow$  Cooling is not required
- The goal to measure the amplitude and phase of the amplifier gain ⇒ Interferometer for phase measurements

