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Basics of Optical Stochastic Cooling  
� The damping rate of stochastic cooling: 
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� OSC was suggested by Zolotorev, Zholents and Mikhailichenko (1994) 
� Transition from the microwave SC to OSC increases the bandwidth 

by about 3 orders of magnitude (O->10-4O, 'f/f=50% -> 'f/f=10%) 
� Pickup and kicker must work in the optical range and support the 

same bandwidth as the amplifier  
i Undulators were suggested for both pickup and kicker 
i Bandwidth: OA bandwidth & inverse number of wiggles 
i Transient-time cooling 
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Basics of Optical Stochastic Cooling (continue) 
� OSC can operate only with ultra-relativistic particles 

i Slow particles do not radiate at optical frequencies   
� Radiation wave length  
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� Radiation is concentrated in the angle 1/J 
� Correction signal is proportional to a longitudinal position change on 

the travel from pickup to kicker 
� Only longitudinal kicks are effective 

i Requires s-x coupling for hor. cooling and x-y coupling for  vert. cooling 
� Non-zero dispersion in OSC pickup introduces difference between 

M56 and partial slip-factor ( 56M� ), and, consequently x-s coupling 
Ö Cooling rates (per turn)    
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 Basics of OSC - Cooling Range  
� Cooling force depends on 's nonlinearly   

         � �0 0 sinp pk s k s
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where    
and ax & ap are the amplitudes of longitudinal displacements in cooling 
chicane due to A and L motions measured in units of laser phase  

� Averaging yields the form-factors for damping rates  
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� Damping requires both lengthening 
 amplitudes (ax  and ap) to be smaller 
than P�|2.405 
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Basics of OSC - Sample Lengthening 
� On the way from pickup to kicker a zero 

length sample lengthens on its way from 
pickup-to-kicker 
i Both 'p/p and H contribute to the 

lengthening  
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where 56 51 52 56p pM M D M D Mc{ � ��  
� While in linear approximation Ep and Dp do not affect damping rates 

they affect sample lengthening due to beam horizontal emittance 
and, consequently, the horizontal cooling range 
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Test of OSC in Fermilab   
� First attempt to test the OSC in BATES, ~2007  

i Existing electron synchrotron  
i Did not get sufficient support  

� Presently Fermilab is constructing a dual purpose small electron ring 
called IOTA to test: 
i Integrable optics 
i OSC 

� Part of ASTA  
program  
i Full energy  

injection  
from  
SC linac 

� Test in a small  
electron ring is a cost  
effective way to test the OSC   
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OSC Limitations on IOTA Optics  
� Delay in OA amplifier 

determines delay in the 
chicane ('s) => 56 2M s| '   

� D quad in the center and 
non-zero dispession introduce  
xs-coupling: 56 56

*DM hM | �)�   
   h - orbit offset in the chicane 

� Sample lengthening minimization 
due to betat. motion requires 
collider type optics with small E* 
Ö large dispersion invariant 

* *2 */A D E   
� An average value of A in dipoles 

determines the equilibrium emittance.  
i A*  is large and A needs to be reduced fast to get an acceptable 

value of the equilibrium emittance 
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 Optics functions and dispersion invariant for IOTA half ring 
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Sample Lengthening on the Travel through Chicane 

  

 
Sample lengthening due to momentum spread (top)  

and due to betatron motion (bottom) 

x Very large sample 
lengthening on the 
travel through 
chicane 

x High accuracy of 
dipole field is 
required to 
prevent 
uncontrolled 
lengthening, 
 '(BL)/(BL)dipole<10-3 
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Second Order Contributions to Sample Lengthening 
� Linear part of long. displacement due to bet. motion:  

� �maxX / 97 nmx xL a V'  u  
� Major non-linear contribution comes from angle:    
� Integration over trajectory yields: 
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\ – the phase of betatron motion 
� Performing numerical integration from pickup to kicker results in: 
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� These values are too large and need to be 
compensated 

� Sextupole correction 
i 1-st Sext – correction 'L 
i 2-nd sext – major correction non-linearity 
i … correction of chromaticity & RDT – work in progress (next presentation) 

� �2 ( ) / 2L s dsT'  ³



Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013 11 

IOTA Optics and Parameters 
Main Parameters of IOTA storage ring for OSC 

Circumference 40 m 
Nominal beam energy   100 MeV 
Bending field   4.79 kG 
Transverse emittances, H�=Hx =�Hy, rms   11 nm 
Rms momentum spread, Vp  1.21·10-4 
SR damping times (ampl.), Ws / (Wx= Wy) 1.36 / 1.58 s 

Main parameters of cooling chicane 
Delay in the chicane, 's  2 mm 
Horizontal  beam offset, h  20.1 mm 
M56  3.95 mm 
D* / E* 307 mm / 8.59 mm 
Cooling rates ratio,��Ox = Oy)/Os 1.18 
Cooling ranges (before OSC), nVx/nVs  2.1 / 3.2 
Dipole: magnetic field *length 4.22 kG * 10 cm 
Strength of central quad, GdL   1.58 kG 

x Energy is reduced 
150→100 MeV to 
reduce H, Vp and 
undulator period and 
length 

x Operation on 
coupling resonance 
Qx/Qy= 5.83/3.83 
reduces horizontal 
emittance and 
introduces vertical 
OSC damping 

x Small E* is 
required to 
minimize sample 
lengthening due 
betatron motion 
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RF, Touschek, IBS and Gas scattering 
Slip-factor -0.065 
RF harmonic 4 
RF voltage 100 V 
SR loss 14 V/turn 
RF bucket height 1.4·10-3 
Rms bunch length,  25 cm 
Number of particles  2.5·106  
Emittance growth rate due to SR (H) 36 nm/s 
Emittance growth rate due to IBS (H) (Hx=Hy) 3.6 nm/s 
Growth rate for ('p/p)2 due to SR 2.1·10-8  
Growth rate for ('p/p)2 due to IBS (Hx=Hy) 2.7·10-9 
Touschek lifetime (set by bucket height) 4.3 hour 
Machine acceptance (set by dynamic aperture) 1 Pm 
Average vacuum (H2 equivalent) 1.5·10-10 
Emittance growth due to gas scattering (H/V) 2.5/1.8 nm 
Gas scattering lifetime 17 min. 

� Number of 
particles per 
bunch is set 
so that IBS 
would be ~10% 
of growth 
rates set by 
SR  

� Very good 
vacuum is 
required to 
support good 
lifetime in the 
presence of 
strong 
limitation of 
dynamic 
aperture 
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Optical Amplifier  
� Ti:Sapphire Optical Amplifier has a few 

advantages 
i Quite wide bandwidth  

x 10% FWHM at G0=100  
i Allows operation in the CW regime 

x Decay time due to sp. rad. ~3.15 Ps 
i Can deliver significant amplification with only ~1 mm signal delay.  

� We bought a highly doped (0.5%wt Ti2O3) 2 mm thick Ti: Sapphire 
crystal from GT Crystal Systems for a prototype of OA 

� An estimated low power gain is ~100 (20 Db) with pumping power 
density of 1.8 MW/cm2 

� Pumping along the direction of amplified radiation 
i P = 50 W, square profile with r = 30 Pm  

� Cooling the OA to the liquid nitrogen temperature is required.  
i It increases the crystal thermal conductivity  

� an acceptable 'T across the crystal (~8K) and thermal stress 
i It reduces dn/dT �  

reduces optics distortions related to high pumping power 
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Focusing of Beam Radiation to OA and Kicker 
� Two lens system (F=8 cm, radius – 3.5 mm) 

i Reasonable compromise between major requirements 
i The spot size in OA to be sufficiently small: r<30 Pm 

x diffraction limited size in OA: HWHM=6 Pm  or total size  r≈15 Pm 
x size due to beam convergence/divergence at OA input/exit ≈25 Pm 

i Requirements to suppress Depth of field effects in kicker wiggler 
x diffraction limited size in kicker wiggler: HWHM=120 Pm  or total 

size  r≈300 Pm 
x Size increase due to the depth of field for radiation radiated at the 

entrance or exit of pickup wiggler: 170 Pm 
i To mitigate the depth of field effects the wigglers are moved from the 

chicane by ~50 cm 
� For OSC tests without OA the 4 lens telescope will be used 

i Complete  
suppression  
of depth of field 

i Larger bandwidth 
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Test of Optical Amplifier Prototype (continue) 

 
Interference picture displacements on time# 

� Interferometer is assembled 
i first tests started 
i Working on  

x the stabilization of interference picture 
x electronics to measure displacement of interference pattern with 

wave-length change 

# Courtesy of Matt Andorf 
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Cooling Rates  
� Undulator period was 

chosen so that  
O_T=0=750 nm 

� Cooling rates were com-
puted using earlier deve-
lopped formulas(HB2012)  
i Averaging over 

amplifier band yielded 
additionally ~20% 
reduction of rates.  

� 2 mrad angular 
acceptance of optical system (aperture r=3.5 mm) 

�  upper boundary of the band = 850 nm   
� E.-m. wave dispersion in the OA amplifier is included into the gain 

i  G = 10 implies an amplitude amplification of 10 
� Dispersion makes the power gain to be somewhat larger than G 2.  

� Undulator parameter K=0.6 is close to the optimal for chosen 
bandwidth and aperture 

Main parameters of OSC 
Undulator parameter, K 0.6 
Undulator period 4.92 cm 
Radiation wavelength at zero angle 750 nm 
Number of periods, m 10 
Total undulator length, Lw 0.50 m 
Length from OA to undulator center 1.65 m 
Amplifier gain (amplitude) 10 
Telescope aperture, 2a 7 mm 
Lens focal length, F  80  mm 
Damp. rates (x=y/s) 160/140 s-1 
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Conclusions 
� Optical stochastic cooling looks as a promising technique for future 

hadron colliders  
� Experimental study of OSC in Fermilab is in its initial phase  

i It is aimed to validate cooling principles and to demonstrate 
cooling with and without optical amplifier 
x Even in the absence of amplification (passive system, G = 1) 

the OSC damping exceeds SR damping by more than an order 
of magnitude 

� The beam intensity ranges from a single electron to the bunch 
population limited by operation at the optimum gain (108) 
i Single electron cooling - localization of electron wave function 

and essence of quantum mechanics 
x Quantum noise for passive cooling 

i Cooling at the optimal gain (ultimate cooling) gets us to otherwise 
hidden details of OSC, in particular, to signal suppression 
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OSC Limitations on IOTA Optics 
� In the first approximation 

the orbit offset in the 
chicane (h), the path 
lengthening (Gs) and the 
defocusing strength of chicane 
quad ()) together with dispersion 
and beta-function in the chicane 
center (D*, E*) determine the 
entire cooling dynamics 

� Gs is set by delay in the amplifier 
=> M56 

�  )D*h is determined by the ratio 
of decrements => for known H we 
obtain the dispersion invariant (A*) 

� An average value of A in dipoles 
determines the equilibrium emittance. A*  is large and A needs to be 
reduced fast to get an acceptable value of the emittance (H) 
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Effect of Beams Overlap on Cooling Rates 
� In computation of cooling rates we neglected incomplete overlap of 

light and particle beams in the kicker undulator at the beginning of 
cooling process when the e-beam size is determined by SR.  

� The problem is negligible for cooled beam  
i Factor of 5 reduction at the cooling beginning 

 
Rms beam sizes (horizontal – Vx, vertical – Vy, and due to momentum spread - |DVp|)  in 

vicinity of cooling chicane starting from the center of OSC section 



Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013 21

� Liénard-Wiechert potentials and E-
field of moving charge in wave zone  
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Ex for K=1 

Basics of OSC – Radiation from Undulator  
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� Radiation of ultra-relativistic 

 particle is concentrated in 1/J�
 angle 

� Undulator parameter:   
0
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� For K ≥ 1 the radiation is mainly  
radiated into higher harmonics  
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Basics of OSC – Radiation Focusing to Kicker Undulator 
� Modified Kirchhoff formula  
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� Effect of higher harmonics 
i Higher harmonics are normally located outside window of optical 

lens transparency and are absorbed in the lens material 

 
Dependences of retarded time (tp) and Ex on time for helical undulator 

� Only first harmonic is retained in the calculations presented below 
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Basics of OSC – Longitudinal Kick for K<<1 
� For K << 1 refocused radiation of pickup undulator has the same 

structure as radiation from kicker 
undulator. They are added coherently: 

� �1 2 /2
1 2 12 cos / 2i ie eI II  � ���oE EE E E E  

Ö Energy loss after passing 2 undulators 
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� Large derivative of energy loss on  
momentum amplifies damping rates and 
creates a possibility to achieve damping  
without optical amplifier 

i SR damping:  ||_ 0
2 SR
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where G - optical amplifier gain, ('p/p)max  - cooling system acceptance  
Ö 2 2

||_ OSC B L K LO v v   - but cooling efficiency drops with K increase above ~1 
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Basics of OSC – Longitudinal Kick for K<<1(continue) 
� Radiation wavelength depends on T  as 

� �2 2
2 1

2
OO J T
J

 �  
Limitation of system bandwidth by (1) optical amplifier band or  
(2) subtended angle reduce damping rate  
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� For narrow band: 0
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¯  the energy radiated in one undulator  
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Basics of OSC – Radiation from Flat Undulator  
� For arbitrary undulator parameter we have  

� � � �
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Fitting results of numerical integration yields: 

� � 2 3 4

1, , 4
1 1.07 0.11 0.36h eF K K

K K K
JTf | { d

� � �  

 
� For both cases of the flat and helical undulators and for fixed B  

a decrease of Owgl  and, consequently, O yields kick increase 
i  but wavelength is limited by both beam optics and light focusing  

� Dependence of wave 
     length on T: 
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� Flat undulator is “more 
effective” than the 
helical one 

� For the same K and 
Owgl flat undulator 
generates shorter 
wave lengths 
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Basics of OSC – Correction of the Depth of Field  
� It was implied above that the 

radiation coming out of the 
pickup undulator is focused 
on the particle during its trip through the kicker undulator 
i It can be achieved with lens located at infinity  

2
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i  but this arrangement cannot be used in practice  

� A 3-lens telescope can address the problem within limited space 
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Test of Optical Amplifier Prototype 
� OA operation in pulsed regime � Cooling is not required  
� The goal to measure the amplitude and phase of the amplifier gain 

� Interferometer for phase measurements 
 

 


