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OPTICAL KLYSTRONS 

P. Elleaume 

Département de Physico-Chimie, CEN Saolay, 91191 Gif-sur-Yvette, France 

Résumé : 

Le klystron optique est une version modifiée de l'onduleur utilisé pour améliorer 
le gain du Laser à Electrons Libres. L'émission spontanée et le gain sont calculés 
en fonction de l'énergie des électrons et de la longueur d'onde. Quelques effets 
limitant l'augmentation du gain sont étudiés : dispersion en énergie, dispersion 
angulaire, tailles transverses du faisceau d'électrons. Je discute brièvement 
l'utilisation de la modulation en densité introduite par le klystron optique sur 
le faisceau d'électrons pour générer du rayonnement synchrotron cohérent. 

Abstract : 

The Optical Klystron is a modification of the undulator which can be used to im-
prove the gain in a Free Electron Laser. Spontaneous emission and gain are theo-
retically studied as function of electron energy and wavelength. Several effects 
limiting the gain enhancement are calculated : energy spread, angular spread, 
beam dimensions. I briefly discuss how one can use the electron beam bunching 
generated by the Optical Klystron to emit coherent synchrotron radiation. 

1. INTRODUCTION 

The Optical Klystron (O.K.) is a magnetic device consisting of two undulators sepa-
rated by a dispersive section in which the transit time of electrons depend on 
their energy. As an example, figure 1 shows the vertical magnetic field and thp. 
electron horizontal trajectory of the Orsay O.K. It is also called Transverse 
Optical Klystron because the energy exchange process between electrons and light is 
due to the transverse electric field of the light. 

There are two main applications of the O.K. : 

- One is as a light amplifier to be used in a Free Electron Laser / 1_7 (FEL). It 
has first been proposed by Vinokurov and Skrinsky / 2_/ and has been theoreti-
cally studied by E. Coisson / 3_/, C. Shih and A. Yariv / 4_/ and P. Elleaume 
/ 5_/. So far, two experimental investigations have been undertaken in Novosi-
birsk (USSR) and in Orsay (France). I shall deal with O.K. as a light amplifier 
in section 2. The experimental results will be considered in section 3. 

- Another purpose is to use it as a source of coherent synchrotron radiation in 
which the emission is enhanced by the bunching of the electron beam. An energy 
modulation is created by sending a high power laser. This energy modulation deve-
lops a density modulation in the dispersive section. The last undulator is 
there as a source of synchrotron radiation. This scheme has been extensively 
studied theoretically / 3, 6 to 19_/ . However, it has not yet received any 
experimental investigation. The discussion of the O.K. as a source of coherent 
synchrotron radiation is presented in section 4. 

Let's detail the principle of operation of the O.K. We consider an electron beam and 
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VERTICAL MAGNETIC FIELD 
1 

1 w 
HORIZONTAL ELECTRON TRAJECTORY : 

F i g u r e  Vertical magnetic field calculated for the Orsay Optical Klystron 
(gap = 33.00 mm) and the corresponding horizontal electron trajectory 
at an energy of 240 MeV. 

a plane wave entering an undulator. At first order in the field of the plane wave, 
there is no gain but, according to their initial phase with respect to the plane 
wave, some electrons are accelerated, some are decelerated. IJe have at the exit 
of the undulator what we call an energy bunching. Then electrons with higher 
energy tends to pass over the slower electrons, and all along the undulator the 
energy bunching creates a longitudinal density modulation or a density bunching 
which is also linear in the plane wave field. This density bunching is then respon- 
sible for the gain process which is proportional to the density bunching times 
the plane wave field. This process is the basic procgss cf the classical gain of 
the undulator, originally developed by W.B. Colson 1 20-1. Since the gain is due to 
the density bunching, is there any way of increasing the density bunching ? In 
other words, is it possible to make the bunching process faster for a given undu- 
lator length. The answer is yes, just by inserting a dispersive section inside the 
undulator in which the energy modulation will generate a density modulation. The 
simplest dispersive section is a drift space, it has the disadvantage of being too 
long (as we shall see later) and one prefers the magnetic dispersive section con- 
sisting of three poles forcing the electron trajectory to be a single large wiggle 
(fig. 1). This is the Optical Klystron. All has been done to increase the density 
bunching which is responsible for the coherent synchrotron radiation and for the 
gain process when the system is used as an amplifier. In fact, the main advantage of 
the dispersive section is to achieve a larger bunching (and therefore larger 
gain and coherent emission) than an undulator of the same total length. This 
is crucial in devices where space is limited like storage rings. 

2 .  OPTICAL KLYSTRON AS AN AMPLIFIER 

Several methods have been used to calculate the bunching and the gain. One of them 
consists in calculating the exact trajectory of an electron and then to average 
oxer ghe initial phase / 4,5- /  as in the original classical theory of the FEL 
/ 20 /. Another is to use the Vlasov equation to describe the density evolution 
z-11; 12, 3-7 Both these methods give heavy calculations that can be simplified by 
assuming the dispersive section to be much more dispersive than the undulators. One 
then neglects the density bunching inside the first undulator and considers it as 
constant in the second undulator. With this approximation, sometimes called "im- 
pulse" approximation, the O.K. gain calculation is simpler than the undulator's 
case. 



I will use a different approach that has the advantages of not necessitating the 
"impulse" approximation and giving limited calculations. I shall first derive the 
spontaneous~emission.~The gain will then be deduced from the well known " Madey's 
theorems" / 21 to 25-1 that reads in MKS units : 

and 

low field gain oC <6y(2);m = l a<(Gy(1))2> 
2 a~ 9 

where - dl(w) is the energy radiated per electron, per pass in the undulator, per dwdR 
unit solid angle and per frequency in the forward direction (electron beam propa- 
gation direction). m is the electron mass, c the speed of light, w the light fre- 
quency, E the electric field amplitude of an incident planewave and ymc2 the 
electron energy. 6y(i)mc2 is the electron energy variation in the O.K. induced by 
the plane wave interaction at ith order of its amplitude E. <.>@ stands for 
averaging over the initial random phase of the electron with respect to the 
plane wave. 

This method reduces the low field gain (gain at low power of the FEL) calculation 
to the spontaneous emission calculation. However it is almost impossible to derive 
the high field gain by this method. 

In the following I shall restrict myself to an_ OLK. made of two identical 
planar undulators (which maximizes the gain / 5-1) separated by a planar 
dispersive section. Planar just means that the field is always parallel to one gi- 
ven direction that I shall call vertical and which is the same for undulators and 
dispersive section. I shall assume the dispersive section to be "fully" compensated, 
namely : L*B(z) dz = 0 ( 3 )  

and 

where B(z) is the dispersive section magnetic field at the longitudinal coordinate 
z (taken along the undulator axis). These conditions mean that the electron tra- 
jectory is exactly on the same axis in both undulators (see figure I). This insures 
maximum interaction between the electron beam and the light beam which is in fact 
a cavity mode confined to the cavity axis. The two O.K. designed in Novosibirsk 
and Orsay satisfy these restrictions (s). 

In the following, I shall assume the reader is familiar with the physics of the 
spontaneous emission and gain in a regular planar undulator / 26-1. 
2.1. Spontaneous emission 

As for the calculation of the spontaneous emission from an undulator, one starts 
from the classical formula (in MKS units) / 27-1 : 

(*) The case o f  non ident ica l  unduZators and v io la t ion  of ( 3 )  and ( 4 )  are studied 
i n  reference 151. A straightforward modification of t h i s  caZculation wouZd apply 
t o  he l ica l  undulators. 
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+ 
where e is the electron charge, co the vacuum permeability, n the unit vector in 

which direction dI is calculated, 3 the electron speed divided by the light dWdR 
3 

speed and r the electron position at time t. The integral in (5) can be split into 
three parts representing the integral in the first undulator, the dispersive sec- 
tion and the second undulator. I shall neglect the contribution of the dispersive 
section to the spontaneous emission for the following two reasons : 

- the dispersive section is much shorter than the undulators 
- the electron motion in the dispersive section is not resonant with that in the 
undulators. Therefore the dispersive section contribution is expected to be smal- 
ler and broader than the one from the undulators. 

Since the two undulators are identical Eq. 5 can be rewritten as : 

d I - d I dwdn (O.K.) = 2 - (1 undulator) (1 + cos a) dW dS1 ( 6 )  

with : a = a  + a  u d - -  nr a = w A u  (t--) 
U & . . 

nr 
ad = W Ad (t - -$ (9) 
++ ++ ++ 

nr nr whereAu(t - 5) and A (t - -$) stand for the total variation of t - - in one d - 
undulator and in the dispersive section. Let's define K the usual deflection para- 
meter in the undulators : 

Boho K =  - (in MKS units) 
ZTmC (10) 

where B and Xo are the maximum field and period of the undulator. Then for an 
electron injected at a small angle 0 with respect to the observation direction 
one has : 

where L is the length of one undulator, d the length of the dispersive section, X 
the light wavelength and B(z) the dispersive section field at longitudinal coor- 
dinate z .  

denotes the integral along the dispersive section, I assume the field to be 

zero outside the interval [0,dI] . In any practical case the fringe fields of the 
undulators and of the dispersive section add together making impossible the decom- 
position a = aU + old. Since the dispersive section field is larger than the undu- 

lator field one can integrate the dispersive section field between -m and ; the 
error resulting in the determination of a will usually be negligible (it is esti- 
mated to be of the order of 5 % for the Orsay O.K. and much lower for the Novo- 
sibirsk O.K.). 

Let's define the dimensionless parameter N (h ,y )  : d 

From eq. (9) and (13) one understand the physical meaning of Nd. Nd is exactly the 
number of wavelength of light passing over an electron energy ymc2 in the dispersive 
section. In fact Nd is the unique new parameter taking into account all the dis- 
persive section effects. It can be compared to N the number of periods of an undu- 
lator which is also the number of wavelength of light passing over a resonant elec- 



tron in the undulator. 

Note that in a preceding paper 1-5-7 I defined Nd independent of X and Y but always 
computed at resonance. The two points of view are evidently equivalent although it 
turns out to be more convenient to consider Nd as a function of X and y in the in- 
terpretation of experimental emission and gain curves. 

6s Instead of Nd, some people prefer the use of g to characterize the dispersive sec- 
- ,  

tion. 6s is the longitudinal distance delay between two electrons crossing the dis- 
persive section with a difference in energy equal to 6ymc2. One can relate Nd to 

This point of view has the advantage of showing how the dispersive section can ef- 
ficiently bunch an energy modulated electron beam. I find easier to use Nd when 
discussing emission and gain because it is dimensionless. 

The 0 dependence of Nd is usually weak (see eq. 12 and 13). I shall neglect it in 
the following except when dealing with off-axis spectrum or angular spread effects. 

Defining XR the fundamental resonant wavelength for a given energy as 

and yR the fundamental resonant energy for a given wavelength as 

and N as the number of periods in one undulator. 
One can rewrite aU, ad and a : 

dI Figure 2 Curve of X4 - dhdR calculated for a single electron as a function of 
1 - around the fundamental resonance wavelength in an optical klystron X 
made of two 7 periods undulators. The dispersion corresponds to Nd = 53 
for the fast oscillating curve and Nd = 0 for the smooth curve. 
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a 4 s  Figure 3 Gain = - (A dAdQ ) for the conditions of figure 2. a~ 

The spontaneous emission spectrum of a perfect N periods undulator can be rewritten: 

with 2 
YR 6 = r N  (1 --)=WN(l--1 h (21) 
Y2 

From Eq. 6, 19, 20 and 21 one is able to draw any emission curve as function of 
wavelength or energy. 

1 d:iQ as a function of - around the fundamental resonance wave- Figure 2 shows h - A 
length for an O.K. made of two 7 periods undulators (the Orsay case) and a disper- 
sive section having N (A ,y) = 53 (fast oscillating curve) and Nd = 0 (smooth 

dI d R 

dXdQ , the experimentally accessible quantity, would be very similar with curve). -- 
the lower wavelength secondary maximum higher than the higher wavelength one. Simi- 
lar curves would be obtained as a function of 1 around the resonant energy. The 

v2 
fringes can be understood as the interference bdtween emissions from both undulators, 
positive (negative) interference occurs when an exact integer (half integer) number 
of wavelength passes over the electron between the two undulators. 

Figure 2 demonstrates the effect of turning on the dispersive section. When Nd=O 
that is if B(z) = 0 and d = 0 we have the expected result of the emission spectrum 
of a 2N periods undulator which is narrower by a factor of two than the one of an 
O.K. made of two N periods undulators. 

. This cor- If B ( z )  = 0 and O = 0 one has from ER. 12 and 13 Nd = - 
~ A Y  

responds to the dispersivity of the free space. B(z) can therefore be understood as 
a wayof decreasing the dispersive section length keeping the same dispersivity N d' 



Typical length reduction is of the order of 100 for the Orsay O.K. (Nd % 75 to 
100) and much more for the Novosibirsk O.K. (Nd % 450). 

Finally, let's note that so far we looked at the emission from one electron. If a 
bunch of electrons is injected each with different energies, initial angle and 
transverse position, the contrast of the measured interference pattern is no longer 
maximum. I shall discuss this problem in connection with its effect on the gain in 
section 2.3. 

2.2. Low field gain 

As discussed earlier, I shall now make use of the "Madey's theorems" to derive the 
gain as the derivative of the spontaneous emission with respect to energy. The first 
Madey's theorem (Eq. (1) ) only deals with the on axis gain. However the gain and 
emission only depend on the electron trajectory. The trajectory of an electron 
injected with a small angle O with respect to the undulator axis is equivalent to 
the trajectory of the same electron injected without angle but rotated by O as soon 
as one neglects the off-axis field varlation in the undulators and dis~ersive sec- -+ 
tion (*I : Therefore, gain in the direction n, sufficiently close to the undulator - - 

1 a 
'4 3 (*).I shall not deal with axis, is proportional to --2 ( (n) ) 5 - 

(27~) ay d ~ d ~  
the constant of proportionality, which is essentially the same as for an undulator. 
Analytical formulas for the gain are given in ref. / 5-1. 
Figure 3 shows the derivatives of curves from figure 2. Evidence of the higher O.K. 
gain appears connected to the presence of the fine structure in the emission curves. 
When Nd >> N, the O.K. peak gain is .926 (1 + Nd ) times greater than the one of 

N 
the 2N periods undulator (or same O.K. with Nd = 0). When Nd/N >> 1, we have a 
"strong" Optical Klystron that has much more gain than the undulator. Emission and 
gain as function of and are very close to sinewaves phase shifted by 90" with 

A ''(2 
respect to each other. This simple result is the same as the one obtained from the 
"impulse" approximation / 3, 16-1 that I discussed in the introduction of section 2. 
A condition of validity of this approximation is therefore N ~ / N  >> 1. With this 
approximation, one usually underestimates the O.K. maximum gain by a factor 
- ( % 10 2 for the Orsay O.K. and less than 1 % for the Novosibirsk O.K.). 
Nd 
So far I have studied the gain on an incident plane wave, but for FEL operation, one 
needs to know the gain on a cavity mode. For weakly diverging modes, gain curves as 
function of energy or wavelength are just found_ to be wavelength shifted from the 
corresponding gain curves of a planewave / 29-1. 
Inhomogeneous effects on the gain are discussed in the next section. 

2.3. Inhomogeneous effects 

dI 
We know that the emission - dwdR depends on the electron energy, initial angle and 

initial transverse position (via field inhomogeneities) .For a bunch of electrons, 
dI the measured emission is proportional to <-> the average of emission over all dwdR 

the electrons. The resulting curve is usually broader than-the-emission of only one 
electron, this effect is called inhomogeneous broadening / 30-1. For an O.K. one 
has to average on a (see Eq. 6). In the following I shall assume Nd >> N, where 
the sensitivity of a to the spread in initial parameters is the dominant effect and 
the small broadening of the envelope can be neglected. With this approximation, one 
can rewrite Eq. 6 after averaging over all the electrons : 

(*) Such effects are studied in reference [28 ]  . 
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<- dI d1 (O.K.)> = - 
dud, ( 1  undulator) <1 + cos a> 

where ++ 
a = uA(t - 5) 

In the most general case a is distributed around ol according to some distribution m 
and some spread and one can rewrite (22) : 

dI C -  dud, (O.K.) > = A?- dwdn ( 1  undulator) ( 1  + f cos (am +!-I) ) 

where f < 1 and U are function of the shape and spread of the distribution. From 
Eq. (1) and (2) one has since Nd/N >> 1 : 

< Gain (O.K.)> = f x Gm (O.K.) (25) 

where Gm is the gain of the electron having a = a which fine structure is shifted m 

Lnhomogeneous effects decrease the amplitude of modulation of the spontaneous emis- 
sion and merely decrease the gain by the same factor f. In the appendix I show that 
the bunching created by the dispersive section is also decreased by f. We shall see 
in section 2.3.4 that an optical klystron optimized for the gain operates in a regime 
where f < 1. Control of the inhomogeneous broadening can be accomplished with the 
aid of a simple diagnostic : the modulation rate of the spontaneous emission. 

In the following, I shall calculate f and !..! due to energy spread, angular spread 
and beam transverse dimensions. I shall assume all these contributions (labelled 
"i") to be independent of each other, which implies : 

I shall also assume the electron to be Gaussian distributed in energy, transverse 
~osition and angle as theoretically ~redicted for Low current electron beams in 
storage rings 1 31-7. Finally I will calculate f around the fundamental resonances. 
The calculations will be presented in detail since the emission spectrum of the 
klystron is also a valuable diagnostic tool on beam quality in storage rings. 

2.3.1. Energy spread 

From Eq. 12 one has :  YE^ a = 2 T(N + N~(A,Y~)) - 
Y 

Let's assume a gaussian energy spread around ym with relative RMS spread~jy 
we find 

f = e  - a2/2 (29) 

with 

as a consequence the modulation rate varies inside the fundamental resonance 
according to : - constant 

exp L- 
AY: 

I 

In storage rings, one can have a non gaussian energy spread due to various oscil- 
lations of the electron bunch. Let's consider the simplest case of coherent motion 



(phase oscillation) : 

y(t) = y + Gycos wt m 

where t is the time and w the frequency of the motion. 

Then : 

where J stands for the zeroth order Bessel function. 

with : 

0 6y is the coherent energy spread. where (+)cob = - - 
fi "rn 

The modulation rate is a direct measurement of the beam energy spread. 

2.3.2. Angular spread 

From Eq. (1 1) and (12) one has : 

a = cste +, ,?I o2 (37) 

Let's assume the two dimensional angular distribution to be gaussian with RMS 
spread Gel and OO2. The observation is made in the direction (0 ) with respect 1 '  2 to electron trajectory axis. Axis 1 and 2 are orthogonal and chosen to factorize 
the density. Let's also assume these distributions to be independent of the 
longitudinal coordinate z which is equivalent to the requirement that the betatron 
functions are much larger than L + d 131-/. Then, one has : 

From Eq. 40 one deduces that the modulation decreases with (5 and can be further 
seriously reduced if one looks in a direction 0. 0 

Let's consider the case Oi = 0, then the gain reduction fi reads : 
2 -114 fi = (1 + 2 0;) (43) 

Note that this reduction is of the same order of magnitude as for an undulator of 
same length / 30-/. Therefore the assumption that the envelope of the fine structure 
was not broadened is no longer valid if o. 9 1. Moreover, the 02 distribution res- 
ponsible of the modulation extends non sy&uetrically to several periods of the fine 
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structure, the modulation rate will depend on whether the envelope is increasing 
or decreasing with A. The overall conclusion being that the modulation rate will 
be higher on the lower wavelength tail than on the higher wavelength tail of an 
emission spectrum. This effect is reversed of the one predicted for energy spread 
(Eq. 32) and should be very obvious when angular spread plays a dominant role, it 
could be a way to distinguish those two effects. This non symmetry in the modulation 
is a pure consequence of the non symmetry of the distribution and breaks down if 
one looks in a direction 3 ao,. However, for a. >> 1 ,  Eq. 40 to 42 are still 
valid around the wavelength of the maximum of the envelope, and for a. << 1 they 
apply to any wavelength. 

In practical situations on storage rings, one has a. << 1 ,  Eq. 40 can be rewritten 
in a similar form as Eq. (29) : 

ai2 0.2 - a. 2 0. 2 
f. ( - -  e x  (-2 ai ) = expl- -2 

2 ,, + ,  --, j 
2 2 (44) 

'0i 2 "0i 

This last result can be used to measure the angular spread of the beam by simply 
measuring the modulation rate on the spontaneous emission off-axis from the electron 
beam. Although Eq. 44 was established for a gaussian 0 distribution and large 
betatron functions, a straightforward generalisation can be made to measure the 
lowest order moments of the angular distribution dropping these assumptions. 

Finally let's note that oi is proportional to L + d, a non magnetic dispersive sec- 
tion would have a much longer length d and would be much more sensitive to angular 
spread. 

2.3.3. Beam transverse dimensions 

Because of the Poisson's equation, the magnetic field in the dispersive section is 
not uniform and electrons with different initial positions see different fields. 
It has been studied in ref. / 5-1 . One make a quadratic expansion of the vertical 
(also referred as the y-component) field of the dispersive section around the 
axis : 

2 
By(z) = Bo(z) + x Bxx(z) + y2 Byy(z) (45) 

where x denotes the horizontal direction. 

Let's assume the betatron functions much larger than the dispersive section length 
in such a way that an off-axis injected electron will always stay off-axis in the 
dispersive section. 

From Eq. 45 and 12, one has 1-5-7 : 

2 a = a. (1 + 2 Q, a + 2 gy y2) 

where a. = a(x = 0, y = 0) 

and 

Qy is obtained from Eq. 47 if one change B into B . XX YY 

Eq. 46 is very similar to Eq. 37. Making the assumption that x and y are indepen- 



dently gaussian distributed around x and y with RMS spreads ax and a , one can 
Y 

calculate a similar gain reduction factor as the one given in Eq. 40 which, in 
the case of low gain reduction reduces to : 

2 2 
f = 1 - a / 2  = e  -a 12 (48) 

with 2 2 
2 2 4  a4 (1 + 2 --)I Yo a2 = 16 n2 (N + Nd(h,y) ) [2 Q~ \ (1 + 3 + 2 Qy u 

X 
02 
Y 

Note that in a free space dispersive section, Q = Q = 0 and inhomogeneous broa- X v 
dening is only due to the undulator gradients. Using magnets sufficiently large 
(in the x dimension) one usually makes B << B but B cannot be decreased to zero 

xx YY YY . - - - 
because B(z) has to satisfy Poisson's Equation. Therefore for such a dispersive sec- 
tion, the most important broadening comes from the vertical dimensions of the beam. 

8.3.4. O.K. maximum gain 

From sections2.2 and 2.3 one can write the maximum O.K. gain averaged over the elec- 
trons : 

Nd <G max (O.K.)> = -926 f (1 + - ) x G (2 N periods undulator) N max (50) 

Eq. 50 being valid if N /N 1 ,  Nd being calculated at resonance d 

However we have seen in section 2.3 that angular spread and transverse beam dimen- 
sions contributions to f depends on N + Nd which is not true for angular spread con- 
tributions. From Eq. 29, 31, 35, 36, 48 and 49, one can write : 

OY 2 f=exp[-C~te (4n(N+N)-) ] (51) 
Yea. 

where is an "equivalent" energy spread usually very close to real energy 
'eq. 

spread since beam transverse dimensions don't contribute very much. I shall not dis- 
tinguish them in the remaining of this section. 

From Eq. 50 and 51, one concludes that there exists an optimal-Nd that maximizes the 
O.K. gain, namely : 

1 1 - N  2- N = -  (when Nd >> N) 

with 

(O.K.) > .045 - - 
< Gmax optimum - Gmax ( 2 ~  ~eriod undulator) (53) N 5 

Y 

An optimum O.K. operates with f = .6 x f' where f' < 1 accounts for angular spread 
and other small effects I shall discuss in the next section. It is therefore important 
to experimentally control f and to know how much of it comes from energy spread. 

Let's note that all three contributions were seen to be approximated by : 

It is seen from Eq. 31, 42 and 49 that all u. are proportional to 1/X . Therefore, 
cste f = exp (- - ) decreases with decreasing wavelength. 
h2 
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2.3.5. Other effects decreasing the measured modulation rate 

So far I disuussed the electron beam effects on the modulation rate, let's call fe 
their contribution to f. Their also exists what I call field effects, refered 
as f f  and monochromator effects refered as fm. 

The final measured f being : 

f = f  f f e f m  

Field effects give a non total modulation on a one electron emission spectrum ana- 
lyzed by a perfect monochromator. It is due to : 

- non identical undulators because of field imperfections 
- dispersive section emission (which was neglscted from the beginning) 
- imperfect dispersive section compensation / 5-1 . 
Monochromator effects are due to : 

- the wavelength bandwith of the monochromator used to measure the emission 

Figure 4 Maximum gain in relative units, as a function of la1 the generalized 
dimensionless laser amplitude for an optical klystron with D = 3, a 
regular undulator and a tapered undulator with 6 = lO~(respectively), 
all three having the same total length 

- the angular aperture of the monochromator which decreases f just like an angular 
spread 

- error of the monochromator positioning. Eq. 5 is only valid when looking at 
infinity. Looking at a finite distance would make the two undulators contributions 
in the interference pattern non equivalent. 

fm can be easily measured experimentally. ff is fixed by construction of the O.K. 
and is usually close to 1 ( > .98 for the Orsay O.K.). 



2.4. High field gain 

In this section, I shall make use of results established by N.B. Colson 1-32-7 on 
the Pendulum Equations. A reader not familiar with these results and notations should 
refer first to the reference. 

For an undulator, these equations read : 

dV - = la1 cos 5 
d~ 

where 5 is the generalized electron phase initially uniformly distributed between 
0 and 2 r .  v is called the resonance parameter. la1 is the dimensionless square root 
of the laser intensity. T is the dimensionless time varying between 0 and 1. 

In the low gain case, one can neglect the change of la1 along the undulator and the 
gain reads : <6v>, 

where <6v> denotes the variation of the resonance parameter in the undulator 
To 

averaged over the initial phase. Eq. 56, 57 and 58 allow the calculation of the gain 
at any power. Transition from low to high power occurs when la1 % 1. 

Similar equations are true for the Optical Klystron, one just has to add /-29-7 : 

where D = A N 1 O.K. length. 
0 d 

Eq. 59 simply means there is an instantaneous phase shift due to the dispersive sec- 
tion, this shift being proportional to the resonance parameter. 

Figure 4 shows the maximum gain as function of the field la/ for an O.K. with D = 3 ,  
an undulator and a tapered undulator. All devices have a same total length, period 
and K factor and gain is maximized over the initial resonance parameter. These curves 
are obtained by integration of Eq. 56, 57, 58 and 59. For the tapered undulator 
one adds 6 % 2 TN AXo/Ao at the right hand side of Eq. 57 1-33-7 .AXo is the period 
variation in the tapered undulator. 6 = 10 T has been used in figure 4. 

At low field, figure 4 clearly shows the higher gain of the O.K. compared to the 
undulator and tapered undulator. However saturation occurs earlier, and for 
la ] 3 3 the O.K. gain is lower than the undulator gain. At very high power, the O.K. 
gain tends to the one of a half undulator, everything happens as if only the first 
undulator contributes to the gain, and the remaining undulator and dispersive section 
does not add anything. This clearly appears in the shape of the gain curve 2s a func- 
tion of initial resonance parameter where the fine structure vanishes / 34-1. 
At very high power, (a( 7 22, the O.K. gain surprisingly becomes higher than the 
undulator gain. However, in this range, one can design a tapered undulator that has 
a higher gain. One conclusion is that the O.K. is not useful for FEL operation on 
Linear Accelerators (LINAC) since for a given high power one can always achieve a 
higher gain using a tapered undulator. However, it is known that if the tapering 
parameter 6 is big, one cgn have tapered undulators with a higher high field gain 
than low field gain / 35-1. Starting such an FEL could be a problem if the threshold 
gain is above the low field gain. In that case, improvement could be achieved by 
inserting a dispersive section somewhere in the tapered undulator that would keep 
the high field gain and efficiency and enhance the low field gain / 35-/. Such an 
hybrid undulator is sometime called a "multicomponent wiggler". 
On storage rings, space is usually limited and FEL saturation is theoretically expec- 
ted at less power than for a LINAC in a region where la/<< 1 / 36 to 40-1. Therefore, 
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Figure 5 Novosibirsk OK-1 Spontaneous emission spectrum 

Figure 6 Novosibirsk OK-1 gain as function of energy (dotted curve) compared to the 
spontaneous emission (dash curve) 

efficient use of an O.K. can be made to improve the usual low gain. An O.K. is useful 
to reach the oscillation threshold. 

An other question arises : would an optical klystron storage ring free electron laser 
(OKSRFEL) have 5 higher pzwer than a regular SRFEL (made with an undulator) ? Exis- 
ting theories / 36 to 40-/ have not yet been experimentally confirmed. So far one 
identified two-processes of saturation, they both start from the energy spread_ indu- 
ced at first order of the laser field and stored spontaneous emission field / 41-1, 
sometimes called beam heating. This energy spread directly reduces the gain by in- 
homogeneous broadening of the gain curve (this is the first process), On storage 
rings, energy spread increase is followed by bunch lengthening / 42-1 (although the 
"anomalous bunch lengtheningf' complicates this scheme). This bunch lenghtening de- 
creases the peak electron density and peak gain (it is the second process). From the 
first Madey's theorem (Eq. l), the electron beam heating is proportional to the spon- 
taneous emission and is therefore of the same order of magnitude for an O.K. as for 
an undulator. 

So far, all the undulators designed to be used for a SRFEL have too low a gain and 
not enough periods number to saturate by direct inhomogeneous broadening (first pro- 
cess) and are more likely going to saturate by bunch lengthening (second process). 

An optimized O.K. as discussed in section 2 . 3 . 4 .  would not admit any energy spread 
increase and would saturate by the first process. However, an O.K. standing somewhere 
between the undulator and the optimized O.K. (optimized for low field gain) satura- 
ting by bunch lengthening would have a higher gain than the corresponding undulator 
of the same length and should give a higher FEL power. 

In other words, starting from a regular SRFEL saturating by bunch lengthening, one 
should be able to achieve a higher power OKSRFEL, the optimized Nd being lower than 



the one optimizing the very low field gain. 

3. EXPERIMENTAL INVESTIGATIONS 

Experiments on Optical Klystrons are under way at Novosibirsk (USSR) and Orsay 
(France). Both of them are using relativistic electrons from a storage ring. Their 
purpose is to build a visible FEL. 

3.1. Novosibirsk 
Two optical klystrons, OK-1 and OK-2 have been built so fag. OK-2 is an improved 
version of OK-1 . Their characteristics are the following 13, 43-7 : 

OK- 1 OK-2 
Undulator period (cm) ..................... 10 6.5 
Number of periods ........................ 2 x 3 2 x 4.5 
Dispersive section length (cm) ............ 34 34 
Maximum magnetic field in the dispersive 
section (kG). .............................. 5.7 1 1  

The electron beam from VEPP-3 storage ring has the following typical characteristics 
1 43-1: Energy ........................... 370 MeV 

Relative energy spread ............ I .5 10-4 
Horizontal angular divergence ..... .05 mrad 
Vertical angular ................... divergence .04 mrad 

Figure 7 Spontaneous emission dI/d)\dQof the Orsay optical klystron measured for 
an electron energy of 240 MeV and a magnetic gap of 37.79 mm. The current 
decay I(t) is superimposed. 

Figure 5 gives OK-1 zpontaneous emission spectrum. The fine structure has been ob- 
served to have a 34 A period at 6000 A giving Nd % 180 at this wavelength. OK-2 
is said to have-a smaller fine structure period corresponding to Nd % 450 at the s 
me wavelength / 44-1. Using results from section 2.3, one calculates the following 
inhomogeneous broadening parameter for OK-2. 

f = 0.70 for energy spread 
f = -999 for angular divergence. 
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Neglecting inhomogeneous effects, OK-2 has 40 times more gain than an undulator 
occupying the same total length. 

OK-] gain has been measured /-43-7 as a function of energy at A = 6328 A and was 
found to be approximately sinusoidal as expected since Nd/N % 60 >> 1 (see figure 
6). The gain was also measured to be approximately 90" phase shifted from sponta- 
neous emission as expected from Madey's theorem. 

An O.K. hgs been installed on the ACO storage ring. It has the following characte- 
ristics / 45-/ : 

.......... undulator period 8 cm 
number of periods ......... 2 x 7 
dispersive section length .. 32 cm 
maximum dispersive section .......... magnetic field 5.3 kG 

The electron beam from the ACO storage ring has the following typical characteris- 
tics : 

Energy .................................. 240 MeV 
Relative energy spread .............. from 2 10-4 (low current) 

to 1.5 10-3 (high current) 
Horizontal angular divergence ........... % . 2mrad ) - - 
Vertical angular diyer ence .............. n, . lmrad at low 
Horizontal and vertlcaf transverse 
sizes ..................................... % . 35mm f current 

- - 
~h~ first experimental results are discussed in 1 45-/. Figure 7 shows the observed 
emission spectrum on the fundamental resonance at low current in the ring. The enve- 
lope of oscillations has the FWHM of a perfect 8.1 periods undulator instead of 7. 
This small discrepancy is probably due to the dispersive section field which could 
be partly resonant with the undulators. Dependence of Nd as 1 / X  has keen checked 
from spontaneous emission. A value of Nd = 64 was found at A = 6328 A. No precise 
gain measurement has yet been made on the optical klystron. However, from the 
emission curves, one can expect a maximum gain enhancement of 5.2 x f compared with 
the 17 periods undulator. For a perfectly injected electron beam, transverse beam 
dimensions contributions were found to be negligible. Experimentally confirmed 
contribution from relative energy spread and angular spread are : 

2 B 
f = exp (- %) with 0 = 890 2 (for energy spread) and f = .97 (angular spread). 

2 Y 

4. OPTICAL KLYSTRON AS A SOURCE OF COHERENT SYNCHROTRON RADIATION 

4.1 . Principle 
Eq. 5 shows the dependence of the radialid energy by an accelerated electron as 
the square of its charge. For an electron bunch, one has to sum on individual 

dI electrons inside the integral of Eq. 5 /-27-7. Therefore a should have a 
Z contribution proportional to P the square number of electrons. When calculating 

the synchrotron radiation emitted by electrons in a storage ring, one usually 
considers the electrons to be randomly positionned with res ect to each other in 
that case cross terms in the square brackets of Eq. 5 vanisR and the emitted Gower 
is proportional to @ .  However, it is known by storage ring physicists that for a 
wavelength larger than the bunch dimensions (of the order of several centimeters), 
the emitted power can be split into one contribution proportional t o p  called the 
incoherent part and one proportional toJf2 called the coherent part which can be 
much larger than the-incoherent part. Applying this idea in the optical domain of 
wavelength, Csonka / 6-1 showed that one can have a significant coherent part with 



an electron beam modulated at an optical wavelength, and-proposed the use of a 
laser sent into an undulator to create this modulation / 9-1. Optimization of the 
beam modulation then naturally leads to the use of an optical klystron in place 
of the undulator. 

2 This@ term is usually refered as coherent synchrotron radiation, even though that 
coherence is a priori loosely connected to the spatial and temporal coherence of 
a laser. 

Note that in this scheme, one absolutely need a laser or a FEL to interact with the 
electrons in the first undulator and produce the bunching. 

4.2. Properties of the coherent synchrotron radiation 

Let's start with a periodically modulated beam with X1 the fundamental wavelength. 
Then the coherent emission spectrum consists of sharp peaks at each harmonic n of 
the fundamental wavelength. If one use a laser with a temporal coherence longer than 
the electron bunch length, one can relate the coherent and incoherent emission per 
solid angle and per frequency in the forward direction at harmonic n by / 11, 46-1 : 

dI - dI ~n dwdn incoh @=0) - dwdn coh (0=0) = - 
J f  

where O is the angle between the observation direction and the bunching axis,& is 
the total number of electrons in the bunch and pn is given by the following expan- 

sion of the total longitudinal density  expressed in number of electrons per 
unit length) : m 

P n 
Typically - << 1, therefore one only has significant coherent radiation for a large 

Po 
number of electrons in the bunch. The relative width of these peaks is just the ra- 
tio of their wavelength over the total electron bunch length. If one uses a laser 
which coherence length is less than the electron bunch length by a factor a , then 
the relative width is broadened by the same factor a. Assuming a perfect time 
overlap between laser and electron beam, the coherent emission would then be reduced 
by a factor a. For O # 0, coherent emission decreases down to zero for typical 
angles of Ox % X/ox and O % X/oy where ox and a denote the transverse beam di- 
menslons . Y Y 
4.3. Coherent synchrotron radiation from an optical klystron 

As we have seen above, the coherent emission depends on the square of the amplitude 
of the bunching. Therefore, the main advantage of the O.K. over the undulator is of 
requiring less power from the external laser, improving the efficiency. From the 
Appendix, one can show that (% f12 less power is needed to create a bunching at 
wavelength with a N periods undulator followed by a dispersive section than for 
.the same undulator alone. For a given laser power, the coherent emission ratio also 

Nd 2 grows like (- f) . N 
An other advantage is the use of a second undulator resonant on an harmonic of the 
fundamental wavelength of the laser, and use the bunching rich in-harmoniss created 
b a powerful external laser to realize a frequency upconverter / 19, 47-1 and reach 
tKe uv and WJV range. 
The short wavelength efficiency of a frequency upconverter will be limited by in- 
ho_mogeneous effects which decreases the bunching by an experimentally confirmed. 
/ 45-7 factor f 2. exp ( - csteIX2) (see section 2.3). 
A proposal has been made to realize _an O.K. out of the LELA undulator mounted on the 
ADONE storage ring in Frascati / 19-1 . The external laser is a pulsed YAG laser at 
the second harmonic of -53 y. For a laser power of 10 MW/-~, a peak power of % 1kW 
is expected at X = .17 y (third harmonic). 
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5. CONCLUSION 

Theoptical Klystron can be viewed as a modified undulator which has a higher gain 
but is more sensitive to inhomogeneous effects. It makes full use of the natural 
low energy spread and limited straigthsection length of storage rings. 

The emission spectrum is easy to measure with a very good signal to noise ratio 
/ 48, 45-1 and presents a particular interference pattern that makes it a diagnostic 
tool for storage rings. The high sensitivity of spectra to energy makes it a sui- 
table tool to measure any quantity connected to energy (energy spread, momentum 
compaction, energy calibration). Off-axis spectra give a measure of angular spread. 
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APPENDIX 

Inhomogeneous effects on the bunching in an Optical Klystron 

Let's consider an electron entering the first undulator with initial phase @ with 
respect to an incident plane wave.Letls call $ its phase with respect to the same 
plane wave when leaving the dispersive section. 

From equations (7) to (9) one has : 

However a depends on the electron energy which is modified in the undulator after 
interaction with the planewave. Since a is proportional to 1/ y2 (see eq. 12), 
assuming Nd/N >> 1, one can expand a in power of & the plane wave electric field : 

where a. = a in the absence of the plane wave and is a constant.The a& cos @ 
term just means that the electron is accelerated or decelerated according to the 
cosine of its initial phase and proportionaly to the plane wave field. 

Inverting A1 and A for a constant a and a& << 1 (low field) one has : 2 

Assuming a uniformly distributed initial phase @ , one can calculate g-($) the 
phase distribution of electrons at the exit of the dispersive section 1-49] : 

1 d@ 1 g ($) = - - = -(1 + @a E sin (9 - ao) ) 
27l d$ 2lT 

In the general case, one has to convolve g ($) with the distribution of a giving 
the final density : 

1 G ($) =T;;  (1 + fBams sin ($ - am - U) ) (-45) 

where f, am and are defined in the introduction of section 2.3. 

From A5 one concludes that the bunching at the entrance of the second undulator is 
proportional to  the square root of the planewave power) a % Nd (the strength 
of the dispersive section) and f (the inhomogeneous reduction factor). 
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