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This brief note clarifies one specific aspect of a transient-time method of optical stochastic cooling that

often creates confusion for the first time surveyor of this cooling technique.
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A cooling system of a transient-time method of optical
stochastic cooling uses signal undulator, bypass, optical
amplifier, and a kicker undulator as shown in Fig. 1. A
detailed description of the method is given in Ref. [1] and
a discussion of many practical issues can be found in
Ref. [2]. This note focuses only on one specific aspect of
the method that is not clearly articulated in [1,2]. This
missing part often creates confusion for the first time
surveyor of this cooling technique.

The source of the confusion is that the damping force in
the transit-time method of optical stochastic cooling is not
linear and is best characterized by an equation:

!ð2Þ
i ¼ !ð1Þ

i !G sinðkR56!
ð1Þ
i Þ: (1)

Here !ð1Þ
i is a particle relative energy before entering a

cooling insertion and !ð2Þ
i is the particle relative energy

after the cooling insertion, k ¼ 2"=# is the wave vector
and # is the optical wave length, R56 is the time-of-flight
characteristics of the bypass, and G is a coefficient that is

approximately constant to within 3% for jkR56!
ð1Þ
i j % 4".

For simplicity only cooling of the beam energy spread is
considered now. According to [1], a particle produces a
signal in a signal undulator, then follows the bypass and
arrives at the entrance of the kicker undulator in front of its
own amplified signal. Usually, the amplifier has a narrower
bandwidth than a signal whose relative bandwidth is de-
fined by the inverse number of undulator periods. It is also
beneficial to have the same number of undulator periods in
the kicker undulator as a number of wave cycles in the
amplified signal. But typically it is shorter for practical
reasons. In this case the bypass path length is adjusted in
such way that particles interact in the kicker undulator with
the middle part of their own amplified signals arriving at
the entrance of the kicker undulator behind the beginning
of the signal waves, slipping behind the waves in the
undulator, but still exiting before they end. Moreover, the
bypass path length is fine-tuned to ensure that the particle
with equilibrium energy arrives exactly at the zero crossing

of the wave as shown in Fig. 1 and arrival times of other
particles are spread around it. The peculiarity of the damp-
ing force discussed here consists in the following. When

jkR56!
ð1Þ
i j & 1, the damping force in (1) is perfectly linear,

but when jkR56!
ð1Þ
i j> "=2, the damping force even

changes the sign and appears as the excitation force.
Thus, it was found in [1,2] that, in the case of a Gaussian
distribution in ! with a given rms value $!, the optimal
choice for R56 is defined by a condition:

R56 ¼ 1=ðk$!Þ: (2)

For a given G this condition ensures the fastest rate of
cooling and preserves efficient cooling for a majority of the
particles in the beam. Evidently, if cooling results in de-
creasing the value of $! with time, then R56 should in-
crease with time to keep cooling at the fastest rate.
However, R56 should be kept constant if $! does not
change, e.g., when the rate of cooling is balanced by the
rate of diffusion. For example, this happens when cooling
advances to a point where intrabeam scattering creates a
rate of diffusion equal to the rate of cooling.
It was understood, but was not explicitly pointed out in

[1,2], that condition (2) has some ambiguity. First, it is only
true for a Gaussian distribution. Other beam distributions
will end up having a slightly different optimum R56 that
can be found following the same analysis as in [1,2].
Second, condition (2) should be modified if one wants to
cool particles located very far in the tails of the distribution
because they may be pushed out by the antidamping (ex-
citation) force mentioned above. Actually, it is not imme-
diately evident what happens to the particles in the far tails
as cooling of the beam core progresses. The delicate part
consists of the following. Even if the particle has large
amplitude of oscillations and, thus, spends a large fraction

FIG. 1. A cooling system of a transient-time method of optical
stochastic cooling [1].
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of a time in the tails where it experiences antidamping, it
also spends some time near the center of the distribution
where it experiences damping. Thus, the question is: what
prevails, damping or antidamping?

This paper, actually, addresses this question by consid-
ering harmonic oscillations affected by the damping force
described by Eq. (1). For simplicity, it is also assumed
that there is no diffusion and, thus, all particles are ex-
pected to go either to a zero point in the case of damping or
somewhere else in the case of antidamping. In accordance
with the above discussion, different damping behavior
of particles is expected depending on the initial value of
! ¼ !0.

For a reason that will become clear later, it is more
convenient to present the result in units of the initial argu-
ment of the sine in Eq. (1), e.g., ’0 ¼ kR56!0. What was
found is that in the range of !0 corresponding to j’0j %
1:2", all particles go to a zero value. In the range of !0

corresponding to the range 1:2" % j’0j % 3:2", all parti-
cles are attracted to a new fixed point and continue to
oscillate with the amplitude !1 corresponding to j’1j ¼
2". In the range of !0 corresponding to the range 3:2"<
j’0j % 5:2", all particles are attracted to a different fixed
point where they continue to oscillate with the amplitude
!2 corresponding to j’2j ¼ 4". All these regions are
shown with different colors in Fig. 2.

It was concluded based on these findings that condition
(2) ensures damping to all particles with initial amplitudes
up to !0 ' 3:75$!. All particles with !0 > 3:75$! will
eventually be attracted to a new fixed point and then will
continue to oscillate with the amplitude !1 ' 2"$! and so
on. Thus, if one wants to cool particles as far in the tail of

the distribution as !0 ¼ n$!, then condition (2) should be
modified to

R56 ¼
3:75

nk$!
: (3)

This could be important if there is a mechanism that
launches particles from the beam core to large amplitudes
like, for example, Touschek scattering or particle scattering
on molecules of a residue gas.
So far, only energy cooling was considered, but in [1,2] a

simultaneous cooling of the beam emittance and energy
was proposed. The analog of condition (2) in this case is a
condition:

k$!‘ ¼ 1; (4)

where $!‘ is the rms value of the time-of-flight delay !‘
that also accounts for particle coordinates and angles along
with the energy spread, e.g., !‘ ¼ R51xþ R52x

0 þ R56!.
In this case, the analog of the cooling boundaries discussed
above is the multidimensional surfaces in the 6D phase
space satisfying a condition k!‘ ¼ 1:2". Similarly, the
circles of a ‘‘fixed attraction’’ will transform into a set
of surfaces that satisfy a set of conditions k!‘ ¼ 2"
or 4".
In summary, the choice for the time-of-flight delay in the

transit-time method of optical stochastic cooling plays an
important role in the optimization of the cooling rate and
the area in the 6D phase space accessible by cooling. One
can trade the cooling rate for the increased area and vice
versa. The proposed choice in [1,2] ensures the fastest rate
of cooling but only for particles located within the area of
the phase space containing approximately 99% of all par-
ticles (assuming Gaussian distribution in all coordinates
and energy). However, if rare scattering events launch
particles beyond this area, then these particles will be
attracted to other than zero centers and will continue to
stay at large amplitudes. This could affect the beam life-
time and, possibly, create excessive background if such
beam is going to be used in the experiment. If this is not
acceptable, then one would need to reduce the cooling
rate by adjusting the time-of-flight delays and, therefore,
increase the 6D phase space area accessible by cooling.
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FIG. 2. The phase space portrait of the longitudinal oscilla-
tions showing evolution of the particle trajectories (in normal-
ized coordinates) starting from different initial conditions.
Different colors correspond to regions with different fixed points
(or circles) with values of ’ ¼ 0, 2", and 4".
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