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Quantum theory of optical stochastic cooling
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Quantum theory of optical stochastic cooling is presented. Results include a full quantum analysis of the
interaction of the beam with radiation in the undulators and in the quantum amplifier. A density matrix of the
whole system is constructed and the cooling rate is evaluated. It is shown that quantum fluctuations change
classical results of stochastic cooling at low bunch population and set a limit on the cooling rate.

DOI: 10.1103/PhysRevE.65.016507 PACS number~s!: 29.27.2a, 52.59.Px
i
y

al
it
o
ke
o
is

ad
ct
tic

le
s

t

e a
II
e

ly

e.
the

li-

les
e

In-
ain

at
ions
ri-

he

m
a-
ion
la-

nd

he

rac-
b-
for

m
nal
m-
d-
tor.
I. INTRODUCTION

Recently, optical stochastic cooling~OSC! was proposed
@1,2# as a method for the fast cooling of short bunches
storage rings. In OSC, a wave of radiation is generated b
particle in an undulator. After amplification in the optic
amplifier, the wave is sent to another undulator where
interaction with the parent particle provides the desired co
ing. The first and second undulators work as a pickup-kic
pair in conventional rf stochastic cooling. The phase shift
the wave, with respect to the particle, is controlled in a d
persion section between the two undulators.

Particle radiation affects other particles in the bunch le
ing to diffusion that limits the damping rate. In this respe
optical stochastic cooling is not different from rf stochas
cooling. The number of interacting particles~the number of
‘‘particles per slice’’! in the bunch with rms lengthsb
5ctb and bunch populationNB is

Ns5
pNb

DvA2ptb

, ~1!

and is defined by the bandwidth of the amplifierDv. This
interaction of particles changes the momentum of thej th
particle @3#,

p̄ j5pj2Lpj2L(
iÞ j

pi , ~2!

where L is the parameter of interaction between partic
proportional to the electronic gain of the amplifier. The rm
energy spreadsp

25(1/Nb)( j@^(pj )
2&2^pj&

2# for initially
uncorrelated particles is changed by

D@sp
2#522Lsp

21L2Nssp
2 . ~3!

The cooling rate is

1

NTurn
5

Dsp
2

sp
2 522L1L2Ns . ~4!

The maximum cooling rate of 1/Nturn51/Ns is determined
by the number of particles per slice, and is achieved aL
51/Ns .
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Cooling for short bunches requires the amplifier to hav
large bandwidth. For example, the bunches in the PEP-B
factory havetb533 ps. To affect different slices in th
bunch, Ns has to be small,Ns,Nb , which requiresD f
5Dv/2p.10 GHz. The actual PEP-II bandwidth is on
250 MHz.

The advantage of optical stochastic cooling is largeD f ,
allowing for fast cooling. In this method, the bandwidthD f
.g0

2(c/Lu) whereLu5Nulu is the undulator length andg0

is relativistic factor of the beam in the laboratory fram
Parameters of the undulator have to be chosen to match
undulator mode to the central frequency and bandwidthD f
of the amplifier. For the typical solid state Ti:sapphire amp
fier (l50.8 mm, D f / f .1/5).

Given bandwidth, fast cooling~for example, in the muon
collider! can be achieved by reducing the number of partic
per sliceNs . For one particle per slice, cooling would b
achieved just in one turn. However, with a smallNs , classi-
cal and quantum fluctuations could become dangerous.
deed, the average number of photons radiated in the m
undulator mode isa051/137. Therefore, one can expect th
a photon is radiated once per 137 turns, and that fluctuat
may be large. Concern with quantum fluctuations is the p
mary motivation for the study presented here.

In our consideration we determine the evolution of t
quantum-mechanical density matrix of the system~bunch
and radiated mode! through the undulators and the quantu
amplifier. The paper starts by defining the initial density m
trix of the beam and then by describing the beam/radiat
interaction in the undulator. Beam dynamics in the undu
tors is described in the rest frame of a bunch~cf. to Renieri
@4,5# and co-workers where other references can be fou!.
The formalism we use@7# reproduces Becker and McIver@6#
results but differs from their formalism. In both cases, t
number of particles per bunchNs can be arbitrary but the
effects of bunching are neglected. In this sense the inte
tion of particles with radiation is weak. This assumption su
stantially simplifies consideration being quite adequate
describing optical stochastic cooling.

Next, the evolution of the density matrix in the quantu
amplifier is described, taking into account the nondiago
components of the density matrix. Interaction between a
plified radiation with the bunch in the kicker is then consi
ered in the same way as it was for the pickup undula
©2001 The American Physical Society07-1
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Finally, the full density matrix is constructed and is used
calculate the one-pass variation of the rms energy sprea
the bunch. Optimum cooling rate of OSC is determined a
compared with the cooling rate of classical theory. It
shown that quantum fluctuations set a limit for the damp
rate of this method.

II. INITIAL DENSITY MATRIX OF A BUNCH

We consider only longitudinal motion in a bunch, assu
ing that theNb particle bunch is described by the Gauss
normalized distribution function~DF! f (p,z),

E f ~p,z!dpdz51. ~5!

The classical DFf is related to Wigner’s density matrixr̂. In
the momentum representation, the relation is

f ~p,z!5E Ldq

~2p!2 r~p1q/2,p2q/2!eiqz/h, ~6!

where the density matrix is normalized,

r̂5up8^r~p8,p!&pu, E Ldp

2p
r~p,p!51. ~7!

For a Gaussian DF localized around the pointz0 , p0 in the
phase space,

f ~p,z!5
1

2psD
expF2

~p2p0!2

2D2 2
~z2z0!2

2s2 G . ~8!

The corresponding density matrixr0 is the wave packet

r0~p8,p!5
hA2p

LD
expF2

i

h
~p82p!z02

1

2 S s

h D 2

~p82p!2

2
1

2S 1

D D 2S p1p8

2
2p0D 2G , ~9!

whereL is the normalization length. The rms valuess andD
of the wave packet may be small compared to the rms en
spreadDB and rms lengthsB of a bunch.

III. PICKUP

We assume that there areNB relativistic particles per
bunch, there is no initialz,p correlation, and correlations tha
may be generated in the undulators are wiped out in one t
The pickup and the kicker undulators are helical with t
undulator parameterK0 and periodlu52p/ku . The bunch
is described@5# in the frame moving with the relativistic
factorg5g0 /A11K0

2 where the resonance frequency of t
mode isk5gku . The bunch centroid has zero initial veloci
and an energy spread ofDp,

Dp5
1

A11K0
2 S Dplab

g0
D , ~10!
01650
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corresponding to the energy spreadDplab in the laboratory
frame.

At the entrance to the pickup, each particle is describ
by the density matrix Eq.~9!, r0(pi8 ,pi), i 51,2, . . . ,Nb .

The density matrix of the whole bunch r̂
5) i 51

NB up8&r0(pi8 ,pi)^pu.
In the moving frame, interaction of particles with th

modek5v/c is described by the Hamiltonian

H5(
i 51

NB p̂i
2

2m
1hv~a1a11/2!2 ihg@ae2ikẑ1 ivt2c.c.#,

~11!

wherem5meA11K0
2.

If the vector potential of the radiation is normalized to o
photon per volumeV @6,7#

AW 5A2phc2

Vv
yW @ âeikẑ1c.c.#, uyW u51, ~12!

then the parameter of the interactiong5gk , where

gk5c
K0

A11K0
2
Ae2

hc

2p

kV
. ~13!

In the one-dimensional model, the beam interacts w
one radiated mode. In this case, operatorsa anda1 change
the number of coherent photons in the mode, and ve
potential must be normalized within the phase volumeV of
the mode.

In the laboratory frame@11#, V5(V/(2p)3)(pk3/Nu
2).

This can be obtained from the constrainu2pNu2cu<p on
the phase slippagec5uvt2kzzu along the undulator and
from the requirement that the frequency spreadu(v
2v r)/v r u,1/(2Nu), where v r is resonance frequency o
radiation at zero angle. The result for the phase volume in
moving frame follows from the relativistic invariance o
d3k/v.

Normalized vector potential is obtained by multiplyin
Eq. ~12! by AV. The parameter of interaction with the mod
then becomesg5gkAV and, using the time of the interac
tion in the moving frame t52pNu /(ck), we get gt
5(K0 /A11K0

2)Ape2/hc. Hence, (gt)2 is of the order of
a05e2/hc and is always small.

Initial state upi ,n&5up1 ,p2 , . . . ,pNB
,n& of the system

with n photons and particles with momentumspi , i
51, . . . ,NB is transformed in the undulator by the intera
tion with the modek5v/c5gku to the vectoruC(t)&. As it
is shown in Appendix A, Eq.~A21!, ~for more details, see
@7#!,

UC~ t !.5 (
l i ,pi

Upi22hkli ,n1 l S&A n!

~n1 l S!! E dc

2p
e2 i l Sc

3exp@2 ivt~n1 l S!#)
i 51

NB

Fn~ t,pi ,l i !. ~14!
7-2
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Here l S5( i l i is the total number of radiated photon
E(pi ,l i)5(pi22hkli)

2/(2m0),

Fn~ t,p,l !5E
0

`

dl
ln

n!
e2lÔlkS lai

kai*
D l i /2

Jl i
~2guai uAlk!

3exp@2~ i t /h!E~pi ,l i !#e
il icuk51 . ~15!

The operator Ôlk5exp@2(1/2)(]2/]l]k)#, Jl is the
Bessel function, and

ai~ t !5
sin~e i t/2!

~e i /2!
e2 i e i t/2, ȧi~ t !5e2 i e i t, e i5

2kpi

me
.

~16!

The integration overc in Eq. ~14! is introduced to separat
the global parametersn andl S of radiation and parameterspi
and l i of individual particles.

Expression Eq.~15! is derived neglecting terms of th
order ofhk2/me ,

hk2t

2m0
.pNuklCompt!1. ~17!

Doing this we ignore bunching due to radiation, which
irrelevant for our purposes.

For short undulators,kpt/me!1, @sin(eit/2)#/(e i /2).t.
The functionFn depends on parametergt, wheret is time of
flight in the undulator, which ist5Nulu /(cg) in the moving
frame.

Using Eq.~14!, the initial density matrix

r̂~0!5up8,l S8 &r~p8,p,l S ,l S8 !^p,l Su ~18!

is then transformed into

r̂~ t !5uC8~ t !&r~p8,p,l S ,l S8 !^C~ t !u. ~19!

IV. DENSITY MATRIX OF THE UNDULATOR

Let us obtain the explicit form of the density matrix E
~19!.

We assume that at the entrance to the pickup there is
radiation, n50. In this case, initial density matrixr̂
5) i 51

NB up8&r0(pi8 ,pi)^pu is transformed according to Eqs

~14! and ~19! to r̂(t)5uq8,l S8 &r(q8,q,l S ,l S8 )^q,l S , where

r~q8,q,l S8 ,l S!5
1

Al S! l S8 !
E dcdc8

~2p!2
exp@2 i ~ l S8 c82 l Sc!#

3exp@ ivt~ l S2 l S8 !#E dldl8

3e2l2l8ÔlkÔl8k8Floc~q8,q!. ~20!

Here uq& stands for the setuq1 , . . . ,qNB
&,

Floc~q8,q!5)
i 51

NB

Floc
i ,
01650
no

Floc
i ~qi8 ,qi !5(

l ,l 8
f i8 f i* r0~qi812hkli8 ,qi12hkli !

3expH 2 i
@~qi8!22qi

2#t

2meh
J , ~21!

f i5 f (qi ,l i ,c), f i85 f (qi8 ,l i8 ,c8), where

f ~q,l ,c!5S la

ka* D l /2

Jl@2gua~ t !uAlk#eil c. ~22!

It is convenient to consider Fourier transform

Floc
i ~p,z!5E Ldq

2ph
eiqz/hFloc

i ~p1q/2,p2q/2!. ~23!

For a short undulator, parametere i t!1. In this case,
a(t).te2 i e i t/2. Parameter (gt)2 is the average number o
photons radiated in the main mode of the undulator per p
ticle and is always small. This justifies the expansion off i in
series overgt. Neglecting terms of the order of (gt)3, we
write for the i th particle

Floc
i ~p,z!5Fi

0~p,z!@11gtFi
(1)1~gt!2Fi

(2)#, ~24!

where

Fi
0~p,z!5

h

sD
expF2

~p2p0!2

2D2 2
~z2z02pt/me!

2

2s2 G ,
~25!

and

Fi
(1)5exp@2~1/2!~hk/D!2#H 2k expFhk~p2p0!

D2

1 ic22ikS z2
pt

2me
D G

2k8 expFhk~p2p0!

D2 2 ic812ikS z2
pt

2me
D G

1l expF2
hk~p2p0!

D2 2 ic12ikS z2
pt

2me
D G

1l8 expF2
hk~p2p0!

D2 1 ic822ikS z2
pt

2me
D G J .

~26!

F (2) has a similar structure.
With the same accuracy,

Floc~p,z!5H)
i 51

NB

Fi
0~pi ,zi !J exp@gtS iFi

(1)1~gt!2S iFi
corr#,

~27!

where Fi
corr5Fi

(2)2(1/2)@Fi
(1)#2. Equation ~27! takes into

account all terms of the order ofNbgt andNb(gt)2 neglect-
ing termsNb(gt)3.

The sum
7-3
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f 0[gt(
i

Fi
(1) ~28!

in the exponent of Eq.~27! is defined by parameters

s6~p,z!5gt(
i 51

NB

expF22ikS zi2
pi t

2me
D6

hk~pi2pi
0!

D2 G
3expF2

1

2 S hk

D D 2G . ~29!

This expression must be averaged over the frequency sp
in the mode aroundk̄5gku,

s6~p,z!5gt(
i 51

NB

expF22i k̄S zi2
pit

2me
D6

hk̄~pi2pi
0!

D2 G
3expF2

1

2
S hk̄

D
D 2Gsi , ~30!

where

si5E dk

p
exp@22i ~k2 k̄!

3~zi2pit/2me!#
sin2~pNu~k2 k̄!/ k̄!

~pNu / k̄!~k2 k̄!2
. ~31!

Factors si restrict summation in Eq.~30! over particles
within the length proportional to 2pNu /(2k̄) ~the length of a
‘‘slice’’ !, or, in the laboratory system, withinl s5Nul lab .
ParameterNs5!s2s2* @/(gt)2 is the fundamental param
eter of the theory defining the number of interacting partic
within the bandwidth of the mode~number of particles pe
slice!. Here double averaging means averaging with the d
sity matrix of the wave packet Eq.~25! and overz0,p0 within
the Gaussian bunchrB(z0 ,p0)5(1/2psBDB)exp@2p0

2/2DB
2

2z0
2/2sB

2 #. If the width of packets in Eq. ~25! is of the order

of the length of a slice, andNu@1, thenk̄s@1, and

Ns5(
i
E dx

p

sin2x

x2

dy

p

sin2y

y2

3 K K expF2
2ik

pNu
~x2y!S zi2

pi t

2me
D G L L . ~32!

Neglecting terms of the order ofh, we get

Ns5Nb

NuA2p

3ksB
, ~33!

wheresB is the rms bunch length in the moving frame a
we use*(dx/p)(sinx/x)450.6666. In terms of the wave
length of the mode and the bunch length in the laborat
frame,
01650
ad

s

n-

y

Ns5NbS NulL

3A2psB
0 D . ~34!

In terms of averageds6 introduced in Eq.~30!, Eq. ~28!
takes the form of

f 0~c,c8!52ks1eic2k8s1* e2 ic81ls2* e2 ic1l8s2eic8.

~35!

The second terms (gt)2S iFi
corr in the exponent of Eq.

~27! can be expanded overh. Expansion starts with the term
proportional toh2. It can be split in two parts: the first o
which,

f cor
(1) 52Ns~gt!2S hk

D D 2

~keic1l8eic8!~k8e2 ic81le2 ic!,

~36!

is proportional to the number of particlesNs , and the second
one f cor

(2) , is proportional to the sum over oscillating factor
Introducingr 65S i exp@64ik(zi2pit/2me)#, we can write

f cor
(2) 52

~gt!2

2 S hk

D D 2

@~keic1l8eic8!2r 2

1~k8e2 ic81le2 ic!2r 1#. ~37!

In these notations,

Floc~p,z!5H)
i 51

NB

Fi
0~pi ,zi !J ef 0(c,c8)1 f cor

(1)
1 f cor

(2)
. ~38!

The first factor is the product of unperturbed single parti
distribution functions while the exponential factor describ
particle interaction. The last term,f cor

(2) , is small. Equation

~38! can be simplified by writingef cor
(2)

5(11 f cor
(2) ) and re-

placing 2gtk8e2 ic8, gtle2 ic, 2gtkeic, andgtl8eic8 by
the derivatives overs1* , s2* , s1 , and s2 , respectively.

The result is the differential operatorP̂(s6). The factoref cor
(1)

can be written as

ef cor
(1)

5Ôm,n exp@2n~keic1l8eic8!

2m~k8e2 ic81le2 ic!#um5n50 , ~39!

where Ôm,n5exp@2z2(]2/]m]n)#, and z25Ns(gt)2(hk/D)2.
Then,

Floc~p,z!5H)
i 51

NB

Fi
0~pi ,zi !J ~11 P̂!Ôm,n

3exp@2k~s11n!eic2k8~s1* 1m!e2 ic8

1l~s2* 2m!e2 ic1l8~s22n!eic8#. ~40!

Now it is easy to calculate
7-4
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Ôk,lÔk8,l8 exp@2k~s11n!eic1l~s2* 2m!e2 ic

2k8~s1* 1m!e2 ic81l8~s22n!eic8#uk5k851

5exp@~1/2!~s11n!~s2* 2m!

1~1/2!~s1* 1m!~s22n!#exp@2~s11n!eic

1l~s2* 2m!e2 ic2~s1* 1m!e2 ic8

1l8~s22n!eic8#. ~41!

Integration overc andc8 can be carried out using

E dc

2p
eil c exp@le2 ic2keic#5S l

k D l /2

Jl~2Alk!. ~42!

After that, integrals overl andl8 are @9#

E
0

`

dle2ll l /2Jl~2Ala!5al /2e2a. ~43!

The distribution function at the end of the pickup

r~p,z,l S8 ,l S!5E Ldq

2ph
eiqz/hr~p1q/2,p2q/2,l S8 ,l S!

~44!

takes the form of

r~p,z,l S8 ,l S!5
1

Al S! l S8 !
exp@ ivt~ l S2 l S8 !#H)

i 51

NB

Fi
0~pi ,zi !J

3~11 P̂!R~p,z!, ~45!

where

R~p,z!5Ôm,n~s2* 2m! l S~s22n! l S8 exp@2~1/2!~s2* 2m!

3~s11n!2~1/2!~s22n!~s1* 1m!#. ~46!

For smallz, the density matrix at the end of the pickup is

r~p,z,l S8 ,l S!5
1

Al S! l S8 !
H)

i 51

NB

Fi
0~pi ,zi !J

3~11 P̂!R~p,z,N,m!exp@ ivt~ l S2 l S8 !#,

~47!

whereR5exp@2(1/2)(s2* s11c.c.)#R̃(p,z,N,m), and

R̃~p,z,N,m!5S s2*

s2
D m

us2u2N, N5
l S1 l S8

2
, m5

l S2 l S8

2
.

~48!

Correctionz2us2u2 is of the order of@Ns(gt)2(hk/D)#2 and
is always negligible.
01650
V. SOME RESULTS FOR THE UNDULATOR

First, let us show that the total density matrix Eq.~47! of
the system~particles and radiation! allows us to reproduce
results obtained by different methods.

A trace of the density matrix Eq.~47! defines energy loss

^p&5Tr~ p̂r̂ !522hk~gt!2. ~49!

The density matrix of radiation,r rad , can be obtained as th
trace of the full density matrix Eq.~47! over particle indexes,

r rad~ l S8 ,l S!5(
pi

r~pi8 ,pi ,l S8 ,l S!. ~50!

Equations~49! and ~50! reproduce results@10# obtained by
the operator formalism method.

The density matrix of radiation for a single electron,Nb
51, with no initial photons,

wrad~ l !5r rad~ l ,l !5
~gt!2l

l !
e2(gt)2

, ~51!

is a density matrix of a coherent state. The average num
of radiated photons in a single mode is small,^ l &5(gt)2

5a051/137. Fluctuations are largê(D l )2&5^ l 2&2^ l &2

5^ l &, and

^~D l !2&

^ l &2 5
1

~gt!2 5137. ~52!

Radiation of a bunch corresponds to thermal statistics@6#

r rad~ l S8 ,l S!5d l S ,l
S8

~a! l S

~11a! l S11
, a5Nb~gt!2. ~53!

For the following, it is convenient to transform the dens
matrix r(p,z,l S8 ,l S) back to the momentum representatio

r~p1q/2,p2q/2!5H)
i
E ~dzi /L !exp@2 i ~q82q!zi #J

3rS qi81qi

2
,zi D .

The result then becomes

r̂5uq8,l S8 &r~q8q!^q,l Su, ~54!

where

r~q8,q!5
1

Al S! l S8 !
H)

i
E dzi

L
Fi~q8,q,z!J ~11 P̂!

3RS q81q

2
,z,N,m De2imvt, ~55!

and
7-5
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Fi~q8,q,z!5
h

sD
expF2 i ~q82q!z/h2

1

2D2 S q81q

2 D 2

2
1

2s2 S z2
q81q

2me
t D 2G . ~56!

Note that s6 are functions of the coordinates (zi ,@qi8
1qi #/2) of all particles.

VI. OPTICAL AMPLIFIER AND DISPERSION SECTION

The density matrix Eqs.~47! and ~48! at the exit of the
pickup undulator is the superposition of coherent sta
Transformation of such a state in the optical amplifier can
obtained in the following way@8#:

Let us consider the two level model of the amplifier wi
inverse populationNu.Nd . The equation describing th
time evolution of the density matrix is well known@12#,

ṙ52gNu@aa1r1raa122a1ra#

2gNd@ra1a1a1ar22ara1#. ~57!

Let us use this representation with a fixed number of p
tons,r(t)5un8&r(n8,n,t)^nu, and defineF(N,m,t),

r~n8,n,t !5
F~N,m,t !

An!n8!
, N5~n1n8!/2, m5~n2n8!/2.

~58!

The functionF is a solution of Eq.~57!. Parameterm is the
integral of motion. Dependence onN can be obtained using
Mellin transform

F~N,m,t !5E
0

`

dz8Gm~N,z8,t! f 0~z8,m!, ~59!

wheret5gNut, t is the amplification time andf 0 is given by
the initial condition,

f 0~z,m!5E
2 i`

i` dN

2p i
z2NF~N,m,0!. ~60!

The kernelGm can be obtained@8# for an arbitrary ratio of
Nu /Nd . In the case of a fully inverted population,Nd50,

Gm~N,z8,t!5~N2m!!
j

z8
~12j!NbmLN2m

2m ~2b!, ~61!

whereb5jz8/(12j), j5e22Nugt, and t is the the time of
amplification.

Parameterj is related to a gain of the amplifier. Conside
for example, radiation from the undulator of a single electr
described by initial coherent state

r~n8,n,0!5
an8~a* !n

An!n8!
e2uau2. ~62!

The result of amplification is described by the density ma
01650
s.
e

-

n

x

r~n,n8,t !5
~N2m!!

An!n8!
S a*

a D m

uau2me2uau2

3jm11~12j!N2mLN2m
2m S 2

j

12j UaU
2D .

~63!

Then

^a~ t !&5
a

Aj
, ~64!

which shows that parameterj defines the gainG of the am-
plifier, G51/j.

The lowest moments are

^a~ t !&5AGa, ^a1a&5Guau21~G21!, ~65!

and the signal-to-noise ratio is independent ofG for G@1

^~a1a!2&2^a1a&2

^a1a&2 5
112uau2

~11uau2!2 .1. ~66!

Let us use these results to transform the density matrix
~48! in the amplifier.

The Mellin transformR̃M(N,m) of R̃(@q81q#/2,z,N,m),

R̃M~z,m!5E
2 i`

i` dN

2p i
z2NR̃S q81q

2
,z,N,m D , ~67!

is proportional tod(z2z0), z05us2u2,

R̃M~z,m!5z0Fs2*

s2
Gm

d~z2z0!. ~68!

After the amplifier, R̃(@q81q#/2,z,N,m) should be re-
placed@8# by Fampl ,

Fampl~N,m!5~N2umu!!
1

GFs2*

s2
GmFs2* s2

G21 G umuS G21

G D N

3LN2umu
2 um u S 2

us2u2

G21D . ~69!

HereG is the power gain of the amplifier,LN
m are Laguerre

polynomials, andN5( l S1 l S8 )/2, m5( l S2 l S8 )/2.
Equation~69! describes the amplification of the main ter

in Eq. ~47!. Calculation of the derivatives in the correctio
term, P̂R(p,z,N,m) whereP̂ is a differential operator of the
second order ins6 , gives a polynomial of the second orde
in N multiplied byR(p,z,N,m). The result can be written a
P̂(y@]/]y#)xmyN, whereP̂ is now a differential operator o
the second order iny, independent ofN, and y5us2u2, x
5s2* /s2 . This expression can be transformed in the amp
fier in the same way as the main term above.
7-6
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VII. DISPERSION SECTION

The dispersion section with momentum compactionaMC
and lengthLds introduces (z,p) correlation by changing the
path length in the lab frame byDz5aMCLds(p2p0)/q0. In
the moving frame, such a correlation is described by
classical distribution function

f ~p,z!5
1

2pDs
expF2

~p2p0!2

2D2 2
~z2z02hp!2

2s2 G ,
~70!

where parameterh5g0aMCLds /mec. The corresponding
density matrix is different from Eq.~9! by the factor
exp@2(i/h)h(q822q2)/2#.

Hence, the dispersion section modifiesFi(q8,q,z) in Eq.
~55!. Equation~56! has to be replaced with

Fi~q8,q,z!exp@2~ i /h!h~q822q2!/2#eiu. ~71!

Here, a phase slipu of a bunch centroid is added and shou
be controlled in the experiment.

VIII. KICKER

The density matrix at the entrance to the kicker is o
tained by combining Eqs.~47!, ~48!, ~69!, and~71!,

r̂ in~ t !5uq8,l S8 &
Fin

Al S! l S8 !
^q,l Su, ~72!

where

Fin5Fds~q8,q!~11 P̂!Fampl~N,m!e2imvt

3expS 2
1

2
@s2* s11c.c.# D

and

Fds5)
i
E dz

L
Fi~q8,q,z!expH 2 i

h

2h
@~q8!22q2#J .

~73!

The transform of the density matrix at the end of the kick
is given by Eq.~14! wheren has to be replaced by the num
ber of photonsl S . We use notationmi for the number of
photons radiated by thei th electron in the kicker andmS

5( imi for the total number of photons. We also assume t
the parameters of both undulators are the same.

Given the above, the density matrix at the exit of t
kicker

r̂out~ t !5uq822hkm8,l S8 1mS8 &F loc~q,q8,c,c8!

3Fout* ~q,l S ,mS!Fout* ~q8,l S8
8 ,mS8 !~11 P̂!

3Fampl~N,m!e2imvtexpS 2
1

2
@s2* s11c.c.# D

3^q22hkm,l S1mSu. ~74!
01650
e

-

r

t

Here l S5N1m, l S8 5N2m, mS5M2m, mS8 5M1m. Be-
causel S and l S8 are positive, the range of summation is
,N,`, 2N,M,`, and umu,N. Functionss6 in Fampl

depend on coordinates of individual particles (qi81qi)/2,zi .
The operatorFout is

Fout~q,l S ,mS!5
1

A~ l S1mS!!
E dc

2p
e2 imSc

3exp@ ivt~ l S1mS!#E dl
l l S

l S!
e2lÔlk ,

~75!

and

F loc~q,q8,c,c8!5)
i

dzi

L
F ( i )~q8,q,z!

3expH 2
ih

2h
@~qi8!22~qi !

2#J
3Smi

* ~q,l,k!Si~q8,l8,k8!, ~76!

where

Smi
~q,l,k!5S la

ka* D mi /2

Jmi
@2guai~ t !uAlk#eimic

3expH 2 i @~q22hkm!2#t

2meh
J . ~77!

To describe stochastic cooling, it is sufficient to calculate
momentum of a particle at the end of the kicker. The aver
moments for thej th particle after a bunch passes through t
system are^pj

k&5Tr @ p̂ j
kr̂out(t)#, k50,1, . . . , where p̂ is

momentum operator and brackets^•••& signify averaging
over the wave packet. In the momentum representation, o
the diagonal components,qi822hkmi85qi22hkmi , i
51,2, . . . ,Nb , and l S8 1mS8 5 l S1mS , contribute in ^pj

k&.
We can utilize the fact thats6 are functions only of the sum
q81q and introduce P, qi85Pi1hk(mi82mi), qi5Pi

2hk(mi82mi). This allows us to write

^pn&5@Pj2hk~mj1mj8!#nF loc~11 P̂!

3Fout* ~q,l S ,mS!Fout~q8,l S8 ,mS8 !Fampl~N,m!,

~78!

where

F loc5)
i

dzidPi

2psD
r0~Pi ,zi ! (

mi8 ,mi

Smi
~l,k!Sm

i8
~l8,k8!

3exp@22ik~zi1hPi !~mi82mi !#, ~79!

and
7-7
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r0~Pi ,zi !5exp@2~Pi2pi
0!2/2D22~zi2zi

02Pit/m0!2#.

~80!

Note thatFampl depends ons6 that are given now by Eq
~32! wherepi are replaced byPi .

Similarly to what was done for the pickup, we expa
S(l,k) in series overgt, neglecting termsO(gt)3. Here we
skip over the details of the calculations and give the fi
result

^pj
n&5(

iÞ j
K̂n~11 P̂!Fout~q,l S ,mS!Fout~q8,l S8 ,mS8 !

3Q~b1 ,b2!Fampl~P,z!ub22&b1
. ~81!

The sum stands for integrals ) i@(dzidPi)
/(2psD)#r0(Pi ,zi) over all particles in a bunch, and

Q~b1 ,b2!5exp~l8b1eic82k8b2* e2 ic81lb1* e2 ic

2kb2eic!, ~82!

whereb15gt( ie
2 if i, and phasef j52k@zj1pjh#. Opera-

tors K̂n for different n50,1,2 are K̂051, K̂15qj

2hkgt(al2ak), K̂25K̂1
21(hk)2gt(al1ak), where

ak5e2 if j
]

]b2
1eif j

]

]b2*
, al5eif j

]

]b1*
1e2 if j

]

]b1
.

~83!

Equation~81! after some calculations~see Appendix B! can
be written as

^pj
n&5(

iÞ j
K̂n(

m
~11 P̂!S s2*

s2
D m

3I 2m@2AGub22b1u2us22s1u2#S b12b2

b1* 2b2*
D m

3exp$~G21!ub22b1u21~1/2!@b2~b2* 2b1* !1c.c.#%

3exp$~1/2!@s2~s2* 2s1!1c.c#%ub25b1
. ~84!

The operatorsK̂n are not more than the second order d
ferential operators inb2 , b1, and the function depends o
b2,1 only through powers ofb22b1. Therefore, it is sufficient
to take into account only termsm50, m561/2, andm5
61 in the sum overm. Additionally, we can expand the
answer in series overgt and neglect termsO(h3).

To check the result, we can calculate the average^pj
n& for

n50. This quantity is just the norm of the distribution fun
tion and, therefore, has to be equal to 1. Indeed, the ans
is different from one by the term of the order o
Ns

2(gt)4(hk/D)4.
The result for the momentsn51 andn52 were obtained

with MATHEMATICA . As it will be shown below, the powe
gain G must be of the order ofDb /(hk). BecauseG@1, we
01650
l

er

can neglect terms that are independent ofG. In this approxi-
mation, momentump̃ j of the j th particle at the end of the
kicker is

p̃ j5pj22~gt!2hkAG@s0* exp$22ik~zj1he f fpj !1 iu%

1c.c.#, ~85!

wherehe f f5h1t/2me , andu is the phase slip of the bunc
centroid. Calculation ofp̃ j

2 at the end of the kicker gives

p̃ j
25pj

224G~gt!2~hk!pj~s0* exp@22ik~zj1he f fpj !1 iu#

1c.c.!18G~gt!2~hk!2@11~gt!2s0s0* 1c.c.#

14AG~gt!4~hk!2~b1s0* eiu1c.c.!. ~86!

Here s05s6uh→0. Double averaging over the wave pack
r0(pj ,zj ) and over a Gaussian distribution of particles in t
bunch gives rmsD25^^p2&&2^^p&&2 at the end of the kicker

D̃22D2

D2
5216AG~gt!2

hk

DB
Lsinu

18G~gt!2S hk

DB
D 2

@11Ns~gt!2#

18AG~gt!4S hk

DB
D 2

Ns cosue22(kDB)2he f f
2

.

~87!

HereL5kDBhe f f exp@22(kDBhef f)
2#.

To get damping, we have to choose sinu51. The damping
is maximized if the power gainG of the amplifier is equal to

AG5
L

~hk/DB!@11Ns~gt!2#
. ~88!

ParameterL as a function ofx5kDBhe f f has a maximum
value of Lmax.0.3 at x.2. This defines the optimum pa
rameterh of the dispersion section.

The optimized reduction of the rms energy spread in o
pass through the system is

D̃22D2

D2
52

8Lmax
2

~gt!221Ns

. ~89!

IX. CONCLUSION

One-pass reduction of the energy spread rms is der
following the evolution of the density matrix through a
components of the system. The consideration is fully qu
tum mechanical both for the beam and for the radiation. T
bunching effect is neglected and length of a slice of the or
of Nul lab is assumed to be small compared to the bun
length in the laboratory framesB

0 .
It is shown that the constructed density matrix may

used to obtain results on the photon statistics and distribu
of particles due to the beam-radiation interaction in the
7-8
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dulator. The time evolution of the density matrix of radiatio
in the amplifier is described, including the nondiagonal co
ponents of the matrix.

The final result Eq.~89! is equivalent to the classica
equation of stochastic cooling with quantum noise 1/(gt)2.
Equation~89! for largeNs@1/(gt)2 reproduces the main re
sult of the classical theory of stochastic cooling. The dam
ing rate is given by the number of particlesNs per slice.
However, for smallNs the damping rate goes to a consta
proportional to 1/(gt)2, where (gt)2}@K0

2/(11K0
2)#a0. The

quantum fluctuations set the limit on the damping rate,
minimum number of turns for cooling is of the order of 1/a0.
The term 1/(gt)2 is equivalent to the noise induced by 1/a0
particles and is related to the quantum limit of the input no
of the amplifier equal to one photon in a mode. The ot
quantum-mechanical corrections are small, of the orde
(hk)/DB ~i.e., hkL /DpL in the laboratory frame! and are
noticeable only in very cold beams where the energy spr
is comparable to photon energy.
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APPENDIX A: BEAM DYNAMICS IN THE UNDULATOR

Interaction of particles with the mode described
Hamiltonian Eq. ~11! is just backscattering of equivalen
photons. The initial stateupi ,n&5up1 ,p2 , . . . ,pNB

,n& of the

system withn photons and particles with momentumspi , i
51, . . . ,NB is transformed by the interaction with the mod
k5v/c5gku to the vectoruC(t)&,

uC~ t !&5 (
l i ,pi

upi22hkli ,n1 l S&A n!

~n1 l S!!

3E dc

2p
e2 i l Sc

3exp@2 ivt~n1 l S!#)
i 51

NB

Fn~ t,pi ,l i !. ~A1!

Here l S5( i l i is the total number of radiated pho
tons, E(pi ,l i)5(pi22hkli)

2/(2m0), and the amplitudes
F(t,@pi ,l i #) are defined by the equation

Ḟn~ t,pj ,l j !5g(
j

@~n1 l S!Fn~ t,pj ,l j21!

3exp$22i ~k/m0!t~p22hklj !%

2Fn~ t,pj ,l j11!

3exp$2i ~k/m0!t~pj22hklj !%#, ~A2!

following from the Schro¨dinger equation. Here, we us

^pj2 2hklj ue62ikẑupj82 2hklj8&5 (2ph / L)d@pj8 2 pj12hk
01650
-

-

t

e

e
r

of

d

d

3(l j2l j861)#, and write explicitly only those quantum num
bers that are changed by the interaction,Fn(t,pj ,l j61)
5Fn@ t,(p1 ,l 1), . . . ,(pj ,l j61), . . . ,(pNB

,l NB
)#.

Neglecting termshk2/2m0 in the exponent~i.e., in the
laboratory frame, terms of the order ofhkukL /m0!1), we
can solve Eq.~A2! by the Fourier transform

Fn~ t,pj ,l j !5H)
i 51

NB E
0

2pdf i

2p
eil if iJ

3F~ t,p1 , . . . ,pNB
,f1 , . . . ,fNB

!. ~A3!

Function F(t,f)5F(t,p1 , . . . ,pNB
,f1 , . . . ,fNB

) is
given by

Ḟ~ t,f!52gv0* F~ t,f!1g~n11!v0F1 igv0(
i

]F

]f i
,

~A4!

where

v0~ t,f!5(
i

e2 i e i t2 if i, e i5
2kpi

m0
. ~A5!

If the system is initially in then-photon stateuC(0)&
5upi ,n&, thenFn(0,pi ,l i)5) id l i ,0

andF(0,f)51.

Characteristicsf(t) of the Eq. ~A4! are defined by
ḟ i(t)52 igv0(t,f), with the solutionsf i(t)5f i

01V(t),
whereV(0)50, f i

05f i(0) are constants. The functionV(t)
to be determined is the same for allf i(t).

V(t) satisfiesV̇(t)52 igv0. The substitution off(t) in
Eq. ~A5! gives

v0~ t,f!5u0~ t,f0!e2 iV(t),

where

u0~ t,f0![(
i

exp@2 i e i t2 if i
0#. ~A6!

Hence, (]/]t)eiV(t)5gv0eiV5gu0(t,f0), with the solution

eiV(t)511g( aj~ t !e2 if j
0
, ~A7!

where

ai~ t !5
sin~e i t/2!

~e i /2!
e2 i e i t/2, ȧi~ t !5e2 i e i t. ~A8!

Equation~A7! defines characteristicsf i(t)

eif i5eif i
0
1 iV5eif i

0F11g( aj~ t !e2 if j
0G ,

~A9!
e2 if i5@eif i#21.
7-9
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Equation ~A9! can be reversed to get constants of mot

f i
0 in terms of f i . Defining L(f1 , . . . ,fNB

) as eif i
0

5Leif i (t) and substituting this in the right-hand side of E
~A9! to get

L512g(
j

aj~ t !e2 if j . ~A10!

Hence,

eif i
0
5eif iF12g( aj~ t !e2 if j G , e2 if i

0
5@eif i

0
#21.

~A11!

The general solution of the Eq.~A4! can be found as
n

th
al

en

in

01650
.

F(t,f)5F(t,eif i
0
), whereF is arbitrary function of the ar-

gumentsj i(t,f)[eif i
0

given by Eq.~A11!. Equation~A4! in
terms oft,j takes form

]F~ t,j!

]t
52gv0* F~ t,j!1g~n11!v0F, ~A12!

where

v0* ~ t !5u0* F11g(
i

ai~ t !/j i G . ~A13!

Integrating Eq.~A12! over t and substitutingj i from Eq.
~A11! gives
F~ t,f!5F0~j!

expH 2g(
i

ai* eif1~g2/2!U(
i

ai* eifU22~g2/2!(
i , j

ei (f i2f j )E
0

t

dt@aj ȧi* 2ai* ȧ j #J
F12g(

i
aie

2 if iGn11 . ~A14!
.
by

his
Note,a(0)50. Thus, the initial conditionF(0,f)51 allows
us to chooseF0(j)51.

Parameter et is of the order of et
.2p2Nu(dp/p)L /A11K0

2 whereNu is the number of peri-
ods in the undulator and (dp/p)L is the rms energy spread i
the lab system. We assume thatet!1 that means that the
rms energy spread of the bunch is small compared to
width Dv/v.1/Nu of the mode. In this case, the integr
term in the numerator is

E
0

t

dt @aj ȧi* 2ai* ȧ j #.
i t 3

6
~e i1e j !2

t4

12
~e i

22e j
2!,

~A15!

i.e., e t times smaller than the other terms in the expon
@which are of the order ofgt and (gt)2# and can be ne-
glected. The remaining factors can be written introduc
additional integration overl in terms ofb5g( iai(t)e

2 if i

F~ t,f!5E
0

`

dl
ln

n!
e2l exp@2b* 1lb1~1/2!bb* #.

~A16!

Let us factorize this expression using identity

exp@2b* 1lb1~1/2!bb* #5Ôlkelb2kb* uk51 ,
~A17!

where operatorÔlk5exp@2(1
2)(]

2/]l]k)#.
Now integration in Eq.~A3! overf i can be easily carried

out for each particle using
e

t

g

E df

2p
exp@ i l f2ka* eif1lae2 if#

5S la

ka* D l /2

Jl~2Alkaa* !. ~A18!

The replacement ofk→2k on the left-hand side of Eq
~A18! changes the right-hand side of the equation
Jl(•••)→I l(•••) leaving the rest intact.

Thus,

Fn~ t,p,l !5E
0

`

dl
ln

n!
e2lÔlkH)

i 51

NB S lai

kai*
D l i /2

Jl i
~2guai uAlk!

3expF2~g2/2!E
0

t

dt~aiȧi* 2c.c.!G J U
k51

,

~A19!

whereJl is the Bessel function.
For a single particle,NB51, identity

ÔlkS l

k D l /2

Jl~2guauAlk!uk51

5l l /2 exp@~1/2!g2uau2#Jl@2guauAl# ~A20!

can be verified using the series for the Bessel function. T
identity allows us to write
7-10
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Fn~ t,p,l !5E
0

`

dl
ln1 l /2

n!
e2lS ai

ai*
D l /2

Jl~2guauAl!

3exp@~1/2!g2uau2#

3expF2~g2/2!E
0

t

dt~ai ȧi* 2c.c.!G . ~A21!

Integration overl gives @9# the result in terms of La-
guerre polynomialsLn

l

Fn~ t,p,l !5~ga! l exp@2~1/2!g2uau2#Ln
l ~g2uau2!

3expF2~g2/2!E
0

t

dt~aiȧi* 2c.c.!G .
~A22!

Equation~A22! reproduces Dattoli-Renieri’s@4# result for
a single particle. Equation~A19! defines the evolution of the
initial state of the system for a bunch withNb particles.

APPENDIX B: DETAILS OF THE DERIVATION
OF EQ. „84…

Equation~81! can be simplified, first, by integrating ove
c andc8 and then byl andl8 using formula

E dl
l l

l !
e2lÔlkS l

k D m/2

Jm~2Alkb!uk515bm/2e2b/2Ll
m~b!.

~B1!

This can be obtained by using the series represntation o
Bessel function. The result is given in terms of Lague
polynomialsLn

m . Equation~B1! is valid both form.0 and
m,0, whereLl

2umu(b) has to be understood as

Ll
2umu~b!5~21!m

~ l 2umu!!
l !

bumuLl 2umu
umu ~b!. ~B2!

In this way we obtain

Fout~ l S ,MS!Fout~ l S8 ,MS8 !Q~b1 ,b2!

5~b1* !M2m~b1!M1m expF2
1

2
~b2b1* 1c.c.!G

3LN1m
M2m~b2b1* !LN2m

M1m~b2* b1!, ~B3!

where b15gt( exp@22ik(zj1hpj)#. The average,̂ pj
k& is

proportional to the sum

S~m!5 (
M52`

`

x0
M (

N5max(2M ,N)

`
~N2m!!

~N1M !! S G21

G D N

3LN1m
M2m@x#LN2m

M1m@x* #LN2m
2m F2

y

G21G , ~B4!

wherey5us2u2, x5b2b1* , andx05ub1u2. Termsm,0 can
01650
he
e

be obtained by complex conjugation.
The sumS(m) can be split into two parts, one, for2m

,M,`, m,N,`, and another one for2`,M,2m,
2M,N,`. In the first sum we may start summation fro
N52m because the maximum power ofz in LN1m

M2m(z) is
N1m. Therefore, derivatives overz are equal to ifN,m.
After this, the sum can be calculated first by express
LN2m

2m @2y# in terms of the confluent hypergeometric fun
tion and using the integral representation of the latter,

LN2m
2m @2y#5

~N1m!!

~N2m!!
y22me2yE

2 i`

i` ds

2p i
esy

sN2m

~s21!N1m11
.

~B5!

Second, we can write LN2m
M1m@x* #

5(2@]/]z#)2mLN1m
M2m@z#uz5x* , and use@9#

(
N52M

`
~N1m!!

~N1M !!
jN1mLN1m

M2m~x!LN1m
M2m~z!

5
~jxz!2(M2m)/2

12j
exp@2j~x1z!/~12j!#

3I uM2muS 2Ajxz

12j D , ~B6!

wherej5$@s(G21)/(s21)G#%. In this form, the answer is
valid also for the second part of the sum,2` , M , 2 m ,
2M,N,`.

The sum overM,

S~m!5S 2
]

]zD
2m

(
M52`

` x0
M

y2m

3e2yE
2 i`

i` ds

2p i

~js!2mesy

~s21!m11

~jxz!2(M2m)/2

12j

3e2[ j(x1z)/(12j)] I uM2muS 2Ajxz

12j D , ~B7!

can be calculated using

(
k52`

`

ak/2I uku~2b!5e(b/Aa)1bAa. ~B8!

After that, each derivative overz gives the factor (j/@1
2j#)(12@x/x0#). S takes the form of

S~m!5y22mx0
me2yE

2 i`

i` ds

2p i
esy

3exp$@jx* ~x/x021!1x02jx#/~12j!%

3S 12
x

x0
D 2m Gm11~G21!m

~s2G!2m11
. ~B9!
7-11
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The integral is given here by the residues of the poless
5G,

S~m!5G~G21!mS x0

yAD mS 12
x

x0
D 2m

I 2m~2AGAy!

3exp@x01y1~G21!A#, ~B10!

whereA5ub22b1u2. Finally,
01650
^pj
n&5(

iÞ j
K̂n(

m
~11 p̂!S s2*

s2
D m

3I 2m@2AGub22b1u2us22s1u2#, ~B11!

S b12b2

b1* 2b2*
D m

exp$~G21!ub22b1u2

1~1/2!@b2~b2* 2b1* !1c.c.#%

3exp$~1/2!@s2~s2* 2s1!1c.c.#%ub25b1
.

~B12!
,
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