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Quantum theory of optical stochastic cooling
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Quantum theory of optical stochastic cooling is presented. Results include a full quantum analysis of the
interaction of the beam with radiation in the undulators and in the quantum amplifier. A density matrix of the
whole system is constructed and the cooling rate is evaluated. It is shown that quantum fluctuations change
classical results of stochastic cooling at low bunch population and set a limit on the cooling rate.
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I. INTRODUCTION Cooling for short bunches requires the amplifier to have a
large bandwidth. For example, the bunches in the PER-II
Recently, optical stochastic coolif@SCO was proposed factory have r,=33 ps. To affect different slices in the
[1,2] as a method for the fast cooling of short bunches inbunch, Ng has to be smallN;<N,, which requiresAf
storage rings. In OSC, a wave of radiation is generated by & A w/27>10 GHz. The actual PEP-II bandwidth is only
particle in an undulator. After amplification in the optical 250 MHz.
amplifier, the wave is sent to another undulator where its The advantage of optical stochastic cooling is latge
interaction with the parent particle provides the desired coolallowing for fast cooling. In this method, the bandwidiH
ing. The first and second undulators work as a pickup-kickee=y2(c/L,) whereL,=N_\, is the undulator length angi,
pair in conventional rf stochastic cooling. The phase shift ofis relativistic factor of the beam in the laboratory frame.
the wave, with respect to the particle, is controlled in a dis-Parameters of the undulator have to be chosen to match the
persion section between the two undulators. undulator mode to the central frequency and bandwikith
Particle radiation affects other particles in the bunch leadof the amplifier. For the typical solid state Ti:sapphire ampli-
ing to diffusion that limits the damping rate. In this respect,fier (\=0.8 um, Af/f=1/5).
optical stochastic cooling is not different from rf stochastic  Gjven bandwidth, fast coolin(for example, in the muon
cooling. The number of interacting particlésie number of  collider) can be achieved by reducing the number of particles
“particles per slice’) in the bunch with rms lengthr,  per sliceNs. For one particle per slice, cooling would be

= c7, and bunch populatiohlg is achieved just in one turn. However, with a smidll, classi-
cal and quantum fluctuations could become dangerous. In-
N.— mNp 1) deed, the average number of photons radiated in the main
* Ao\2mr, undulator mode isvy=1/137. Therefore, one can expect that

a photon is radiated once per 137 turns, and that fluctuations
and is defined by the bandwidth of the amplifiesw. This ~ may be large. Concern with quantum fluctuations is the pri-
interaction of particles changes the momentum of ftte  mary motivation for the study presented here.
particle[3], In our consideration we determine the evolution of the

quantum-mechanical density matrix of the systémunch

— and radiated modehrough the undulators and the quantum

Pj=Pj—Ap; _Ag‘j Pi 2 amplifier. The paper starts by defining the initial density ma-

trix of the beam and then by describing the beam/radiation

where A is the parameter of interaction between particlesinteraction in the undulator. Beam dynamics in the undula-
proportional to the electronic gain of the amplifier. The rmstors is described in the rest frame of a burich to Renieri

energy spreadgf):(1/Nb)2j[((pj)2)—(pj>2] for initially ~ [4.,5] and co-workers where other references can be fpund

uncorrelated particles is changed by The formalism we usg7] reproduces Becker and MclvEs]
results but differs from their formalism. In both cases, the
Alo3]=—2Ao5+A?Ngo). (3)  number of particles per bundis can be arbitrary but the

effects of bunching are neglected. In this sense the interac-

The cooling rate is tion of particles with radiation is weak. This assumption sub-

5 stantially simplifies consideration being quite adequate for

1 _ ﬂ: oA+ A2N 4) describing optical stochastic cooling.
Nturn 0,2) s Next, the evolution of the density matrix in the quantum

amplifier is described, taking into account the nondiagonal
The maximum cooling rate of M,,,=1/Ng is determined components of the density matrix. Interaction between am-
by the number of particles per slice, and is achieved\ at plified radiation with the bunch in the kicker is then consid-
=1/Ng. ered in the same way as it was for the pickup undulator.
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Finally, the full density matrix is constructed and is used tocorresponding to the energy spreag,,, in the laboratory
calculate the one-pass variation of the rms energy spread @fame.

the bunch. Optimum cooling rate of OSC is determined and At the entrance to the pickup, each particle is described
compared with the cooling rate of classical theory. It isby the density matrix Eq(9), p°(p/.pi), i=1,2,... Np.

shown that quantum fluctuations set a limit for the dampingrye

rate of this method.

II. INITIAL DENSITY MATRIX OF A BUNCH

We consider only longitudinal motion in a bunch, assum-
ing that theN, particle bunch is described by the Gaussian

normalized distribution functiofDF) f(p,z),

f f(p,z)dpdz=1. (5)

The classical DF is related to Wigner’s density matrfx In
the momentum representation, the relation is

Ld .
f(p,z)=fﬁp(ﬁql&p—q/ae‘qz’h, (6)

where the density matrix is normalized,

. Ld
p=p'(p(p",p))pPl, fz—:p(p.p)ﬂ- (7

For a Gaussian DF localized around the pa@gt p, in the
phase space,

(Z_Zo)2
20°

1 (P—Po)?
f(P2)= 5 GA®R ~ 557~

The corresponding density matriy is the wave packet

)

h\2m i 1/0\2
p%(p’.p)= LAWexp[—ﬁ(p’—p)zo—g(%) (p'—p)?

1/1\%/p+p’ 2
5% T_po

2\ A
whereL is the normalization length. The rms valuegndA

, 9)

of the wave packet may be small compared to the rms ener

spreadAg and rms lengthog of a bunch.

Ill. PICKUP

We assume that there aifeg relativistic particles per

density matrix of the whole bunchp

=11;2,1p")p°(p{ . pi)(pl.-
In the moving frame, interaction of particles with the
modek= w/c is described by the Hamiltonian
Ne 12 .
H=> -——+hw(ata+1/2)—ihg[ae?k* iet_c c],
i=12m
1y

wherem=mgy1+ KOZ.

If the vector potential of the radiation is normalized to one
photon per volume/ [6,7]

A— 2’7ThCZQ ~ ik%_i_
=1/ Vo y[ae c.cl,

yl=1, (12

then the parameter of the interactigsg,, where
_ KO 62 2’77 13
gk_c /—21+K0 V hc kV' ( )

In the one-dimensional model, the beam interacts with
one radiated mode. In this case, operaanda™ change
the number of coherent photons in the mode, and vector
potential must be normalized within the phase volumh®f
the mode.

In the laboratory framd11], Q= (V/(2)3)(wk3/N2).
This can be obtained from the constraiwN,— ¢|< on
the phase slippage=|wt—k,z| along the undulator and
from the requirement that the frequency sprefd»
— )] o, |<1/(2N,), where o, is resonance frequency of
radiation at zero angle. The result for the phase volume in the
moving frame follows from the relativistic invariance of
d%k/ w.

Normalized vector potential is obtained by multiplying

g.(12) by Q. The parameter of interaction with the mode

then becomeg=g,\/Q and, using the time of the interac-
tion in the moving framet=2xN,/(ck), we get gt
=(Ko/y1+ KOZ) Jme?lhc. Hence, ¢t)? is of the order of
ap=e€?/hc and is always small.

Initial state |p;,n)=|p1,P2, ... PngN) Of the system

bunch, there is no initiat, p correlation, and correlations that \ith n photons and particles with momentuns, i
may be generated in the undulators are wiped out in one turn. 1,... Ng is transformed in the undulator by the interac-

The pickup and the kicker undulators are helical with theyjon with the modek= w/c= yk, to the vecto] ¥ (t)). As it

undulator parametek, and period\ ,=27/k,. The bunch

is described[5] in the frame moving with the relativistic
factor y=yo/y1+ KO2 where the resonance frequency of the
mode isk= vk, . The bunch centroid has zero initial velocity

and an energy spread dfp,

Ap— 1 Aplab) (10
VI+KED v )

is shown in Appendix A, Eq(A21), (for more details, see
(7D,

= \/ n dy
’\P(t)>_|ini ‘pi_thli,n+|2> W Ze s¥
Ng

xexp[—iwt(nHE)]_Hl Fo(t,pi o). (14)
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Here Iy=2;l; is the total number of radiated photons,
E(pi.1)=(pi—2hkl)?/(2my),

0 )\n R )\a| Ii/2
Fn<t,p,|>:f0 d)\me}‘om(ﬁ) 3, (2g]ai| w)

xexd — (it/h)E(p;,1)]e" 1] =1 (19

The operatorO, ,=exf—(1/2)(0%/\dk)], J; is the
Bessel function, and

_ Sin(eit/z)e—ieitlz

_ 2kp
TR T

a(t)=e'at, -

€
° (16

The integration over/ in Eq. (14) is introduced to separate
the global parametersandl s of radiation and parameteps
andl; of individual particles.
Expression Eq(15) is derived neglecting terms of the
order ofhk?/m,,
hk?t

2mo WNuk)\Compt<l

17

Doing this we ignore bunching due to radiation, which is

irrelevant for our purposes.

For short undulatorskpt/m.<<1, [sin(gt/2)]/(€i/2)=t.
The functionF,, depends on parametgt, wheret is time of
flight in the undulator, which is=N \,/(cy) in the moving
frame.

Using Eq.(14), the initial density matrix

p(0)=|p",1£)p(p’,p, 15 ,1)(p. 15| (18
is then transformed into
p(O=[W"(1))p(p’,p,ls 1$)(W (D). (19

IV. DENSITY MATRIX OF THE UNDULATOR

Let us obtain the explicit form of the density matrix Eq.
(19.

We assume that at the entrance to the pickup there is no

radiation, n=0. In this case, initial density matrixp
=1'[iNfl|p’>p°(pi’,pi)<p| is transformed according to Egs.

(14) and(19) to p(t)=|a’,15)p(a’,q,l5,15)(a,l s, where

o 1 [ dydy’ o
p(q ,q,|2,|2):\/m (277)2 exﬁ_l(lzlﬁ _|zlﬂ)]

xex;{iwt(lz—lg)]f dndn’

xe M0, 00 Frod(q',0). (20)

Here|q) stands for the sd, . . . ,qNB>,
Ng

Floc(qlaq):i[[l F:OC!
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lo(al g =2 f{f¥p%q +2hkI/ ,q;+2hkl;)
1,1’

p{ .[(q{)z—q?]t]
xXexp — |l ———

2mgh @Y

fi=f(ai.li.9), fi="1(ai I ,¢'), where

\a 1/12 )
f(q.l,w:( )J.[Zglaa)Nme"'fa (22

ka*

It is convenient to consider Fourier transform

i qu iqz/hpi

Floc(paz):fme Floc(p+q/21p_q/2)- (23

For a short undulator, parametert<l1. In this case,
a(t)=te 's2, Parameter dt)? is the average number of
photons radiated in the main mode of the undulator per par-
ticle and is always small. This justifies the expansioti;ah
series ovemyt. Neglecting terms of the order ofjf)3, we
write for theith particle

Floc(P,2)=F2(p,2)[1+gtFM+(g)2F?], (24
where

Fl(p,2)= " ex
e oA

(p—po)? (z—2°—pt/m)?
- 2A7 202 :
(25

and

_ O
Fi(l)=exp[—(1/2)(hk/A)2]| — K exr{%

pt )
2mg
hk(p—p°)
AZ
hk(p—p?)

+i¢—2ik(z—

-k’ exp{
@ -
;{ hki
+Nexp-————

F@ has a similar structure.
With the same accuracy,

z—

2|

t
—iz,/;+2ik(z— P

ami |

(26)

—iy +2ik

Ng
Floc(p,z>=f 11 Fp ,zi>] exd gt F Y+ (gt *SFfo"],
(27)
where F£°"'=F® —(1/2)[F{Y12. Equation(27) takes into
account all terms of the order df,gt andN,(gt)? neglect-

ing termsN,(gt)°.
The sum
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fozth FO (28)

in the exponent of Eq27) is defined by parameters

< |, K(pi—p?)
ai(p,z)=gti21exp[ 2|k(z, me)_T}

1(hk\?
X ex —EX

(29

PHYSICAL REVIEW E65 016507

(39

( NA )
3\/_0'B

In terms of averaged .. introduced in Eq(30), Eq. (28
takes the form of

fo(ih, o' )= —Ka+ei'/’—K’a’;e‘i“"+)\a’je‘i¢+)\’0_ei‘/".
(35

The second termsgt)?2;F°" in the exponent of Eq.
(27) can be expanded ovér Expansion starts with the term

This expression must be averaged over the frequency sprepdoportional toh?. It can be split in two parts: the first of

in the mode arounét= yk,,

Ng , hk(p: —n°
o.(p,2)=gt>, ex;{—ZiE(zi— 2prlr: ) iM]
i=1

e A

S, (30)

where

~ [dk ] _
si—f?exp[—m(k—k)

(i pit/Zme)13|n2(7rNu(k— K)/k)

F ooz &Y

Factorss; restrict summation in Eq(30) over particles

within the length proportional to 2N, /(2k) (the length of a
“slice” ), or, in the Iaboratory system, withing=N\ ,p -

which,

k 2
f() = —Ng(gt) ( ) (k€N eV ) (ke eV,
(36)

is proportional to the number of particldg, and the second
onef? | is proportional to the sum over oscillating factors.

COI"
Introducingr .. =3; ex +4ik(z—pi/2m,) ], we can write

f(z)——(gt) ( [(Ke"”+)\ ev)?r

cor 2

+(k'e e )2, .

(37

In these notations,

Floc(p,2)= |H Fo(p; z)] fo(un )+ T+ 1) (38)

ParameteN = <o _o* >/(gt)? is the fundamental param- The first factor is the product of unperturbed single particle
eter of the theory def|n|ng the number Of |nteract|ng part|c|e§j|3tr|but|0n funCtlonS Wh|le the exponentla| faCtOI’ deSCI’IbeS

within the bandwidth of the modéumber of particles per

particle interaction. The last ternﬁw,, is small. Equation

slice). Here double averaging means averaging Wlth the den38) can be simplified by Wrmngg cor—(1+ %)r) and re-

sity matrix of the wave packet E(R5) and overz®, p® within
the Gaussian buncpg(zy,po) = (1/2mogAg)exd — p0/2A2
— 20/203] If the width of packetr in Eq.(25) is of the order

of the length of a slice, and >1, thenko>1, and

dx sir’x dy S|n2y
_2 J v

Neglecting terms of the order ¢f we get

N V27

NS: Nb 3kO'B ’

(33

where o is the rms bunch length in the moving frame and
we use [(dx/7)(sinx/X)*=0.6666. In terms of the wave-

placing —gtx’'e”'"’, gtxe™"¥, —gtxe'’, andgtn’e?’ by
the derivatives over™ , ¢*, o, , ando_, respectively.

. . . - @
The result is the differential operat®(o ). The factore'cor
can be written as

(1) A i i
efcor_OM,VeXn:_ V(Kellﬁ—l—)\'ellﬁ )

—u(k'e " +ne ]| s, (39

where O, ,.=exf —&(Flouv)], and £2=Ng(gt)?(hk/A)2.

Then,

Ng

F|oc(p,z>=[i[[1 F(pi.z) [ (1+P)O,,

xexd — k(o +v)e?—«k' (o +p)e 'V

Ao —pe YN (o —v)e?]. (40

length of the mode and the bunch length in the laboratory

frame,

Now it is easy to calculate
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02O v ex — k(o +v)e "+ \(o* —p)e ¥
— k' (05 +p)e " N (o= v)e ]| oy
=exf (V2 (o,+v)(oZ—p)
+(12)(o% +p)(o_—v)]exd — (o, + )€’
+N(o* —p)e V= (of +p)e
N (o_—v)e]. (41)

Integration overy and ¢’ can be carried out using

AIQ
;) Ji(2\\k). (42)

dy ‘ .
" Ally —i__ iy —
f 27_re exgAe xe'’]

After that, integrals ovek and\’ are[9]

f dre \"23,(2\Na)=a'%e2. (43)
0

The distribution function at the end of the pickup

4 qu iqz/h /

(44)
takes the form of

1 N5
p(p!Z!Ié 1|E): Wequwt(lz_lé)]{ IIJ;I. F|O(p| izi)]

PR
X(1+P)R(p,2), (45)
where

R(p.2)=0, (0% —w)*(o_—v)'sex — (1/2)(c* — )
X(o + 1) =(UD(0 —v)(oh+m)]. (46

For smallZ, the density matrix at the end of the pickup is

1
P(p-ZJ/E'IE) \/T[H Fo(p| ]
3

X (1+P)R(p.z N, wexdiot(ls—1%)],

(47)

whereR=exg —(1/2)(¢* o, +c.c.)]R(p,z,N,x), and
U'* m IE+|§, |z_|é
2N _ —
_) oI N==%= ==
(48)

R(p,z,N, )=

Correctionz?|o_|? is of the order of Ny(gt)?(hk/A)]? and

is always negligible.

PHYSICAL REVIEW B5 016507

V. SOME RESULTS FOR THE UNDULATOR

First, let us show that the total density matrix E4j7) of
the system(particles and radiationallows us to reproduce
results obtained by different methods.

A trace of the density matrix Eq47) defines energy loss

(p)=Tr(pp)=—2hk(gt)2 (49)

The density matrix of radiatiom, 4, can be obtained as the
trace of the full density matrix Eq47) over particle indexes,

prad<lg,lz>=§ p(p] .pi 1% ls). (50)

Equations(49) and (50) reproduce resultf10] obtained by
the operator formalism method.

The density matrix of radiation for a single electrdy,
=1, with no initial photons,

(gt )2' 2
Wrad(1)=prad(l,1)= e (97, (51)

is a density matrix of a coherent state. The average number
of radiated photons in a single mode is small,=(gt)?
=ay=1/137. Fluctuations are largé(Al)?)=(1?)—(1)?
=(l), and

((An% 1
i = T (52)

Radiation of a bunch corresponds to thermal stati$ti¢s

Prad( Is)= a=Nb(gt)2. (53

For the following, it is convenient to transform the density
matrix p(p,z,ls ,lIs) back to the momentum representation,

p(p+q/2,p—q/2)=:H f (dZa/L)eXFi—i(Q'—Q)Zi]]

ai +a
57

The result then becomes

=1q’,15)p(q'q)(q,ls/, (54)
where
1 dz . N
Q)= —F'(q',9,2) { (1+P
"+ )
xRl ——zN,u g2luot, (55)
and
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2

i h . q’'+q (N=w)! [a*\*
F'(q',q,z =—ex;{—| "—q)z/h— _— IV ol 2palaf?
(q',9,2) oA (q'—q) A2l 73 p(n,n’,t) W(O‘) |a|?*e
1 q'+q \? £ 2
ZZ(Z 2m, ! } (0 Xg“*l(l—é)'“"l-ﬁ’*“(——l_ga )

Note thato. are functions of the coordinateg; ([q/ 63
+q;]/2) of all particles.
Then

VI. OPTICAL AMPLIFIER AND DISPERSION SECTION

o
The density matrix Eqs(47) and (48) at the exit of the (a(t))=—=, (64)
pickup undulator is the superposition of coherent states. Vé
Transformation of such a state in the optical amplifier can be ) )
obtained in the following ways]: which shows that parametérdefines the gaii of the am-
Let us consider the two level model of the amplifier with Plifier, G=1/¢.
inverse populationN,>N,. The equation describing the  The lowest moments are
time evolution of the density matrix is well knowi2],
(a())=\Ga, (a'a)=Glal’+(G-1), (65
p=—gNJ[aa’p+paa’—2a’pa] _ _ o
and the signal-to-noise ratio is independentofor G>1
—gNy[pata+atap—2apa*]. (57)
(@*a)®)—(a*a)? 1+2[al?
(@'a)?  (1+[a)?

Let us use this representation with a fixed number of pho-
tons, p(t)=|n")p(n’,n,t)(n|, and defind=(N, u,t),

1. (66)

Let us use these results to transform the density matrix Eq.

F(N,u,t . e
p(n’,n,t)= (—'u,) N=(n+n")/2, u=(n—n")/2. (48) in the amplifier. _
vnin' 58 The Mellin transformRy (N, ) of R([q’ +q]/2,z,N, 1),
. . . . ~ i= dN ~ (g +
The functlonF_|s a solution of Eq(57). Parame_tem is t.he RM(&M):J o ‘NR(q q ,z,N,,u), 67)
integral of motion. Dependence dhcan be obtained using a —i 2 2

Mellin transform
is proportional tos(Z— &), {o=|o_|%

*

6({—Lo)- (68)

F(N,,u,t)=fode’Gm(N,Z’,T)fo(z’,m), (59

o_

"F'eM(z,u)=§o{

wherer=gNt, tis the amplification time ané, is given by

the initial condition, o~
After the amplifier, R([q’ +q]/2,z,N,x) should be re-

i= dN placed[8] by Fampi,

fo(Z,,u)=f 52 "F(N,1,0). (60)

ik * 1M o*o_

G—-1

oO_

=

1
= — I —
The kernelG,, can be obtained8] for an arbitrary ratio of Famp((N,)=(N |’“|)'G

N,/Ng. In the case of a fully inverted populatioNg=0,

2
x L2/ (—ﬂ . (69)

[l G-1

3

Gm(N,Z',7)=(N=u)!= (1= &b LE ,(—b), (61)
z

Here G is the power gain of the amplifieL,| are Laguerre
whereb=¢£z'/(1— &), é=e 29! andt is the the time of ~Polynomials, andN=(Is+15)/2, u=(Is—15)/2.
amplification. Equation(69) describes the amplification of the main term

Parametet is related to a gain of the amplifier. Consider, in Eq. (47). Calculation of the derivatives in the correction
for example, radiation from the undulator of a single electronterm, PR(p,z,N, x) whereP is a differential operator of the
described by initial coherent state second order ir.. , gives a polynomial of the second order

) in N multiplied by R(p,z,N, «). The result can be written as
a’ (a*)" o 62 P(y[a/ay])x“yN, whereP is now a differential operator of

n'n’l ' the second order iy, independent oN, andy=|o_|?, x

=0¢*/o_. This expression can be transformed in the ampli-
The result of amplification is described by the density matrixfier in the same way as the main term above.

p(n’,n,0)=

016507-6
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VII. DISPERSION SECTION Herely =N+, 15=N—y, my=M— s, mi=M+ u. Be-

The dispersion section with momentum compaciig. causely andly are positive, the range of summation is 0
and lengthL 4 introduces ¢,p) correlation by changing the <N<%*, ~N<M<c, and|_,u|_<_N. Functionso .. in Famp
path length in the lab frame byz= aycL4(p—p°)/do. In depend on coordl_nates of individual particleg ¢ q;)/2,z; .
the moving frame, such a correlation is described by thelhe OperatoiF,; is
classical distribution function

1 (p-po)? ( )2 FoulGls sMy) =~ fd‘/’e
p—p z—2— 7P out(Qly ,My) = = [ ——
f(p,z)=27AUexx{— ch 200277 } Jis+mg)t) 2m

(70)

Is
xexp[iwt(lermz)]f dxl)‘—|eﬂém,
where parameterp= ygapyclys/MeC. The corresponding 2
density matrix is different from Eq(9) by the factor (75
exf — (/) 7(a"*—?)/2]. _

Hence, the dispersion section modifie$q’,q,z) in Eq. and
(55). Equation(56) has to be replaced with

- A dz_ .
F'(a',0,20exd — (i/h)»(q'?—g?)/2]e'’.  (71) <I>|oc(q,q’,t//,</f’)=ﬂ —FV0a"a.2)
Here, a phase slig of a bunch centroid is added and should iy
be controlled in the experiment. xexp[ —opL(a)?=(a)?]
VIIl. KICKER XS;]i(q,)\,K)S(q,,)\,,K,), (76)
The density matrix at the entrance to the kicker is ob-
tained by combining Eqg47), (48), (69), and(71), where
- 1y Fin N k)= a mi/ZJ 2g|a;(t)|Ar]em¥
pin(t)—|q ,|2>W<q,|2|, (72 Smi(q: VK) = a* mi[ glai(t) K]€
—i[(q—2hkm)?]t
where
><exp{ mh : (77)

o ’ » 2i pwt
Fin=Fas @01+ P)Famp(N, ) To describe stochastic cooling, it is sufficient to calculate the
><exp( _Zloto,+c c]) momentum of a particle at the end of the kicker. The average
QLT moments for thgth particle after a bunch passes through the
system are(p/)=Tr[pfpou(t)], k=0,1, ..., wherep is
momentum operator and brackefs -) signify averaging
dz " over the wave packet. In the momentum representatior_n only
Fds:H fTFI(q,’q'Z)eXp[_iE[(q,)z_qz]]' the diagonal componentsqi’—2hkm’=qi_—2hk_m , kl
' =12,... Ny, andIg+mi=Is+my, contribute in(p;).
73 we can utilize the fact that .. are functions only of the sum
The transform of the density matrix at the end of the kickerd Td and introduce P, g/ =P;+hk(m/—m), q=P;

is given by Eq.(14) wheren has to be replaced by the num- —hk(m/ —m;). This allows us to write
ber of photonds. We use notatiorm; for the number of

and

photons radiated by thith electron in the kicker andny (p")=[Pj—hk(m;+m)]"®,(1+ P)
=>;m; for the total number of photons. We also assume that . L,
the parameters of both undulators are the same. XFoul( s my)Foudd’ .l . my)Famp(N, 1),
Given the above, the density matrix at the exit of the (78)
kicker
~ where
Pout(t)zlq’_thm,alg"'mé>¢loc(q-q’-¢a¢/)
~ dZ|d Pi
XFoud@ls ,me)Fou(q’, 15, mg)(1+P) q)Ioczl_i[ 7oA PolPinz) E Sty (N, €) Sy (N, ")
m;,m
. 1
><Famp|(N,M)ez"’““"exp(—5[0i0++0-0-] xexd —2ik(z;+ 7nP)(m/ —m))], (79

x{q—2hkmls+ms|. (749  and
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po(Pi.zi)=exd — (Pi—p})%/2A% = (z— 7'~ Pit/m0)?].
(80)

Note thatF,,, depends orr.. that are given now by Eq.

(32) wherep; are replaced by; .

Similarly to what was done for the pickup, we expand

S(\, ) in series ovegt, neglecting term®(gt)3. Here we

skip over the details of the calculations and give the final

result
<pr>:|2J kn(l+|’:\))F0ut(q1|2va)Fout(qrilé!mé)
XQ(bl1b2)Fampl(PvZ)|b27)b1- (81)
The sum stands  for integrals II;[(dzdP;)

[(2moA)]po(P;,z) over all particles in a bunch, and

Q(by,by)=exp\'b.e"” —k'bie ¥ +\b¥e ¥

— kbye'?), (82)
whereb,;=gtS;e %, and phasep;=2k[z;+ p;n]. Opera-
tors K, for different n=0,1,2 are Ko=1, K;=g;
—hkgt(a,—a,), K,=K2+(hk)%gt(a,+a,), where

i ?
e .
by by

(83

a,=e 'Yi——+e?i a =€’

3
db, by’

Equation(81) after some calculationsee Appendix Bcan
be written as

ot |

-

X'zﬂ[z\/G|b2_b1|2|(T_U+|2](

(pN=2> K2 (1+P)
1#] M

bl—bz>"
bl —b3

X exp{(G—1)|b,—bq|2+ (1/2)[by(bs —b})+c.c]}

xexp{(112)[o_(o* =) +C.Cl}p,b,. (84)

The operator&, are not more than the second order dif-
ferential operators ib,, by, and the function depends on
b, ; only through powers ab,—b;. Therefore, it is sufficient

to take into account only termg=0, u=+*1/2, andu=

+1 in the sum overu. Additionally, we can expand the

answer in series ovagt and neglect term®(h?).
To check the result, we can calculate the avexage for
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can neglect terms that are independen@ofn this approxi-

mation, momenturrf)j of the jth particle at the end of the
kicker is

P;=p;—2(gt)%hkyG[ 0§ exp{—2ik(zj+ 7esp;) +i6}
+c.cl, (89

k/vhereneff= n+t/2m, andé is the phase slip of the bunch
centroid. Calculation op? at the end of the kicker gives

Pi=p;—4G(gtA(hK)p;(o exd — 2iK(z;+ 7esp;) +i6]
+c.c)+8G(gt)?(hk)[ 1+ (gt)%0q0t +c.c]
+4\G(gt)*(hk)?(b,ol e+ c.c). (86)

Here oy=0.|n_o. Double averaging over the wave packet
po(P;,z;) and over a Gaussian distribution of particles in the
bunch gives rma 2= ((p?)) —((p))? at the end of the kicker

A2 A2 hk
— 2 H
2 16VG(gt) —ABAsma
2 hk 2 2
+86(g0)? 3| [1+N(g’]

hk\?
+8 \/E(gt)4( A_) Ns cosfe2kae) iy,
B

(87

Here A =kAg 71 exH —2(KAg 7e9)°]-
To get damping, we have to choose &inl. The damping
is maximized if the power gai@ of the amplifier is equal to

JG

B A
~ (hKAB)[1+Ng(gt)*]”

(88)

ParameterA as a function ofx=kAg#nes has a maximum
value of A ,,,,=0.3 atx=2. This defines the optimum pa-
rametery of the dispersion section.

The optimized reduction of the rms energy spread in one
pass through the system is
8A2

max

A2-42
=- . 89
AZ (gt) 2+ N 9

IX. CONCLUSION

One-pass reduction of the energy spread rms is derived
following the evolution of the density matrix through all
components of the system. The consideration is fully quan-

n=0. This quantity is just the norm of the distribution func- tum mechanical both for the beam and for the radiation. The
tion and, therefore, has to be equal to 1. Indeed, the answéunching effect is neglected and length of a slice of the order
is different from one by the term of the order of of N\, is assumed to be small compared to the bunch
NZ(gt)*(hk/A)*. length in the laboratory frame?.

The result for the moments=1 andn=2 were obtained It is shown that the constructed density matrix may be
with MATHEMATICA . As it will be shown below, the power used to obtain results on the photon statistics and distribution
gain G must be of the order ah,/(hk). BecauseG>1, we  of particles due to the beam-radiation interaction in the un-
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dulator. The time evolution of the density matrix of radiation X (I;—I; =1)], and write explicitly only those quantum num-
in the amplifier is described, including the nondiagonal compers that are changed by the interactidi,(t,p; ,1; = 1)
ponents of the matrix. =Falt,(p1.1), -+ (P, 15£L), .o, Ong:Ing)1-

The final result Eq.(89) is equivalent to the classical Neglecting termshk?/2m, in the exponenti.e., in the
equation of stochastic cooling with quantum noiseg1)f. laboratory frame, terms of the order bk,k,_/my<1), we

Equation(89) for large Ng>1/(gt)? reproduces the main re- can solve Eq(A2) by the Fourier transform
sult of the classical theory of stochastic cooling. The damp-

ing rate is given by the number of particlég per slice. Np 2nd b

However, for smallNg the damping rate goes to a constant Fa(t,p;.1)= [ H f _'ei|i¢i]

proportional to 1/gt)?, where gt)%o[K3/(1+K2)]ao. The i<1Jo 27

guantum fluctuations set the limit on the damping rate, the Y E(t A3
minimum number of turns for cooling is of the order of}/ (t.pe, Prgr @1 - bng) (A3)
The term 1/gt)? is equivalent to the noise induced byud/ . _ .
particles and is related to the quantum limit of the input noise Function F(t,#)=F(t,ps, ..., Prg: @1 - - - d)NB) 1S
of the amplifier equal to one photon in a mode. The othediven by

guantum-mechanical corrections are small, of the order of -
(hk)/Ag (i.e., hk /Ap_ in the laboratory frameand are . R . f9_
noticeable only in very cold beams where the energy spread Ft.¢) guoF(t,¢)+g(n+ DUOFMgUOZ ad;’

is comparable to photon energy. (A4)
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If the system is initially in then-photon state|¥(0))

=|pi.n), thenF,(0,p; 1)) =11; 8 o andF(0,¢)=1.
Characteristics¢(t) of the Eq. (A4) are defined by
Interaction of particles with the mode described by g (1y= —jgy(t,¢), with the solutions ¢;(t) = ¢2+ V(t),

Hamiltonian Eq.(11) is just backscattering of equivalent whereV(0)=0, ¢2=,(0) are constants. The functid{t)

photons. The initial statf; ,n)=|p1,pz, - . - Png:N) of the to be determin,edlis thle same for a(t).

system withn photons and particles with momentumps, i V(t) satisfiesV(t)=—igu,. The substitution of(t) in

=1,... Ng is transformed by the interaction with the mode Eq. (A5) gives

k= w/c= yk, to the vecto ¥ (t)),

APPENDIX A: BEAM DYNAMICS IN THE UNDULATOR

n! UO(t!(b):uO(t!(bo)e_iv(t);

"I’“”:u;pi [Pi=20kl 1) \ oy where

dy

XJEE‘ > Ug(t, ) =2, expf —ieit—ig?]. (A6)
N

xexd —iot(n+1s)1]] Fat,pi ). (A1)  Hence, ¢/at)eV=guvyeV=guy(t,$°), with the solution
=1

0

Here 1y=3;l; is the total number of radiated pho- eVO=1+g> a(te ', (A7)
tons, E(p;.l;)=(p;—2hkl;)?/(2m,), and the amplitudes

F(t,[p;i,l;]) are defined by the equation where

Fn(t!pjilj):gz [(n+|2)Fn(t!pjv|j_1) _Sir(Git/Z) e . e
i ai(t)—(ei—lz)e 2 a(t)=e 't (A8)
X exp{ — 2i (k/mg)t(p—2hKkl;)}

Equation(A7) defines characteristicg;(t)

><exp{2i(k/m0)t(pj—2hklj)}], (A2) ei“si:ei‘b?“\/:eid’? 1+g2 aj(t)e*“”? ,
following from the Schrdinger equation. Here, we use (A9)
(p;— 2hkl;|e*#**p/ — 2hkl/)= (27h/L) 5[ pj — p;+2hk e ti=[e¢] L,
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Equation(A9) can be reversed to get constants of mot|on|:(t ) =d(t, e'¢’|) where®d is arbitrary function of the ar-

¢{ in terms of ¢;. Defining A(¢y, ... .¢n,) @S e gumentsz (t, )=e */ given by Eq.(A11). Equation(A4) in
=A€e' %" and substituting this in the right- -hand side of Eq. terms oft, ¢ takes form

(A9) to get
0.0 guid(t,&)+g(n+1,®, (Al2)
. =—Qv , vo®d,
A=1—g; aj(t)e . (A10) ot 0 0
Hence where
¥ =gt 1-g> aj(t)e“ﬁj}, e i =[el %] 1, vg(H)=Ug l+gz /& (AL3)

All
(A1 Integrating Eq.(A12) overt and substitutingé; from Eq.

The general solution of the EqA4) can be found as (All) gives

|
exp[ —gEi ai*ei¢+(92/2)2i arel?

[1—92 ae” '

) t . .
@ o [Laraar -t
AT . (A19)

F(t,¢)=o(¢)

Note,a(0)=0. Thus, the initial conditiofr (0,¢) =1 allows d¢ . _ B
us to chooseby(£)=1. f ﬂexmlsb—xa*e"”ﬂae ']
Parameter et is of the order of et

=2m2Ny(p/p) /y1+ KO2 whereN,, is the number of peri-
ods in the undulator andsp/p), is the rms energy spread in
the lab system. We assume thdt1 that means that the
rms energy spread of the bunch is small compared to the
width Aw/w=1/N, of the mode. In this case, the integral The replacement ok— —k on the left-hand side of Eq.

112

Ji(2\\kaa*). (A18)

Aa
ka*

term in the numerator is (A18) changes the right-hand side of the equation by
Ji(---)—=1,(---) leaving the rest intact.
it3 t4 Thus,
fdr[a, —afay]= o (e+e) - (€€,
(A15)

Fa(t,p,l)= fdx—e "OM[H

1j/2
) J,(2g/ai| Vi «)

J

i.e., et times smaller than the other terms in the exponent
[wh|ch are of the order ofjt and (gt)?] and can be ne- t .
glected. The remaining factors can be written introducing Xexr{—(gZ/Z)J dr(a;af —c.c)
additional integration ovex in terms ofb=g3;a;(t)e "% 0

o0 )\n
F(t,p)= fo d)\me*A exd —b* +\b+(1/2)bb*].

h is the B | function.
(A16) whereJ, is the Bessel function

For a single particleNg=1, identity

Let us factorize this expression using identity

. N 112
O)\K(;) 'JI(29|a| \/ﬁ)“:l

=\"2exd (1/2)g%al?13[2g]al yX] (A20)

exd —b* +\b+(1/2)bb*1=0, e~ **| _,,
(A17)

where operatod, = exd —(2)(%/d\dx)].
Now integration in Eq(A3) over ¢; can be easily carried can be verified using the series for the Bessel function. This
out for each particle using identity allows us to write
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( a
a;

t .
Xexp{—(gZ/Z)f dr(a;a* —c.c)|.
0

n+|/2 112

Ji(2glal\n)

Fa(t,p,l)= f dx
x extl (1/2g?|al?]

(A21)

Integration over\ gives[9] the result in terms of La-
guerre polynomiald.},

Falt,p,1)=(ga) exd — (1/2)g?|al?]L}(g?|al?)

Xexp{ —(g%/2) Jotdq-(aiéi* —c.c)l.

(A22)

Equation(A22) reproduces Dattoli-Renierifgt] result for
a single particle. EquatiofA19) defines the evolution of the
initial state of the system for a bunch wiblh, particles.

APPENDIX B: DETAILS OF THE DERIVATION
OF EQ. (84)

Equation(81) can be simplified, first, by integrating over
¢ and ¢y’ and then by and\’ using formula

m/2
fdx AoM< ) (2N kb)| =1 =b™2e P2 M(b).
(B1)

PHYSICAL REVIEW B5 016507

be obtained by complex conjugation.

The sumS(u) can be split into two parts, one, for u
<M<, u<N<, and another one for <M< —yu,
—M<N<oe. In the first sum we may start summation from
N=—u because the maximum power pfin Lkl";[j(z) is
N+ w. Therefore, derivatives over are equal to ifN<pu.
After this, the sum can be calculated first by expressing
L,Z\,’iﬂ[—y] in terms of the confluent hypergeometric func-
tion and using the integral representation of the latter,

| o N—u
L2 - y]—(N ! y-2He _yf ds.esy s |
(N—u)! —iw2m T (g—1)NFetl
(BS)
Second, we can write LN A IX*]

= (—[192])*#LY 2] -, and us€9]

o0

>

N=-M

(N+pw)!

e AR AT

(éxzg)”M-m2

1-¢ exf — &(x+2)/(1-§)]
2 gxz)

X'MM<T§ 1

whereé={[s(G—1)/(s—1)G]}. In this form, the answer is
valid also for the second part of the sumpe <M < — u,
—M<N<ee,

The sum oveM,

(B6)

This can be obtained by using the series represntation of the

Bessel function. The result is given in terms of Laguerre

polynomialsL]'. Equation(B1) is valid both form>0 and
m<0, whereL Iml(b) has to be understood as

L;'m‘(b)=(—1)m(|_||—|m|)!b‘m‘LlT'|ml(b). (B2)
In this way we obtain
Foutls \Ms)Foul(ls ,M3)Q(by,by)
=(b’{)M_“(b1)M+“exr{—%(bzb’ﬁ—c.c.)
X LN “(bbT LN (b3 by), (B3)

where by =gt exd —2ik(z+7p)]. The average(p!) is
proportional to the sum

_ o (N-w)!(G-1
S(,LL) :E—ocXON max(—M,N) (N'HVI)I( G )
XN XL A IR~ 5| (B4

wherey=|o_|?, x=b,b} , andx,=|b,|?. Termsu <0 can

o\ Xy
S(“):(_E) Wy

(17 ds (é5)7#e¥ (¢xz)m (MM
xXe yf

w2 (s—1)~*1 1-¢

(B7)

xe~leraia-an #l( 2 fxz)

1-¢ )
can be calculated using

]

2 ay(2p) =i, (B8)

After that, each derivative over gives the factor §/[1
—&D(1—[x/xp]). Stakes the form of

X exp{[ Ex* (x/xo—1)+Xo—

&x1/(1=8)}

1— —

X (B9)

ZMGM+1(G 1)#
) (s—G)2*t
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The integral is given here by the residues of the poles at

. Lo\
=G, (pH=2 K2 (1+p) 0—)
1#] H -
X12,[2\Glbp—by[!lo—0o[?],  (BLY
S( )—G(G—l)"(&)ﬂ 1—1)2M| (2\JGAy) by—by | #
a yA Xo| M y (balc_bszc) exp{(G—1)|b,—by|?
Xexgxgt+y+(G—1)A], (B10)

+(1/2)[by(b% —b*)+c.cl}
xexp{(12)[o_(o* —0,)+C.ClHb, b,

whereA=|b,—b,|2. Finally, (B12)
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