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1 Optical Cooling

Consider optical stochastic cooling using dependence on transit time through the bypass to couple transverse and
longitudinal phase space in the pickup to phase in the kicker. The packet emits radiation in the pickup undulator
that will arrive in the kicker with some relative phase ¢ = kAs, where k is the wavenumber of the characteristic
undulator radiation and As = s — s¢ is the change in path length through the bypass. The interaction of the
packet with the radiation in the kicker shifts its energy by

Ap/p = {sin(¢) = Esin(kAs). (1)

In order to effect cooling, the phase is necessarily correlated with the phase space coordinate of the packet in the
kicker, ¢(Zp). That is, the phase depends Z,. The linear dependence of As on Z, is written

As = M51:cp + M52.CC;D + M562’;) (2)

where M is the 6X6 transfer matrix from the center of the pickup undulator to the center of the kicker. Since
T =1+ z. and 2’ = 7} + r, equation 2 becomes

As = M51($5 + a:e) + M52(3?/5 + 6’6) + MSGZ;;
AS = M51(E5 + +M52£C/B + (M5177 + M5277, + .2\456)227 (3)

Next we write phase space coordinates at the pickup in terms of betatron amplitude and phase

Tpg = ar/Bpcosh

s, = 1 aB cosf — —2_sind (4)
B 2 /Bp //Bp
= —L(ap cos 6 + sin 0) (5)

VBp

and likewise at the kicker for future reference

Tpg = a\/@cos(ﬁ +9) (6)
a .
Ty = —\/ﬁm(cos(e +¢) +sin(0 + ¢)) (7)
Then
a, cos f + sin 6 a,cosf, +sinf,
As = a(Ms1\/Bpcosb) — M52(p\/E)) — a,(Ms1n + Mson' + Mse) (@ A )) (8)
As = Agsin(0; + 0.) + A,sin(0, + 0.1) (9)
where
Aa: = Qg [Mglﬁz + ME?Q’VJ: - 2M51M52a:v} 12 (10)
Ms158, — Msocx
o -1 51Mp 52p
0,0 = tan B T (11)
A, = a.(Msin+ Msan' + Msﬁ)’Yzl/Q (12)
0. = tan 'a, (13)



2 Cooling

The cooling is quantified as the change in the invariant amplitude due to interaction of packet with radiation in
the kicker undulator. At the kicker Axyg = —nAp/p and Az 5 = —m Ap/p. And Az, = 0,A2, = Ap/p. If

T = Gy By COS @y, OF 2 = az+/ B, cos ¢, then the amplitude
a2 = Ba'* + ya? + 20ma’

The change in the amplitude

Ad2 = —2(Ap/p)(BuTlhsnly + YaThsls + u(Trany, + Thamn)) (14)
iy cosB + sin @
Aai = fQ(AP/P)((%% =+ amﬁ%)am\/@mse - ar(ﬁmn; + amnk)(T)
a? sin 6
Aarzc = —2(Ap/p)((Yane + amnl/g - amn/ - L ) V/ Bz cost — az(ﬂmn; + amr)( )
B VB
in 0
Aa? = —2(Ap/p)as T cosf— Bty + i o
= —2(Ap/p)E,sin(0y + Ozc) (15)
where
2 20, 12 2.2 /
E, = aw(i+6 )" o™ +20457777)1/2
B B
= a (Py + B’ + 2an'n)"/? (16)
-1 Ui
re — WY 1
0 tan Bt + o (17)

0.k is the horizontal betatron phase at the kicker. The corresponding change in the longitudinal amplitude

Ad? = 2(Ap/p)(Bezy + azz) (18)
= 2(Ap/p)a.(—/B:(az cosl, +sinb,) + a.+/Bcosb.)
= —2(Ap/p)a./B.sinb,
= —2(Ap/p)E. sin(0) (19)

where 6. is the longitudinal betatron phase at the kicker. Combining equations 1 and 14 we find

Aai = _2<§ Sin(kAS)) ((Bzx;gﬁn; + V2ZkpNe + aa:(l'kb’n;c + x;cﬁnk)) + (ﬁzz;c + OéZZ)) (20)
= —2¢sin(kAs))(Ey sin(fur + 0zc)) (21)
= —2¢sin(k(Ay sin(bzp + 05¢) + Az sin(b.p + 0.1) ) (Ey sin(bzr + 02c)) (22)

Now let’s average over all betatron phases

27
Aaidﬂzdﬂz = =-2¢ / sin(k(Ag sin(bzp + 05¢) + Az sin(6.p + 6.1) ) (Ey sin(fpk + 04c))d0,d6. (23)
0

= 726/8111(]47(1495 sin(f,) + A, sin(0, + 0.4))(Eysin(0, + 0p + Opc — 044))d0,d6,  (24)

where we use the fact that the betatron phase advance from pickup to kicker is 6y, that is 0, = 05, + 6y Typically
6., = tan —ley, is small, (a, is for longitudinal motion in the pickup undulator) and we assume that it is zero.



Then

(Aa?) = —2¢E, / [sin(kA, sin(6,)) cos(kA, sin(6,))+
cos(kA, sin(,)) sin(kA. sin(6.))] (sin(y + o + Oz — Oz¢))d,d6. (25)
— 9B, Jo(kAL) / sin(k( Ay sin 0,) [sin 0, cos ¢ + cos 6, sin 6] d, (26)
= —2FE,Jo(kA.)Ji(kAy) cos(B + Ope — Ot (27)

We used the Bessel integral

In(z) = 1 /O7r cos(nt — xsin(7))dr = 1 /07r (cos(nT) cos(z sin ) + sin(nt) sin(z sin 1)) dr

m s

Optimum cooling is realized when 6y + 0. — 6,+ = mm. For example if the phase advance from pickup to kicker
0y = 7 and 0,. = 0, is small. Then

(Aa2) = —26E,Ji(kAy)Jo(kA.) (28)

There is cooling as long as J;(kA;) > 0 and Jy(kA,) > 0, or if kA, < p1 where p; = 3.8 is the first zero of J; and
kA, < po the first zero of Jy. Therefore

kA, < pp—ap < . 5 m 73
[Mg, B + Mgy, — 2Ms1 Msaa,]

Ho
kA, < —a, <
fo (Ms1m + Msan' + Meg)vy,1/?

thus determining the maximum transverse and longitudinal betatron amplitudes that can be cooled. Or we can
write that

1/2
[M§15z + M2y, — 2Ms51 Mso0r, | 2 < M (29)

max
ka™

For small z, Jy(x) ~ § and Jo(z) ~ 1. In that limit Equation 28 becomes

2 1 a
Adl ~ —2a.(n’y+ By + 2aﬁn’n)”2§ (m amim>
Aa? 2 H1
S~ €y B+ 208 )2
Some numbers: a2 ~ €maz ~ 1nm, and (n2y + Bn'> + 2a8n'n)/% ~ 1, and AZ?E < 1 then
o Unet n nn a
3x107°
_ 22X 10
¢ 7.6
Recall
Ap

> = &sin(kAs).

The most effective damping requires that the power in the kicker undulator be sufficient to change the fractional
electron energy by 1 part in 10° or 3 keV for a 300 MeV electron beam. Constraints on the design of the optics of
the bypass and lattice are:

1. Minimize equilibrium emittance. a'** = /€79 is the maximum transverse amplitude that will be cooled.
The equilibrium emittance from radiation damping is necessarily less than €'** if most of the particles are

to be cooled. Ideally €' > ne, where n 2. (Equation 29)



2. Maximize M2, + M2y, — 2Ms Msoa, | 2 Ghere Ms; are the elements of the transfer matrix from
pickup to kicker and n,n" are dispersion in the pickup consistent with requirement 1 and Equation 29.

3. Maximize (n%y + 81> + 2am/'n)*/? (Equation 16)

4. Maximize |cos(0p + 0zc — 04¢)| (see Equations 11 and 17. 6y is the horizontal phase advance from pickup to
kicker.

3 Longitudinal motion

Evidently longitudinal cooling requires Jy(kA,) > 0 and therefore kA, < po where g is the first zero of Jy. Then

oz < (Ms1m + M/;;Jﬂ' + Me)7= (30)
Combine Equations 1, 10-12 and 30 to determine the change in longitudinal amplitude in the kicker.
Aa? = —2(&sin(k(Agsin(@yp + 04) + A, sin(0,, + 0.4))(E, sin ) (31)
As for transverse motion
(Aa?) = (2%)2 [ : —2(&sin(k(Ay sin(0zp + 0u0) + A, sin(0,, + 0.4))(E. sin 0,1, d0,,d0.,, (32)
= 2B, Jo(kA)V2sin(0y + 1/4)J1(kA,) cos(0.0 — 0.1) (33)

4 Summary

If a,, a, are the invariant horizontal and longitudinal betatron amplitudes, for «, 3,7,7,7" in the pickup and Ms;
transport from pickup to kicker then

Ay = ag [M3 8+ My — 2Ms) Msza Y2 0,0 = tan ! 7]\/—[51%\;534520[

A, = a.(Msin+ Msyn' + Msg)y., 0.0 =tan 'a, ~0
then

As = Ay sin(0; + 60) + A sin(6.) (34)
The change in the square of the invariant amplitude due to the change in energy in the kicker
Aay = —2(Ap/p)Eysin(lur + bac)
where for n,7v,n, a, 8 in the kicker
E, = ap(y+ 80" +2am'n)"?, O = —tan~! m

Then averaging over betatron phase
((Aai» = —2§Ex<]1 (kAac)Jo(k‘Az) COS ezopk

For a particular choice of twiss parameters and phase advance cos 80, ~ 1. As above we write

[M2, By + M2y, — 2M51M52az]1/2 ~ Japaz so that
Ae 9 L
— ~ =Ly + B0 + 208 'n) P ——— (35)

€ Veémaz



5 Power

Recalled that Ap/p = Esin(kAx). Ap/p is the fractional energy change on passage of the electrons through the
kicker undulator. Evidently the amplitude of the energy shift is . Solve 35 for

— AGQ? V emaw
[ ,u1./\/l

3

where €, = a® where M = (n?v + 577’2 + 2afn'n)'/2. If we aim to correct the offset measured in the pickup in a
single pass through the kicker then
. \V4 6TI’LG.[L’ (36)

- M

If M ~ 1, and €4, ~ 1 nm, then the required fractional energy change £ ~ 107°. For Epeqm = 300MeV, and the
number of electrons in a slice Ny, = 10° then AE = £ Epeqm N, ~ 300MeV = 4.8 x 10711 J. The total power for the
0.1mA bunch is P = I£Epeqm = 0.3 W

How to think about this. Suppose the accelerating fields are contained in a pulse of radiation that co-propagates
with the electrons. From above we conclude that the peak accelerating field is E =3 keV. The energy density is
u=1F?=1eE? ~ 18.8 x 10712 x 9 x 10% = 4 x 1075 Joules/m?. If the volume is 1 cm X 1 mm? then the total
energy is U = 4 x 107'3 Joules.

6 Limits
In that limit where kAs < 7/2, and with substitution of equation 2 into 20 we have
Aep = —2(Ek(Msizp + M52x;; + M56Z;)(B$m;€ﬁ77/m t YeTrpTz + o (Tt + xi;ﬂ?k)) (37)

We compute the average change in the emittance (Ae,) where the average is over betatron phase. Substituting
Equations 4-7 into 37 and averaging over betatron phase (see Appendix for details)

2

(Ae,y = *27T§k'%(M51 (\ / Bp B sin ¢, + \/gnk (cos ¢ — ay sin QS))

+Mso &n’k(cos ¢+ apsing) + L77k (sin (1 + apay,) + cos play — ay)) (38)
P ﬂkﬂp

= —7néka*M (39)

Consider a couple of special cases. If the phase advance ¢ from pickup to kicker is ¢ = 7 then

2 /
(Aeg) = *27T§k%(M51 (\/%Uk) + Msz <\/§77];€ - ﬁnk cos p(ay, — a,,)))

and if the optics are symmetric so that Sy = By, ap = —ap, M = Np.7), = —77; then

2
(i) = 2mh G (M + Mo (1 + 5 cos(2an) )

7 Sample Lengthening

As noted above, cooling requires that the change in path length be less than the optical wavelength, As < .
Substitution of Equations 4 and 5 into the expression for the change in path length 3



The average change in path length is of course (As) = 0. The mean square change in path length is

™
((As)?) = 5 (a®(MZ, By + MZyy — 2M51 M) + a2 (Msin + Mson' + Mse)*72)) (40)

a? and a? are the horizontal and longitudinal emittances respectively. Particles with amplitudes within one
standard deviation of the emittance will be cooled if 1/{(As)?)) < A.

8 Damping
The matrix that maps from kicker to pickup is My, and from pickup to kicker M. At the kicker
0 0 0 0 O 0 0 0 O
S 0 _ - 10 0 0 O 0 0 0 0 -
AF=1 g | =MMIy =g o o of|My My 0 M|
Ap/p 00 ¢ 0 0 0 0 0
where &), is the phase space vector in the pickup. Then the effect of a single turn is
a_fk,n—i-l = Mpk:Mkpfn +AZ = (MeMl + Mpk)Mkpq_f:k,n = Tjk:,n (41)
The full turn matrix at the kicker is
T=AM+M
where
AM = MMMy,
M = MyMy

Compute the eigenvectors (¢;) and eigenvalues of M. We know how to do this since we have standard methods for
diagonalizing a symplectic matrix. (The eigenvalues are A\X = e**+ and \F = e®=) where u, and p, are the
horizontal and longitudinal tunes.) Then in the limit where AM is small, (it clearly scales with fk:Mgf) the shift

in the eigenvalues (tunes) is given by
AN ~ T (AM)7;

An imaginary component will correspond to damping.

8.1 Pickup to Kicker matrix

Next to work out the matrix M, that maps pickup to kicker. We can write

A k B k
M. — 14 P
Pk (C,,k Dpk>

_ (Ms1 Mso _ (1 Mse
=" ) o= ")

The symplectic condition requires that

And

ASAT + BSBT = S
ASCT + BSDT = 0
csSAT + DSBT = 0
csct +pspT = 8



from which we can conclude that

B = ASCT(DT)7's
For simplicity we suppose o, = a3 = 0. Then
A cos ub* B, sin ppk
= pk
Pk L”: cos Pk
1 Msg
ow = (0 ')
B B cos ,u’;i By sin pPk 0 1\ /Ms O 1 0 0 1
Pk = _smﬂg’é cos pP* -1 0)\Ms2 0)\—Mss 1)\—-1 0
cos uPk B, sin bk Msy 0 0 1 cospb® By sin bt (o M52 49
= vk = in uP*
LH/: cos Mg»k —M51 0 —1 —M56 _sinpn ﬁu“” COS ,ugk 0 _M51 ( )

where pPF is the phase advance from pickup to kicker. We assume Bp = Br. If we also suppose that the phase

advance from pickup to kicker is 180 degrees, then

. 0 —DMse
B = o )
And
-1 0 0 —Ms
0 -1 0 Ms
My, = 43
P Ms1 Msz 1 Mse (43)
0 0 0 1
8.2 Full turn at pickup
Construct the full turn at the pickup
oo (A (0 -
P C D
C = DSBT(AT)'S
(1 T\ (0 1 0 0 —
B (0 1 > ( 1 0) <77_A1i77i 77/—1422‘771‘) (45)'s
_1T601 0 0 cosuyc%01
—\0 -1 0) \n—Aun n —Awuni) \—Pysinp, cosp,) \—1 0
_ (1 Tse (n— Ahm W= Agimi) [ — T COS fly
0 1 0 —COS lby — [ sin uy
_ ("~ Avuni 0’ — Aym *M COS [y
0 0 —COS gy — Py Sin fig
_ ((n=Aum)An — (0" = A2imi) A (n— Auni) A — (0" — A2ini) Arz
0 0
_ <77(A21 — An Aoy + Ao Any) — 1 (A + ArzAor — AgpAnn) n(An — Afy + Ao Arg) — 1/ (A + Az An — A22A12)>
0 0
B (—[;’T sin gy + 7' (1 — cospz)  m(cos pz — 1) — 7/ Bz sin ,ux)
B 0 0



Finally, (assuming no RF) the full turn matrix at the pickup is

COS Ly Be sin piy, 0 n(1—cospy)—n Besin p,
—=sings COS iy 0 ZLsinpu, + 7/ (1 — cospy)
Te = _ 2 gin e + (1 — — 1) — 1/ By i o T (44)
B. Mz T 1) ( Ccos Nz) 77((705 Kz ) 7' By sin pi 56
0 0 0 1
8.3 Full turn at kicker
T, = MpuT,M, (45)
0O 1 0 O —1 0 Msy O 0O 1 0 O
M-l B -1 0 0 0 0 -1 My O -1 0 0 O
pk 0 0 0 1 0 0 1 0 0 0 0 1
0 0 -1 0 —Mso Ms1 Msg 1 0 0 -1 0
0 -1 Mso 0 0O 1 0 O
1 0 —Mm o[-t 0 0 o0
- —Mso  Msxq Ms¢ 1 0 0 0 1
0 0 -1 0 0 0 -1 0
1 0 0 Mso
B 0 1 0 —Ms|
T | -Msi —Msy -1 Mg | My
0 0 0 -1
1 0 0 —Ms COS [ly B sin pug 0 n(1—cospy)—nByesin p,
T, — 0 -1 0 My — ke COS fig 0 gEsinp +7'(1— cos pa)
ko= Msi Msy 1 —DMsg —5"—1 sin g, + 7' (1 — cos ) nlcosp, —1) —n'Besinp, 1 Tse
0 0 O 1 0 0 0 1
-1 0 0 —Ms
y 0 -1 0 Ms
M51 Mss 1 —Msg
0 0 1
mq m2 A B m1 mo
ms C D my
m1A+mQC mlBergD mao
m3A+myC m3B+ myD my
miAmy + moCmy + miBms + ngm3 mi1Amg + moCma + miBmy + maDmy
mgAml + m4C’m1 + mgBmg + m4Dm3 mgAmg + m4C’m2 + mgBm4 + m4Dm4
Write the submatrices
(-1 0 (0 —Ms _ (Ms1 Mso (1 —Mse
my = ( 0 _1> ) mo = (0 M51 ) ) m3 = ( 0 0 ) 4 — 0 1 (46)



The 2X2 components are

. B 0 —Mso\ (Msy Msy\
B Ao (§ e (U Ve -
7o~ (0 ~Msacosp + MsiSasingi\ (0 (1 — cos pig) — 1 By sinpig 0 —Ms,
2= 0 Mo =5k + M cos py 0 g-sinpg +7'(1— cos pz) 0 Ms
(0 —Msy(1 - COS iz ) — M1 By sin fiy 0 n(1—cospy)—n Besinp, 48
\0 —Msp¥pEe 4 My (1 — cos ) 0 Z-sinpg +7'(1— cos pg) (48)
T _ Ms1 cos piy — Msorysinp, Mg By sin py + Mo COS pig
21 0 0
—g-sinpg +1'(1—cospa)  n(cos pg — 1) —n'Bysin iy M5y Msy
0 0 0 0
_ Ms51(1 — cos i) + Msoysin p,  —Ms1 Bz sin pig + Msa(1 — oS iy )
0 0
[~ sinpe +0'(1—cospg)  nlcospy —1) —n' By sin py (49)
0 0
If M51 = 2?’]/,M52 = —27’] Then
T, = T,
But mirror symmetry requires not that Ty = T}, but that T}, = T}, that is where 7, = —1p, Qg = —a, and

Mk = Nps B = Bp- My = —1,, implies Mz, = 0.

9 Bypass constraints revisited

Now with the assumption that T} = T, », and symmetry and o = 0 then we know how the dispersion in kicker and
pickup is related to Ms; and Mso from pickup to kicker. Allowing us to write that If T}, = T}, and
m, =1, = —1Ms; then

2
Ay = ap [MZ B+ M2y — 21\451]\/1'5204]1/2 — %[%]1/2
Also
A, = azM56’Yzl/2
s 2
E, = aw(gjtﬁn’ )2

Recall Equation 29 where we established that

M2+ M2,y — 2Msy Mspa] /2 < 22, 1T 11 50
[ 51ﬂ+ 52,7 51 520(] < ka;naz \/B < ka’rznaw ( )

M in Equation 36 becomes M = (% + 577’2)1/2

o V Gmaflf
‘ (% + By?)12 o

£ is the fractional momentum change of the slice. In order to minize £, we want to maximize 81’ 1y M.
Ehrlichman’s symmetric bypass, November 29, 2017, M52 = —0.051, M5; = 0.0069, 5 = 10. Suppose €4 ~ 1lnm



then
V109
2
3.2 (12[;2 + Mglﬂ/4)2)
V109

3.2(0.01264)
~ T7.8x107%

1/2

For Epeam = 300 MeV, and I = 0.1mA. The total power is P = [ FEpeqm = 23.4 W

10 Eigenvalues and eigenvectors

This section is incomplete The coupling matrix

0 0 -7
o n _a AT n
m+n' = (O n,)—i— SA (O 77)
0 0 _1, (0
= (o :]7,>+SATS<O 7777,>=(I+A 1)<O ,777)
o = m+nT

tr(A— D) + |m + nf|
. . . . 1 . . ;
The eigenvectors of the rotation matrix are v = ( :I:i) with eigenvalues e***. It appears that

U = VMV = Ry, p.) =G 'VIMVG
Then the eigenvalues of M are

m; = VGU — AN =L GTVTAMV Gy,

_ aqr (v —(CDT 0 0 AV
= G <C ~y Ml Mr _CT ~y GUZ
_ AT AT (Y —(CT)T 0 0 =
- “ <C 0 Ml’Y - MT‘CT Mlc + '7M7‘ sz

_ AT (Y —(CT)T 0 0 =
= 4G (C v My — M.CT M+ M, ) CO

The eignvectors of the full turn matrix are

<y
Il

11 Appendix I

11.1 Generalized kicker parameters

At the kicker Axpg = —npAp/p and Amﬁgﬁ = —n,, Ap/p.The action
a? = Ba"® + v2? + 2ama’

2a0Aa = —2Ap/p(Bxygn), + vErenk + a(zrsn), + Thamk))

10



Now if the phase advance from pickup to kicker is 180 degrees, then x33 = —xpg and x%ﬂ = f:c;ﬂ and
200 = 2Ap/p(B,sm, + YEpsii + (Tpamy + Thak))
= 20p/p (i (Brpp + aps) + 1k (Y2ps + 7))

= 2(Ap/p)a (n;(—\/ﬁsin 0) + nk(cosﬁ—\/ggsinﬁ))

11.2 Cooling
Since Ap/p = £sin(kAs) we have that

2aAa = 2a¢ sin(kAs) (n;(—«/ﬁk sinf) + nk(cose—aksmH)>

VBr

2aAa = 2a€ sin

(cyp cos B + sin §) )

ka <M51\/,37p(3089 — M52 \/ﬁi
D

(le(—\/ﬁiksinﬂ) + nk(cose_aksme))

VBr

In the limit where kAs < /2, we can write that

Aa=¢ [ka <M51\/Ecos0 - M52m0()80\/ﬁi;sm9)>] <n,;(\/ﬁ>ksin0) + ﬁk(mg_\/g—:smg))

(Aa) = —%ﬂc <M5177k % + Ms, (nk(a%p_ﬂjk) + 772\/?2))

If o, = —, and B, = B,

(Aa) = —ggk? (M517]k + M52 (2nk(ak) + 772))
2 Bp

12 Longitudinal excitation

While the momentum shift Ap/p is designed to damp the transverse motion, it is apparently adding noise to the
longitudinal. As long as sychrotron and betatron tunes are not related the average momentum shift will be zero.
Not a problem? If Msg is finite then

As = (Ms1n+ Msan' + Mse)o

Ap/p = Esin(k(Ms1m + Msan' + Mse)d)

and there will be longitudinal cooling if the sign of £ is chosen appropriately. But this in turn will add
uncorrelated noise into the transverse.

13 Appendix II

Suppose the betatron phase advance from pickup to kicker is 6y so that

Thg = ar/Br cos(¢ + 0o)
Thy = —% (o, cos(¢ + o) + sin(¢ + 6o))

11



Since

Tpg = a/Ppcos(o)
thy = ——(aycos(9) +sin(¢))

VB»

we can write

TpB
acosp = p
/By
o
asing = Bp,gm;/j——p Tps
v Bp

Then

Tpg = ﬂ<ﬂcoseo+( Bps a:pﬁ—l—\/ﬁ»mpg)sm%)

, 1
T = <ak(%00890+( Bopps +

Lps

\/Fxpg) sinfp) + 5 sinfy — (v/Bpstys + \/B»xpﬁ) cos 90>
P P »

Let’s write 2aAa in terms of x4, x),5.

13.1 Averaging over betatron phase

20Aa = —2Ek(Ms12p5 + Moy, s) (B smy + YTepte + (T, + T a0k)) (53)

Then we have terms like

(xpxp) = (ﬁ(\/ﬂ»coseo—l— V Bps xpxpﬁ—l—f 25 51n90>>
P
cos by + (—+/Bpparp +

@) = GV ( =

(xpxp) = %\/ﬂkﬂp(cosﬁo)

\/ﬂ» ) sin 90>
P

Next

2

a Tpd
<$p$;cﬁ> _ <7ﬁ (ak( \p/ﬁiﬁ cos Oy + (\/@Tﬁ%x;fr
P
I’pl’pﬁ .

%gjpxl,ﬁ) sinfg) + \/E sin fp — mmpxpﬁ + ﬂmpxpﬁ) cos 90) )

1 a?

(TpTh) = 2\ﬁ< (j—COb%*'(\/@(—%H

sin 0y — (—+/Bppyp +

Bp)sinby) +

Bp
0
m v ﬂp )

2

<.’17p$;€6> = 2 r

)

12



Another term

(xprRs) = (x,/Br (%cos@o—l—( Bpstys + \/Expﬁ)SIHQ())

2
<m;xk5> - %\/ﬁ: <_O‘p cos by + (\/Bpsrps — \j;;) sin00>
2
(xprre) = aQ\/gT;(sinHO — ay cos )

Finally
VA / 1
(xprhg) = —xpﬁ (ak(\x/%% cos by + (/BpsT,s + \/Expg)smﬁo) \/Esmﬁo (V/ Bppys + \/ﬂ»pxpg) COS90>
2 a2 2
= _2\(1/571@( O\[/F cos Oy + ay( \/E% W)Sinﬂo— \;ﬂfsmﬂo \/ﬂ»p'yp T cos&o>
i3 P i Bp
2 2
= 72\(1/[371@ (Ci;%: cos by + %sin@o — \;{prsm% \/ﬂ;’yp \/T; CoS 90>
2 _
= 723@ (O\[;gi: cos by — \/lﬂ; cos by + ak\/ﬁilp sin00>
2

— aay,) cos By + (g — ap) sinbp)

YA

Now we can write Equation 53 Step 1

200a = —26k(Msizps + Msox,5)(Ba)smy, + YTrsme + a(Trpny, + Thamk))
= —26k(Msy (zp By, + Yeiktpy + (T + Mrapry)) +
My (Bem, ey, + ikyTr + (e, + maye)))

Step 2

= —28k(Ms:1 (), (Brepe), + anaprr) + nk (WapTr + arrpty)) +
Mg (ny (Bepay, + axpar) + . (Yexper + oxpa),))

Step 3

_ —2§k (M51 (f\/ﬂpﬂk.(akcoséo+sin90)n§€Jr’y;mk\/ﬁkﬂpcos&g

e (\/ B Bpmy cos by — 4 | %ak(ak cos 0y + sin 90)%)
k
: Bk / ﬁk: .
+Mso | (14 agay)cosby + (o — o) sinbyp) ﬁ—nk + F(sm B — o cos Oo) vk +
P P

(ﬁ(bln@o ay cos b)ny, + aknk\/ﬁlkiﬁ((l + agay) cos by + (o — ag) sin 90)>
P P
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Step 4

2
= —2§k%(M51 (—\/ﬁpﬁk sin ony, + \/Enk (cos by — ay sin 90))>

. 1
+ M5 < /&77;@(‘305 0o + apsinby) + Wnk (sinfo(1 + agay) + (ar — ap) cos 90)>
P kMp

Step 5

a? ) .
f2§k5(M51 (wﬂpﬁk sin fony, + %nk(cos 0o — ay, sin 00)>

1
+Mso ( /@771;(605 0o + apsinby) + B0 Nk (sin Oo(1 + agay) + cos Oy (ag — ap))>
D kPp

If we have symmetry
2
= —2§k%(M51 (—Bp sin Oony, + ni(cos O — ay sin 6p) + Mso (n;c(cos 0o + apsinby) + 77Ek(sin 0o (1 — a?) + 2ay, cos 90)
and if g =7

2
a
= 2€k?(M51’f]k + ]\45277;€ + Q%Oék)

And if o = 7/2
2

= 26k (M) (~ By + (o) + M (nfk(ap) + (1 - a2)>
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