OSC simulation update

Suntao Wang

1. Evaluate MPE's recent IOTA bypass

4/3/2018

MPE bypass 4: /home/sw565/sw565/osc/lattice/mpe_5mm_500mev/iota/bmad.lat

1. Matched to CHESS-U lattice

2. CCU standard Bmad wiggler model (0.95T)

Without incoherent kicks

Sample lengthening mainly due to synchrotron motion

Consistent with Zholents' prediction, PRSTAB 15 (2012) 032801

Cooling requirement for m56_6:

Cool particles with initial $\sigma_p \le n\sigma_E$ to zero fixed points => m56_t <= 1.2 $\pi/(nk\sigma_E)$

 λ =800nm, k=2π/λ, σ_E=2.9E-4, n=4 m56_t <= 4.1E-4

Energy acceptance:
$$(\delta p/p)_{max} = \mu_0/(k*m56_t)$$

=> m56_t = $\mu_0/(k*(\delta p/p)_{max}) = \mu_0/(k*n\sigma_E)$

m56_t <= 2.6E-4

General case isosurfaces:

 $\Delta s = m_{51} x + m_{52} x' + m56*(\delta p/p)$

Fixed attraction surfaces: $k\Delta s=2n\pi$, n=0,1,2...

Q49 = -0.05 m⁻²

$Q49 = -0.1 \text{ m}^{-2}$

 ϵ_x =32 pm, ϵ_{xmax} =69.6 nm, σ_{pmax} =2.38E-4 m51=-7.4773E-04, m52=-5.8124E-03 m56=9.8917E-03, m56_t=9.5595E-03

$$\epsilon_x$$
=34 pm, ϵ_{xmax} =11.2 nm, σ_{pmax} =4.29E-5 m51=-1.8184E-03, m52=-1.4135E-02 m56=9.7299E-03, m56_t=8.9241E-03

Track 1000 particles for 1000 turns, ξ =1E-5

Add incoherent kicks

No cooling observed, probably due to incorrect model of incoherent kicks when having longitudinal structures (microbunching).

Track 1E4 particles for 1E6 turns $\xi=1E-6$

Conclusion

- Observe cooling fixed points without incoherent kicks
- Observe "micro-bunching"
- Model incoherent kicks with microbunching or use large number of particles for tracking