OSC simulation update

Suntao Wang

1. Evaluate MPE's recent IOTA bypass

4/3/2018

MPE bypass 4: /home/sw565/sw565/osc/lattice/mpe_5mm_500mev/iota/bmad.lat

1. Matched to CHESS-U lattice
2. CCU standard Bmad wiggler model (0.95T)

Basic parameters:
$\varepsilon_{\mathrm{x}}=32 \mathrm{~nm}, \alpha_{\text {damp }}=2.25 \mathrm{E}-6(\sim 1 \mathrm{~s}), \mathrm{x}_{\mathrm{h}}\left(\mathrm{x}_{\mathrm{v}}\right)=1$
$\sigma_{\mathrm{E}} / \mathrm{E}=2.92 \mathrm{E}-4$
Emittance acceptance:
$\mathrm{E}_{\mathrm{xmax}}=69.6 \mathrm{~nm}, \sigma_{\text {pmax }}=2.38 \mathrm{E}-4$
Colling rates:
$\lambda x=1.04 \mathrm{E}-3, \lambda \mathrm{~s}=3.0 \mathrm{E}-2 @ \xi_{0}=1 \mathrm{E}-6$
m56=9.8917E-03
m56_t=9.5595E-03

Without incoherent kicks

Sample lengthening mainly due to synchrotron motion

OSC process on, $\varepsilon_{x}=5 n m$
Matrix tracking
1E4 particles, 1E5 turns, $\xi=1 \mathrm{E}-6$
Without incoherent kicks

a: 9.56e-03, b: -3.08e-09

Cooling to fixed attraction points Red lines: $\sigma_{p}=n 2 \pi /\left(k^{*} m 56 _t\right), n=0,1, \ldots$

Consistent with Zholents' prediction, PRSTAB 15 (2012) 032801

Cooling requirement for m56_6:
Cool particles with initial $\sigma_{p}<=n \sigma_{E}$ to zero fixed points

$$
\begin{aligned}
&=>\quad \mathrm{m} 56 _\mathrm{t}<=1.2 \pi /\left(\mathrm{nk} \sigma_{\mathrm{E}}\right) \\
& \lambda=800 \mathrm{~nm}, \mathrm{k}=2 \pi / \lambda, \quad \sigma_{\mathrm{E}}=2.9 \mathrm{E}-4, \mathrm{n}=4 \\
& \mathrm{~m} 56 _\mathrm{t}<=4.1 \mathrm{E}-4
\end{aligned}
$$

Energy acceptance: $(\delta \mathrm{p} / \mathrm{p})_{\text {max }}=\mu_{\mathrm{o}} /\left(\mathrm{k}^{*} \mathrm{~m} 56 _\mathrm{t}\right)$
$\Rightarrow \quad$ m56_t $=\mu_{0} /\left(k^{*}(\delta p / p)_{\text {max }}\right)=\mu_{0} /\left(k^{*} n \sigma_{E}\right)$
m56_t <= 2.6E-4
General case isosurfaces:

$$
\Delta s=m_{51} x+m_{52} x^{\prime}+m 56 \star(\delta p / p)
$$

Fixed attraction surfaces: $\mathrm{k} \Delta \mathrm{s}=2 \mathrm{n} \pi, \mathrm{n}=0,1,2 \ldots$
$\varepsilon_{\mathrm{x}}=32 \mathrm{pm}, \varepsilon_{\mathrm{xmax}}=69.6 \mathrm{~nm}, \sigma_{\mathrm{pmax}}=2.38 \mathrm{E}-4$ m51=-7.4773E-04, m52=-5.8124E-03 m56=9.8917E-03, m56_t=9.5595E-03
$\mathrm{Q} 49=-0.1 \mathrm{~m}^{-2}$
$\varepsilon_{x}=34 \mathrm{pm}, \varepsilon_{x \max }=11.2 \mathrm{~nm}, \sigma_{\text {pmax }}=4.29 \mathrm{E}-5$ $\mathrm{m} 51=-1.8184 \mathrm{E}-03, \mathrm{~m} 52=-1.4135 \mathrm{E}-02$ m56=9.7299E-03, m56_t=8.9241E-03

Track 1000 particles for 1000 turns, $\xi=1 \mathrm{E}-5$

Add incoherent kicks

No cooling observed, probably due to incorrect model of incoherent kicks when having longitudinal structures (microbunching).

Microbunching

Track 1E4 particles for 1E6 turns $\xi=1 E-6$

Microbunching

Track 1E4 particles for 1E5 turns, $\xi=1 \mathrm{E}-6$
Turn: 1E5

Red lines: $z_{i}=2 i \pi /\left(k^{*} m 56 _t\right)^{*} \sigma_{z} / \sigma_{E}$ $\Delta \mathrm{z}=3.7 \mathrm{~mm}$

Microbunching

Track 1E4 particles for 1000 turns $\xi=1 \mathrm{E}-5$

Microbunching

Track 1E4 particles for 1000 turns, $\xi=1 \mathrm{E}-5$
Turn: 1000

Red lines: $z_{i}=2 i \pi /\left(k^{*} m 56 _t\right)^{*} \sigma_{z} / \sigma_{E}$

Conclusion

- Observe cooling fixed points without incoherent kicks
- Observe "micro-bunching"
- Model incoherent kicks with microbunching or use large number of particles for tracking

